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Abstract

The cryptocurrency Ethereum is the most widely used execution platform for smart
contracts. Smart contracts are distributed applications, which govern financial assets and,
hence, can implement advanced financial instruments, such as decentralized exchanges or
autonomous organizations (DAOs). Their financial nature makes smart contracts an at-
tractive attack target, as demonstrated by numerous exploits on popular contracts resulting
in financial damage of millions of dollars. This omnipresent attack hazard motivates the
need for sound static analysis tools, which assist smart contract developers in eliminating
contract vulnerabilities a priori to deployment.

Vulnerability assessment that is sound and insightful for EVM contracts is a formidable
challenge because contracts execute low-level bytecode in a largely unknown and poten-
tially hostile execution environment. So far, there exists no provably sound automated
analyzer that allows for the verification of security properties based on program dependen-
cies, even though prevalent attack classes fall into this category. In this work, we present
HORSTIFY, the first automated analyzer for dependency properties of Ethereum smart
contracts based on sound static analysis. HORSTIFY grounds its soundness proof on a
formal proof framework for static program slicing that we instantiate to the semantics of
EVM bytecode. We demonstrate that HORSTIFY is flexible enough to soundly verify the
absence of famous attack classes such as timestamp dependency and, at the same time,
performant enough to analyze real-world smart contracts.

1 Introduction

Modern cryptocurrencies enable mutually mistrusting users to conduct financial operations
without relying on a central trusted authority. Foremost, the cryptocurrency Ethereum sup-
ports the trustless execution of arbitrary quasi Turing-complete programs, so-called smart con-
tracts [28], which manage money in the virtual currency Ether.

The expressiveness of smart contracts gives rise to a whole distributed financial ecosystem
known as Decentralized Finance (DeFi), which encompasses a multitude of (financial) applica-
tions such as brokerages [19,29], decentralized exchanges [2,15,30] or decentralized autonomous
organizations [12,25]. However, smart contracts have shown to be particularly prone to pro-
gramming errors that lead to devastating financial losses [4]. These severe incidents can be
attributed to different factors. First, smart contracts are agents that interact with a widely
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unpredictable and potentially hostile environment. Accounting for all possible environment
behaviors adds a layer of complexity to smart contract development. Second, smart contracts
manage real money. This financial nature makes them an extraordinarily lucrative attack tar-
get. Third, transactions in blockchain-based cryptocurrencies, like Ethereum, are inherently
immutable. As a consequence, not only the effects of exploits are persistent, but also vulnera-
ble smart contracts cannot be patched. Given this state of affairs, it is of utmost importance
to preempt contract vulnerabilities a priori to contract deployment.

Sound static analysis tools allow for reasoning about all possible runtime behaviors without
deploying a contract on the blockchain. In this way, smart contract developers and users can
reliably identify and eliminate harmful behavior before publishing or interacting with Ethereum
smart contracts. However, as shown in recent works [23,24], most automatic static analyzers for
Ethereum smart contracts that promise soundness guarantees cannot live up to their soundness
claims.

To the best of our knowledge, the only tools targeting sound and automated static analyses of
smart contract security properties are Securify [26], ZEUS [17], EtherTrust [10], NeuCheck [20],
and eThor [23]. The soundness claims of ZEUS, Securify, EtherTrust, and NeuCheck are sys-
tematically confuted in [24] and [23].

The analysis tool eThor [23] comes with a rigorous soundness proof but only supports the
verification of reachability properties. While this is sufficient to characterize the absence of
interesting attack classes, many other smart contract security properties do not fall within this
property fragment. Grishenko et al. [11] give a semantic characterization of security properties
that characterize the absence of prominent classes of smart contract bugs. Most of these
properties fall into the class of non-interference-style two-safety properties that we will refer to
as dependency properties and fall out of the scope of eThor’s analysis. The only tool that, up
to now, targeted the (sound) verification of dependency properties was the tool Securify [26]—
which was empirically shown unsound in [23].

Our Contributions In this work, we revisit Securify’s approach. In this course, we ana-
lyze the peculiar challenges in designing a sound static dependency analysis tool for Ethereum
smart contracts. We show how to overcome these obstacles with a principled approach based
on rigorous formal foundations. Leveraging a formal proof framework for static program slic-
ing [27], we design a provably sound dependency analysis for Ethereum smart contracts on the
level of Ethereum Virtual Machine (EVM) bytecode. Finally, we give an implementation of the
analyzer HORSTIFY that performs the static dependency analysis via a logical encoding, which
can be automatically solved by Datalog solvers. We demonstrate how to use HORSTIFY to
automatically verify dependency properties on smart contracts, such as the ones defined in [11].
Concretely, we make the following contributions: (i) We devise a new dependency analysis
for EVM bytecode based on program slicing following the static program framework presented
in [27]. (ii) We prove this dependency analysis to be sound with respect to a formal semantics
of EVM bytecode. (iii) We show how to approach relevant smart contract security properties
presented in [11] with the dependency analysis. (iv) We present HORSTIFY, an automated pro-
totype static analysis tool that implements the dependency analysis. (v) We demonstrate that
HORSTIFY overcomes the soundness issues of Securify while showing comparable performance
and small precision loss on real-world smart contracts.

The remainder of the paper is organized as follows: Section 2 overviews our approach and
discusses the challenges in designing sound static analysis tools for smart contract dependency
analysis; Section 3 introduces the necessary background on Ethereum smart contract execu-
tion and the current state of smart contract dependency analysis; Section 4 introduces the
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Figure 1: Overview on the formal guarantees of HORSTIFY

slicing proof framework from [27] that our analysis builds on; Section 5 presents our static
analysis based on program slicing and its soundness proof; Section 6 reports on our prototype
implementation HORSTIFY and its practical evaluation; and Section 8 concludes the paper.

2 Overview

In this paper, we develop a dependency analysis tool for EVM bytecode that is designed in
accordance with formal correctness statements providing overall soundness guarantees. The
correctness proof is modularized as depicted in Figure 1. The core module is a generic proof
framework [27] for backward slicing using abstract control flow graphs (CFGs). In these CFGs,
each node is annotated with all variables it reads and all variables it writes. The backward
slice of a node is a set containing all nodes that possibly influence the variables written in
the respective node. The framework extends the abstract CFG to a program dependence
graph (PDG) by explicitly defining the data and control dependencies between the nodes. For
this PDG, the framework establishes a generic correctness statement for slicing: whenever a
node influences another, the influencing node appears in the backward slice of the influenced
node. To obtain the correctness result for a concrete programming language the abstract CFG
representation is instantiated for a concrete program semantics.

We instantiate the framework for EVM bytecode by devising a new EVM CFG semantics.
We show (@) that the EVM CFG semantics satisfies all requirements for instantiation and
(@) that it is equivalent to a formalisation of the EVM bytecode semantics. From this, we
obtain backward slicing for EVM contracts with a corresponding correctness statement (@)

For the actual analysis, we express dependencies in EVM contracts by means of dependency
predicates which we characterize by (fixpoints over) a set of logical rules, given in the form
of Constrained Horn Clauses (CHC). Most importantly, we show that if the backward slice
of some program point contains some other program point, then the (potential) dependency
between these two program points is also captured by the predicate encoding (@)

From the EVM bytecode analyzer Securify [26] we adopt the idea of defining so-called se-
curity patterns to soundly approximate the satisfaction (or violation) of a security property.
A security pattern is a set of facts over dependency predicates, which characterize the form of
dependencies that are ruled out by the pattern. In contrast to Securify, our formal characteriza-
tion of dependency predicates enables a correctness statement for the approximating behavior
of the security patterns w.r.t. their corresponding property (@)

Finally, we present the prototype tool HORSTIFY that implements our dependency analysis
and uses the Datalog engine Soufflé to perform the fixpoint computation and to check whether
a security pattern is matched. A pattern match guarantees (in)security w.r.t. the respective
security property.
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Challenges The main challenge of designing a practical and sound dependency analysis for
EVM bytecode is finding precise and performant abstractions that tame the complexity of
EVM bytecode while maintaining soundness guarantees. As we have elaborated in [14], EVM
bytecode’s language design makes this task particularly hard: Non-standard language features
introduce corner cases that are easily overlooked or make it necessary to enhance the analysis
with custom optimizations that can lead to unsoundness when done in an ad-hoc manner. As
a consequence, it is of paramount importance to construct a sound analysis tool with formal
foundations that are flexible enough to cover those subtleties.

The slicing framework [27] enables a modular soundness proof that separates the standard
argument for the correctness of slicing from the characterization of program dependencies.
However, even though this reduces the proof effort, a naive instantiation of the framework
would introduce a multitude of superfluous dependencies and hence lead to a highly imprecise
analysis. For this reason, the key challenge lies in the design of the EVM CFG semantics.
We will show how to approach these challenges with a solid theoretical foundation and by
circumventing the bothersome technical hurdles without compromising the soundness of the
analysis. In this paper, we give a high-level overview of the relevant theorems and proofs and
refer the interested reader to an extended version of this paper [14] for the technical details.

3 Background on Ethereum Smart Contracts Analysis

Ethereum smart contracts are distributed applications that are jointly executed by the users of
the Ethereum blockchain. In the following, we shortly overview the workings of Ethereum, the
resulting particularities of the Ethereum smart contract execution environment and introduce
the smart contract dependency analysis tool Securify.

Ethereum The cryptocurrency Ethereum supports smart contracts via an account-based
execution model. The global state of the system is given by accounts whose states are modified
through the execution of transactions. All accounts have in common that they hold a balance
in the currency Ether. An account can be either an external account that is owned by a user
of the system and that solely supports user-authorized money transfers, or a contract account
that manages its spending behavior autonomously by means of a program associated with the
contract that may use its own persistent storage to provide advanced stateful functionalities.
Users interact with accounts via transactions. Transactions either call existing accounts or
create new contract accounts. A call transaction transfers an amount of money (that could
be 0) to the target account and triggers the execution of the account’s code if the target is
a contract account. A contract execution can modify the contract’s persistent storage and
potentially initiates further transactions. In this case, we speak of internal transactions, as
opposed to external transactions, which are initiated by users on behalf of external accounts.

Smart Contract Languages Smart contracts are specified in EVM bytecode and executed
by the Ethereum Virtual Machine (EVM). EVM bytecode is a stack-based low-level language
that supports standard instructions for stack manipulation, arithmetics, jumps, and memory
access. On top, EVM’s instruction set includes blockchain-specific opcodes, for example, to
access transaction information and to initiate internal transactions. While the EVM bytecode
is technically Turing-complete, the execution of smart contracts is bounded by a transaction-
specific resource limit. With each transaction, the originator sets this limit in the unit gas and
pays for it upfront. During the execution, instructions consume gas. The execution halts with
an exception if running out of gas and reverts all effects of the prior execution.

4
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In practice, Ethereum smart contracts are written in high-level languages—foremost, So-
lidity [l]—and compiled to EVM bytecode. Solidity is an imperative language that mimics
features of object-oriented languages like Java but supports additional primitives for access-
ing blockchain information and performing transactions. For better readability, we will give
examples using the Solidity syntax even though our analysis operates on EVM bytecode.

Adversarial Execution Environment The blockchain environment poses novel challenges
to the programmers of smart contracts. As opposed to programs that run locally, smart con-
tracts are executed in an untrusted environment. This means, in particular, that certain system
parameters cannot be fully trusted. A prominent example of this issue is Ethereum’s block
timestamp: In Ethereum’s blockchain-based consensus mechanism, the system is advanced by
appending a bulk of transactions grouped into a block to the blockchain, a distributed tamper-
resistant data structure. These blocks are created by special system users, so-called miners.
While all system users check that blocks only contain valid transactions, the correctness of a
block’s metadata cannot easily be verified. So is each block required to carry a timestamp, but
due to the lack of synchronicity in the system, this timestamp can only be checked to lie within
a plausible range. This enables a miner to choose the value of the block timestamp freely within
this range. Therefore, the block timestamp should not be used as a source of randomness as
illustrated in the fOHOWiIlg example: function rouletteWheel() private (uint) { return timestamp % 37; }

Securify The automated analyzer Securify is the only analysis tool up to now that aims at
giving provable guarantees for dependency analyses of EVM bytecode contracts. It decompiles
the bytecode into a stackless intermediate representation (IR), where values are stored in vari-
ables in static single assignment (SSA) form rather than on a stack. Further, it determines the
CFG of the contract and encodes the transitive control and data flow dependencies between
variables and program locations as a set of dependency predicates. While it is not possible
to specify arbitrary (security) properties in Securify, the tool allows for defining compliance
patterns and violation patterns that serve as “approximations” for the satisfaction and, respec-
tively, the violation of the property. These patterns are defined over the dependency predicates
and can be checked automatically using the Datalog solver Soufflé [16]. A compliance (violation)
pattern is sound w.r.t. a property, if satisfying the pattern implies satisfaction (violation) of the
property. If neither of the patterns is satisfied, the satisfaction of the property is inconclusive.
An example of a security property is the restricted write (RW) property for storage locations.
Intuitively, a contract satisfies RW, if for all storage locations, there is at least one caller address
that cannot write to this location. We have have demonstrated in [14] how the lack of formal
foundations affects the guarantees of the state-of-the-art analysis tool Securify [26].

4 Analysis Foundations

To design a sound static analysis for EVM bytecode based on program slicing, we instantiate
the slicing proof framework from [27] with a formal bytecode semantics as defined in [11]. Before
discussing the instantiation in Section 5, we shortly overview both frameworks.

4.1 EVM bytecode semantics

The EVM semantics was formally defined in [11] in form of a small-step semantics. We use
a linearized representation of the semantics inspired by Securify, where the use of the stack is
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replaced by the usage of local variables in SSA form. We will call these variables stack variables
and, in the following, always refer to the linearized representation of the semantics.

Formally, the semantics of EVM bytecode is given by a small-step relation I' £ S — S".
The relation describes how a contract, whose execution state is given by a callstack S, can
progress to callstack S’ under a transaction environment I". The transaction environment I’
holds information about the external transaction that initiated execution. We let I' F § —*
S’ denote the reflexive transitive closure of the small-step relation and call the pair (T',S) a
configuration. The details of the components of the EVM configurations can be found in [11].
The overall state of an external transaction execution is captured by a callstack S. The elements
of the callstack model the states of all (pending) internal transactions. Internal transactions can
either be pending, as indicated by a regular execution state (u,t, ), or terminated. The state
of a pending transaction encompasses, the current global state o, the execution environment ¢
and the machine state p. The global state o describes the state of all accounts of the system and
is defined as a partial mapping between account addresses and account states. The execution
environment ¢, among others, contains the code of the currently executing contract. We model
the code of a contract as a function C' that maps program counters to tuples (0p(Z), pc,eut, PTE),
where op denotes an opcode from the EVM instruction set, & is the vector of input and output
(stack) variables to this opcode, and pc,,,,, denotes the program counter for the next instruc-
tion. Further, we instrument each instruction with a list pre of precomputed values for the
arguments . This instrumentation is only introduced for analysis purposes and does not affect
the execution.

The machine state p captures the state of the local machine and holds the amount of gas
(g) available for execution, the program counter (pc), the local memory, and the state of the
(linearized) stack variables (s).

Small-step Rules We illustrate the working of the EVM bytecode semantics using the ex-
ample of the ADD instruction. This instruction takes two values as input and writes their sum
back to its return variable.
t.code [p.pc] = (ADD(r, a,b), pc,,ps> DTE)
pg>3  p = pls = pslr = ps(a) + psb)]]lpec = pe,..)lg —= 3]

T'E (u,e,0) S APD(e.h), (W,e,0):: 8

Given a sufficient amount of gas (here 3 units), an ADD instruction with result (stack) variable r
and operand (stack) variables a and b writes the sum of the values of a and b to r and advances
the program counter to pc,.,;- These effects, as well as the subtraction of the gas cost, are
reflected in the updated machine state p’.

Security properties Previous work [11] has shown that there are several generic smart con-
tract security properties, which are desirable irrespective of the individual contract logic. The
properties formally defined in [11] are integrity properties that aim at ruling out the influence
of attacker behavior on sensitive contract actions, in particular, the spending of money. These
properties are e.g., the independence of a contract’s spending behavior from miner-controlled
parameters (as the block timestamp) or mutable contract state. Further, [11] introduces the
notion of call integrity, which requires that the spending behavior of a contract is independent
of the code of other smart contracts. Since call integrity is hard to verify in the presence of
reentering exeutions, a proof strategy is devised that decomposes call integrity into one reacha-
bility property (single-entrancy) that restricts reentering executions and two local dependency
properties. These local dependency properties ensure that the spending behavior of the contract

6
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does not depend on the return effects of calls to other (unknown) contracts (effect independence)
or immediately on the code of such contracts (code independence).

Focussing on integrity, the security properties from [11] are given as non-interference-style
notions. We illustrate this with the example of timestamp independence, a property that
requires that the block timestamp cannot influence a contract’s spending behavior and hence
would rule out vulnerabilities as those in the roulette example:

Definition 1 (Independence of the block timestamp). A contract C is independent of the block
timestamp if for all reachable configurations (T, s¢ :: S) it holds for all T' that
T = jimestamp " ATEsc=S 5" sc S A final(s")

, ok
™

AT EscS T s608S A final(s") = 7 lease= T leaiise

This definition requires that two executions of the contract C' starting in the same execution
state s¢ and in transaction environments I' and I that are equal up to the block timestamp
(denoted by I' =/ y;estamp I”) exhibit the same calling behavior (captured by the call traces
T Jeallse ). Intuitively, this ensures that the contract C' may not perform different money transfers
based on the block timestamp. The roulette example trivially violates this property since, based
on the block timestamp, the prize will be paid out to a different user.

4.2 Program Slicing

Static program slicing is a method for capturing the dependencies between different program
points (nodes) and variables in a program. Intuitively, the program slice of some program
node n in a program P consists of all those nodes n’ in P that may affect the values of
variables written in n. Program slices are constructed based on the program dependence graph
(PDG) that models the control and data dependencies between the nodes of a program. In
the following, we will review the static slicing framework by Wasserraab et al. [27], which
establishes a language-independent correctness result for slicing based on abstract control flow
graphs (CFGs).

Abstract control flow graph An abstract CFG is a language-agnostic representation of
program semantics. Technically, an abstract CFG is parametrized by a set of program states
© and defined by a set of nodes (representing program points) and a set of directed edges
between nodes. Edges may be of two different types: State-changing edges n— {}f — n’ alter
the program state 6 € © by applying the function f to  and predicate edges n —(Q),, — n/
guard the transition between n and n’ with the predicate Q on the program state 6. We write
n %" n’ to denote that node n can be reached n/ using the edges in the list as. Abstract CFG
edges can be related to actual runs of the program by lifting them to a small-step relation of
the form (n, ) —a— (0, 6').

PDG and backward slices The PDG for a program consists of the same nodes as the CFG
for this program and has edges that indicate data and control dependencies. To make data
dependencies inferable, each node n is annotated with a set of variables that are written (short
Def set, written Def(n)) and a set of variables that are read by the outgoing edges of the node
(short Use set, written Use(n)). A node n’ is data dependent on node n (written n —gq n') if n
defines a variable Y (Y € Def(n)), which is used by n’ (Y € Use(n')) and n’ is reachable from
n in the CFG without passing another node that defines Y. A node n’ is (standard) control
dependent on node n (written n —.4 n’) if n’ is reachable from n in the CFG, but n can as well

7
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reach the program’s exit node without passing through n’ and all other nodes on the path from
n to n’ cannot reach the exit node without passing through n’. So intuitively, n is the node at
which the decision is made whether n’ will be executed or not. Based on the data and control
flow edges of the PDG, the backward slice of a node n (written BS(n)) is defined as the set of
all nodes n’ that can reach n within the PDG.

Correctness statement The generic correctness statement for slicing proven in [27] is stated
as follows:
Theorem 1. Correctness of Slicing Based on Paths [27]
(n, ) =" (n', 0')
Jas’. (n, 0) E;BS("/) (n', 0") A aslpsmy=as’ A (VV € Use(n').0'(V)=0"(V))

Intuitively, the theorem states that whenever a node n can reach some node n’ in the PDG
((n, ) 25" (n’, ')), then removing all outgoing edges from nodes not in the backward slice

of n' ({n, 0) ﬁ;BS(n,) (n', ")) without altering the path through the PDG in any other way
(as | ps(n)y= as’) has no impact on n'. Having no impact on n’ means that variables used in
n' are assigned to the same values regardless of whether the edges have been removed or not
(VV € Use(n'). ¢(V) = 0"(V)). We call the PDG without the above-mentioned edges also
sliced PDG or sliced graph.

5 Sound EVM Dependency Analysis

Next, we instantiate the slicing proof framework [27] to accurately capture program dependen-
cies of EVM smart contracts in terms of program slices. We then give a logical characterization
of such program slices, which allows for the automatic computation of dependencies between
different program points and variables with the help of a Datalog solver. The generic correct-
ness statement of the slicing proof framework guarantees that the slicing-based dependencies
soundly over-approximate all real program dependencies. We show how to use this result to
automatically verify relevant smart contract security properties such as the independence of
the transaction environment and the independence of mutable account state as defined in [11].

5.1 Instantiation of Slicing Proof Framework

We instantiate the abstract CFG from the slicing framework with the linearized EVM semantics.

The concrete layout of the instantiation heavily influences the resulting backward slices
and the precision of the analysis. In the following, we sketch the most interesting aspects of
our instantiation of the CFG components and how they contribute to the design of a precise
dependency analysis.

Preprocessing Information For a precise analysis, it is indispensable to preprocess con-
tracts to aggregate as much statically obtainable information as possible—without compromis-
ing the soundness of the overall analysis. For example, knowing the precise destination of jump
instructions is crucial to reconstruct control flow precisely, and, moreover, this information
usually can be easily reconstructed, especially, when contracts were compiled from a high-level
language with structured control flow.

8
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In the remainder, we assume that all existing preprocessing information is correct and
sufficient to reconstruct the contract’s CFG. Recall that, formally, we consider a contract a
function, such that for a program counter pe, C(pc) = (0p(Z), pcext, PTe) Where pre contains
the preprocessing information for the instruction op(Z): for every Z[i], pre[i] either holds a
precomputed static value, or L to indicate that no static value could be inferred. Note that we
restrict preprocessing to stack variables. For our analysis, we are only interested in precomputed
values for memory and storage locations and jump destinations.

CFG States The edges of the CFG are labeled with state-changing functions or predicates
on states. For EVM bytecode programs, the CFG state 6 is partitioned into stack variables
(denoted by z'*), memory variables (x™), storage variables (x9) and local (z¢) and global (z)
environmental variables. Memory and storage variables represent cells in the local memory,
respectively the global storage of the contract under analysis. Local environment variables
contain the information of the execution environment that is specific to an internal transaction.
Global environmental variables denote environmental information whose accessibility is not
limited to a single internal transaction, like the state of other contracts and the block timestamp.

CFG Nodes, Edges & Def and Use Sets To transform an EVM bytecode program into a
CFG, we map every program counter pc to one or more nodes (pc, i) in the CFG (where i € N
is used to distinguish between multiple nodes for pc). We call a node (pe, 0) initial node (for pc)
and nodes (pc, i) with ¢ > 0 intermediate nodes (for pc). Since the size of the callstack below
the translated callstack element may influence the contract execution, the rule set defining the
CFG transformation constructs a relation of the form C,ed F (pc,i) —a— (pc,i'), where C
is the contract for which the CFG is constructed, cd is the size of the callstack, and a stands
for either a (Q),/ action (for a predicate edge) or {}f action (for a state-changing edge). With
every rule, we also provide Def and Use sets. The Use sets contain all variables whose values
are retrieved from the state € in the definition of the @ predicate or f function. Similarly, the
definition set contains all variables that are overwritten by the function f (and is always empty
for predicate edges).

It can be shown that the CFG semantics and EVM semantics coincide via two simulation
relations where every (multi-)step in the CFG semantics between initial nodes is simulated by
a step of the bytecode semantics and vice versa.

5.2 Core abstractions

Memory Abstraction To precisely model memory and storage accesses in a CFG, it is
important to know statically as many memory and storage locations as possible. Assume that
such statical information is not available: then memory (or storage) cannot be separated into
regions and all read and write operations introduce dependencies with the whole memory (or
storage). This would introduce many false dependencies. During a preprocessing step, such
static information can be inferred. But, as illustrated by Securify, using preprocessed data may
introduce unsoundness [14]. This requires careful integration of preprocessing information into
the CFG defining rules. In the following we consider only memory variables; all ideas equally
apply to storage variables.

We propose a, to the best of our knowledge, novel memory abstraction that is sound and
provides high precision. To position our approach between unsound and imprecise memory ab-
stractions, we investigate a contract satisfying the RW property depicted as a CFG in Figure 2.
The black and solid line parts of the left CFG visualize how Securify misses the dependency

9



HoORSTIFY Holler, Biewer and Scheidewind

S
A4 vV
v @ n(l] = msg.sender; {17.5) —@)—> (sender, x}
= 17,0} —@—(}

: 1 Z R Al
@ nix) - msg.sender; | | x[(1"}—@—(sender,x) U x K".0—@—=X".D U (sender,x) @ mlx] = 42 XD —@—> X0

] —‘J ....... [N ;—\

i - —
@ v1 =nl0]; (1) —@— (0"} {1} —@—>(0".s, 0".0} @ v1 - n0] (y1} —@—=(0".0, 0".5)
@ v2-yl1-0 ({2)4{)—»(;«1) (32} —@—= (v1} 0O -y =0

R )
@ if (v2) 1 2} 2} @ if (v2)!
© test - ltest; Lobqtest) @f (rest) (test)} @ (test) @ test = ltest; wokafrest) @ (rest)
9, (]

Securify (with fix) HoRStify Securify (with fix) HoRstify
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by Securify and HORSTIFY. eled by Securify and HORSTIFY.

between nsg.sender (@) and writing to test (@). In Securify, write accesses to unknown memory
locations are assumed to write a special memory variable T". However, when reading from
a statically known memory location (as done in @), Securify does not consider that a value
could have been written to this location when the location was not statically known, i.e., that
the value could have been stored in T™: the Use set of @ contains only 0™, but not T™. A
hypothetical fix for this unsoundness is to replace the variable T™ by the whole set X™ of all
memory variables. This fix is depicted in violet in Figure 2. Now, the dependency of the read
access in @ to the write operation in @ is naturally established. One should notice, however,
that this interpretation implies that the Use set of node @ needs to contain all variables in X™
as well: a new value is written to one unknown location, but for all other locations the value
is “copied” from the existing memory cells, and hence, all these cells need to be included in
the Use set. Even though fixing the soundness issue, this modeling would lead to an imprecise
analysis as depicted in Figure 3. This variant of Figure 2 first writes msg.sender to the known
memory location 1 in node @ and then writes a value to an unknown memory location in node
@. Since the condition y2 only depends on the value in memory location o while nsg.sender was
written to location 1, the final write to the test variable in @ does not depend on msg.sender.
However, the hypothetical fix of Securify infers a possible dependency between @ and nsg.sender
(shown in violet in the left CFG in Figure 3). This imprecision is caused by interpreting a write
to an unknown memory location as a write to possibly all memory locations as this requires the
Use set in @ to contain X™. This creates a dependency between the assignment of location 1
t0 msg.sender in @ and the memory access in @.

Our memory abstraction is sound but more precise than the hypothetical fix above. For
every memory variable & we use two sub-variables instead: S-variable x™.S stores values that are
assigned to z when the memory location for x is statically known, and D-variable x™.D stores
values assigned to x when x’s location is not statically known. During the execution, every write
access to a memory variable z stores the assigned value in ™.D, unless the memory location for
x is statically known, in which case ™.S stores the value and ™.D is set to L. Correspondingly,
when reading from a variable (regardless of the memory location being statically known or not),
first, the value of the D-variable is read, and only if it is 1, the value of the S-variable is taken.
We model this read access with the function

load 0 % — O[z™.S] if gz™.D] = L
0[z™.D] otherwise.

This two-layered memory abstraction ensures that the execution is deterministic and that
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the read values coincide with those obtained during an execution without prior preprocessing.
The load function is used in the corresponding inference rule for memory operations that can
be found in [14]. Figures 2 and 3 (right sides) showcases how this leads to a sound and precise
dependency propagation.

Gas and Call Abstraction To incorporate a sound and precise modeling, we assume that
a contract does not run out-of-gas and we are targeting only smart contracts that cannot write
storage in reentering executions. These assumption can be checked statically [3,23].

Assumption 1 (Absence of local out-of-gas exceptions (informal)). A contract execution does
not exhibit local-out-of-gas exceptions if each local exception can be attributed to the execution
of an INVALID opcode.

Assumption 2 (Store unreachability (informal)). A contract C is store unreachable if all its
reentering executions cannot reach an SSTORE instruction.

Details about how the challenges of soundly and precisely modeling gas and calls in the
CFG semantics are solved and why these assumption where made can be found in [14].

5.3 Soundness Reasoning via Dependency Predicates

Inspired by Securify, we define dependency predicates that can capture the data and con-
trol flow dependencies induced by the PDG (as given through the CFG semantics). They
are inhabited via a set of logical rules (CHCs) R(C') that describe the data and control flow
propagation through the PDG of a contract C. More formally, the transitive closure of the
C’s PDG is computed as the least fixed point over R(C') (denoted by Ifp(R(C))). Most
prominently, I[fp(R(C)) includes the predicates VarMayDepOn and InstMayDepOn. Intuitively,
VarMayDepOn(y, z) states that the value of variable y may depend on the value of variable
x and InstMayDepOn(n,x) says that the reachability of node n may depend on the value of
variable z. In the following, let n, and n, denote nodes that define variables x and y, respec-
tively. The formal relation between dependency predicates and backward slices is captured by
the following lemma:

Lemma 1 (Fixpoint Characterization of Backward Slices). Let x and y be variables and C' be
a contract. The following holds:

1. (3ne ny. ne € BS(ny)) = VarMayDepOn(y, x) € Ifp(R(C))
2. (3 n nig na. Nig —can A ng € BS(nig)) = InstMayDepOn(n, x) € Ifp(R(C))

Lemma 1 states 1) that whenever there is a node n, defining = in the backward slice of
a node n, defining y, then VarMayDepOn(y,z) is derivable from the CHCs in R(C) and 2)
that whenever there is a node n, defining x in the backward slice of a node n, on which
node n is control dependent then InstMayDepOn(n,z) is derivable from R(C). The intuition
behind statement 2) is that node n is controlled by n;s (by the definition of standard control
dependence), which means that n; is a branching node. n, € BS(n;) indicates that the
branching condition of n;s depends on variable x and, hence, so does the reachability of n.

Next, we give an explicit semantic characterization of the dependency predicates, which we
prove sound using Theorem 1. This explicit characterization enables us to compose security
patterns as a set of different facts over dependency predicates and to reason about them in a
modular fashion. As a consequence, we can show in Section 5.4 that checking the inclusion of
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security patterns in the least fixpoint of the rule set R(C) is sufficient to prove non-interference-
style properties. Concretely, we can characterize facts from the VarMayDepOn predicate as
follows:

Theorem 2 (Soundness of Dependency Predicates).
Vz y. VarMayDepOn(y,z) € Ifp(R(C)) =y L = withy L z given as:
Ve i 00 02 05 00 =)0 02 A (na®,00) 5 (m,8) = 304 (na62) N 0y A L) = ()
Ny ?

where n,t denotes the unique successor node of n, and N, the set of all nodes definingy. (n, ", 0;) —%
(n,01) describes an execution from n, to n that passes exactly i nodes defining y.

The theorem states that if VarMayDepOn(y,x) is not included in Ifp(R(C)) then y is inde-
pendent of z (y L x). A variable y is considered independent of x if for any two configurations
01 and 0 that are equal up to z, and any execution starting at node n, T, the first node after
x is defined, passing i nodes that define y, and ending in a node n at state 67, one can find
a matching execution from 6y that passes the same number of nodes defining y and ends at
node n in a state 0 such that 65 and 0] agree on y. This definition ensures loop sensitivity:
it captures that during a looping execution, every individual occurrence of a node defining y
can be matched by the other execution—so that the values of y agree whenever y gets reas-
signed. The proof of Theorem 2 uses Lemma 1 and Theorem 1. For the full proof and a similar
characterization of InstMayDepOn(i, ), we refer to [14].

5.4 Sound Approximation of Security Properties

With Theorem 2 we are able to formally connect dependency predicates and (independence-
based) security properties. We take trace noninterference as a concrete example, which com-
prises a whole class of non-interference-style security properties. Concretely, we consider
trace noninterference w.r.t. a set of EVM configuration components Z, which includes, for
example, the block timestamp. A predicate f defines instructions of interest. If two execu-
tions of a contract C' start in configurations that differ only in the components in Z, then the
instructions of interest must coincide in the two traces that result from these executions.

Definition 2 (Trace noninterference). Let C' be an EVM contract, Z be a set of components

of EVM configurations and f be a predicate on instructions. Then trace noninterference of
contract C w.r.t. Z and f (written TNI(C, Z, f)) is defined as follows:

TNIC,Z, f) :=VIT' sstt na. (T,s) =,z I",s)) = TFscuS 50 8 A final (t))
= TEsc:S Ll te S A final(t)) =>7lp=7 1y
where T |5 denotes the trace filtered by f, so containing only the instructions satisfying f.

The dependency properties defined in [11] can be expressed in terms of trace noninterference.
E.g., the timestamp independence property in Definition 1 is captured as an instance of trace noninterference
as follows:
TNI(C, {T.timestamp}, Aop.op = CALL)

We show that we can give a sufficient criterion for trace noninterference in terms of depen-
dency predicates. More precisely, we give a set Pg’ ¢ of facts, such that P?;C) Nifp(R(C)) =0
implies TNI(C,Z, f). Practically, this means that we can prove TNI(C,Z, f) by computing

the least fixpoint over the CHCs R(C) (e.g., using a datalog engine) and then check whether
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it contains any fact from Pg . For components in Z, we assume a function toVar that maps
components of the EVM semantic domain to CFG variables. The dependency predicates con-
stituting a security pattern for trace noninterference are defined as

ch,f = {InstMayDepOn(pc, toVar(z)) | z€ Z N C(pc) = op(Z, pc,ep, pre) N f(op)} U
{VarMayDepOn(z;, toVar(z)) | z € Z A pc € dom(C) A C(pc) = (op(&, pc,, e, PTE)) A f(OD) A T3 € T}

Theorem 3 (Soundness of trace noninterference). Let C' be a contract, Z a set of components,
and f an instruction-of-interest predicate. Then it holds that

(Vp € PS ;. p & Ifp(R(C))) = TNI(C, Z, f).

Theorem 3 shows that Pg s is a security pattern for trace noninterference. The absence
of facts from Pg s in Ifp(R(C)) ensures that the reachability of all instructions satisfying f
is independent of variables representing components in Z and that all arguments x; of such
instructions are independent of z as well. These independences imply trace noninterference
since they ensure that in two executions starting in configurations equal up to Z, all instructions
satisfying f are executed in the same order (otherwise their reachability would depend on
Z) and with the same arguments (otherwise their argument variables would depend on Z).
Consequently, such executions produce the same traces, when only considering instructions
satisfying f. A full proof of Theorem 3 can be found in [14].

5.5 Discussion

In this section, we presented a sound analysis pipeline for checking security properties for lin-
earized EVM bytecode contracts by means of reasoning about dependencies between variables
or instructions. While our work was inspired by Securify [26], we developed new formal founda-
tions for the dependency analysis of EVM bytecode contracts and in this way revealed several
sources of unsoundness in the analysis of Securify. Further, we provide soundness proofs for
the analysis pipeline end-to-end; all theorems and proofs are available in the extended version
of this paper [14]. The key pillars of the soundness proof are i) that our EVM CFG semantics
satisfies all conditions to be used with the slicing framework [27], ii) that the EVM linearized
bytecode semantics and the CFG semantics are equivalent, iii) that our set of CHCs encodes
an over-approximation of dependencies in an EVM contract, and iv) that the generic security
pattern Pg ¢ is a sound approximation of trace noninterference. The proofs are valid under
assumptions that are clearly stated in this paper.

We assume that EVM smart contracts are provided in a (stack-less) linearized form. Trans-
forming into such a representation from a stack-based one is a well-studied problem [18] and
a standard step performed by most static analysis tools [8,26]. Up to this requirement, our
analysis is parametric with respect to other preprocessing steps. More precisely, our analysis
pipeline is sound for contracts with sound preprocessing information, and hence, in particular,
for contracts without any preprocessing information but jump destinations needed for the CFG
(cf. Section 5.1). This gives the flexibility, to enhance the precision of the analysis through
the incorporation of soundly precomputed values — works on soundly precomputing jump
destinations for EVM bytecode already exists [9].

6 Evaluation

The focus of this paper is on the theoretical foundations of a sound dependency analysis of smart
contracts. However, we demonstrate the practicality of the presented approach by developing
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Figure 5: Classification of mismatching results

Figure 4: Large-scale evaluation of HORSTIFY of HORSTIFY and Securigfil for the RW' (left)
(H) and Securify (S). and TS (right) property. *

the prototype analyzer HORSTIFY. We do not implement the logical rules from Section 5.3
directly in Soufflé (as done by Securify), but encode them in the HORST specification lan-
guage [23]. The HORST language is a high-level language for the specification of CHCs. By
introducing this additional abstraction layer, we get a close correspondence between our theoret-
ical rules and their actual implementation and, hence, anticipate a lower risk of implementation
mistakes that may invalidate soundness claims in the implementation.

HORSTIFY accepts as input a set of dependency facts encoding the security patterns spec-
ified in the HORST language and Ethereum smart contracts in the EVM bytecode format. It
first invokes Securify’s decompiler to transform the contract into a linearized representation
and does some lightweight preprocessing to obtain the precomputable values (cf. Section 5.1).
Then, HORSTIFY uses our formal specification of the CFG construction rules and the HORST
framework to create a Soufflé executable for the analysis and invokes it.

To reduce the risks of implementation mistakes, we conduct a large-scale evaluation of
HoRSTIFY and Securify on real-world contracts. To this end, we use the sanitized dataset
from [23] that consists of 720 distinct smart contracts from the Ethereum blockchain. We
compare the performance of Securify and HORSTIFY on this dataset for both the RW pattern
and for timestamp independence (TS) as defined in Section 5.4. We manually inspect all
contracts on which Securify and HORSTIFY report a different result.

Figure 4 shows the evaluation results. The average execution time of HORSTIFY is approxi-
mately 2.3 times longer than for Securify. Consequently, HORSTIFY suffers from more timeouts
than Securify; the execution of both tools is aborted after one minute. Figure 5 visualizes the
manual classification for those smart contracts where HORSTIFY and Securify disagree. There
are only two contracts where HORSTIFY matches the corresponding pattern, but Securify does
not. Recall that for a sound tool, a pattern match indicates the discovery of provable indepen-
dencies that imply either property violation (RW) or compliance (TS). An erroneous pattern
match by HORSTIFY would present a soundness issue (false negative). We carefully examined
the two examples and could confirm them not to constitute false negatives of HORSTIFY but
false positives of Securify (fpg,.), unveiling an imprecision of Securify. This seems surprising
since our analysis generally tracks more dependencies than the one of Securify. However, while
HoORSTIFY implements standard control dependence to encode control dependencies (e.g., to
compute join points after loops), Securify implements a less precise custom algorithm.

The contracts where Securify matches a pattern, but HORSTIFY does not, can either reveal
soundness issues (false negatives) of Securify (fng.) or a precision loss (false positives) of
HORSTIFY (fpy,,). Indeed, in the 29 contracts that are flagged only by Securify, we find both
cases (as shown at the bottom of Figure 5), as we have evaluated in [14].

Overall, based on our evaluation results, we can bound the precision loss of HORSTIFY

3Ticks indicate correct matches (#n) and crosses wrong matches (fn) of the respective tool. tng.r/tngec,
gror/ fisees tPHor/ tPsecs fPHor/ fPsec denote true negatives, false negatives, true positives, and true negatives of
HORSTIFY /Securify, respectively.

4For TS we only consider the 165 contracts from the dataset containing a TIMESTAMP opcode, as Securify
labels other contracts as trivially secure. The manual classification is a conservative best-effort estimate.
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w.r.t. Securify. More concretely, when considering that Securify has a specificity® of Sge. on
the full dataset, then one can easily show that it holds for the specificity Sy, of HORSTIFY
that Sgor > Sgec + % where tng,, are the true negatives for HORSTIFY, and tnge.
are the true negatives for Securify found within the manually inspected mismatching contracts.
Inserting the results from Figure 5, we can show that Sg,, can be at most 0.5 percentage points

less than Sg. for RW on the given dataset and at most 5.4 percent points less for TS.

7 Related Work

Most static analyzers are bug-finding tools (such as Oyente [21], EthBMC [7], and Maian [22])
that aim to reduce the number of contracts that are wrongly claimed to be buggy (false pos-
itives). To this end, these tools usually rely on the symbolic execution of the contract under
analysis. The only example of a tool, which comes with a provable soundness claim, so far, is
the analyzer eThor [23], whose analysis relies on abstract interpretation.

Symbolic execution and abstract interpretation have in common to target reachability prop-
erties. However, many generic security properties for smart contracts (as defined in [11]) fall
into the broader category of 2-safety properties. To check 2-safety properties with tools whose
analysis is limited to reachability properties (such as eThor) requires an overapproximation of
the original property in terms of reachability. In [11], it is, e.g., shown how to overapproxi-
mate the call integrity 2-safety property (characterizing the absence of reentrancy attacks) by
a reachability property (single-entrancy) and two other properties, which are captured by our
notion of trace noninterference. HORSTIFY (inspired by the unsound Securify tool [26]) devises
a different analysis technique, which immediately accommodates the analysis of trace noninter-
ference. As opposed to the analysis underlying eThor, this technique does not allow for verifying
general reachability properties, but a special class of 2-safety properties (including trace non-
interference). HORSTIFY and eThor, hence, can be seen as complementing tools that target
incomparable property classes. The call integrity property falls neither in the scope of eThor
nor HORSTIFY, but its overapproximation decomposes it into trace noninterference properties
and a reachability property. Other generic security properties from [11] for characterizing the
independence of miner-controlled parameters (including timestamp independence) immediately
constitute trace noninterference properties and as such can be analyzed by HORSTIFY but not
by eThor. More complex properties involving both universal and existential quantification of
execution traces [5,06] cannot be checked by either HORSTIFY or eThor.

8 Conclusion

In this work, we present the first provably sound static dependency analysis for EVM bytecode.
Taking up the approach of the state-of-the-art static analyzer Securify [26], we replace the un-
derlying analysis and spell out formal soundness guarantees. We can show that the resulting
analysis is flexible enough to soundly characterize a generic class of non-interference-style prop-
erties, such as timestamp independence. We demonstrate the practicality of the approach by
providing the prototypical analyzer HORSTIFY. We show that it can verify real-world smart
contracts, and even though being provable sound, shows performance comparable to Securify.

tn
tn+fp

5The specificity is a standard precision measure and is calculated as
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