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Abstract. Academic paper recommendation aims to provide personal-
ized recommendation services for scholars from massive academic papers.
Deep Learning-based Collaborative Filtering plays an important role in
it, and most of existing method are based on bipartite graph, which
causes it fail to realize multi-features fusion, and the over-smooth prop-
erty of GCN limits the generation of embedding with high-order similar-
ity, resulting in the decline of recommendation quality. In this paper, we
propose a hypergraph-based academic paper recommendation method.
Based on hypergraph, APRHG (Academic Paper Relation HyperGraph)
is constructed to not only model the complex academic relationship be-
tween users and papers, but also realize the multi-features fusion. In
addition, the L-HGCF (Light HyperGraph based Collaborative Filter-
ing) algorithm, which could mine high-order similarity between papers,
is proposed to provide trusted recommendations. We conduct experi-
ments on the public dataset, and compare the performance with several
deep learning based Collaborative Filtering to confirm the superiority of
our method.

Keywords: Hypergraph, Collaborative Filtering, Academic paper Rec-
ommendation.

1 Introduction

Academic papers are considered to be important indicators of advances in a
field. They are also important mediums for researchers to communicate with
each other. Due to the rapid emergence of big academic data recently, the cog-
nitive burden of scholars to search for the academic knowledge they want has
increased. In the construction of digital library, Information Retrieval (IR) tech-
nology[13] are used to alleviate this problem to some extent, but sometimes
junior researchers may have no idea on how to choose appropriate queries fed
into the search box. In such an environment, there is an urgent requirement for
an effective academic paper recommendation technology, by which researchers
can be freed from tedious and time-consuming paper screening.

⋆ Corresponding author.
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Collaborative Filtering (CF) has become one of the most popular and widely
used algorithms for academic paper recommendation, which is based on the as-
sumption that users with similar behaviors have similar preferences for papers.
However, except for the users’ historical preference for papers, the co-citation and
co-keyword relationship between papers are two other key features by which aca-
demic paper recommendation differentiates from general recommendation tasks.
When the emerging CF algorithms, especially some GCN-based CF algorithms[2,
6], are applied to academic paper recommendation, the absence of these two key
features will lead to unsatisfactory recommendation results. These GCN-based
CF algorithms are generally based on bipartite graph which uses two kinds
of vertices to represent users and papers respectively, and use edges represent
users’ preferences for papers. However, bipartite graph has insufficient ability
of fusing co-citation and co-keyword relationship between papers. In addition,
the preferences of the current user and similar users are represented in form of
third-order neighbors. And at least three layers of GCN are needed to be stacked
to complete embedded propagation between them. The over-smooth property of
GCN[9] limits the generation of embedding with high-order similarity, resulting
in the decline of recommendation quality.

To tackle this challenging issue, in this paper, we propose a hypergraph-
based academic paper recommendation method. According to users’ historical
preference and academic relation between papers, we present APRHG (Academic
Paper Relation HyperGraph) which meets the requirements complex relationship
description and multi-features fusion. Academic relations including co-citation
and co-keyword relationship between papers, they are fused by extending the
semantic of hyperedges (i.e., regard co-citation relationship as a hyperedge).
In addition, we propose the L-HGCF (Light HyperGraph based Collaborative
Filtering) algorithm based on the simplified hypergraph convolution network
(HGCN) to provide trusted recommendations. Compared with GCN, L-HGCF
algorithm has a clearer logic and has advantages in embedding propagation, and
extensive experiments show the whole recommendation method achieves great
performance in the task of academic paper recommendation.

The main contributions of our work are summarized as follows:

(1) Based on hypergraph, we proposed the APRHG which takes full advantage
of co-citation and co-keyword relationship between papers, and because user
vertices are not introduced into the graph, we avoid stacking multi-layers
GCN for mining high-order similarity, as with bipartite graph.

(2) Based on the constructed APRHG, we proposed an L-HGCF algorithm to
learn latent vectors which represent relationship between papers and then
provide trusted recommendations.

(3) We conducted experiments compared with four deep learning algorithms on
the public dataset CiteUlike-A[15]. At the same time, we conducted detailed
ablation experiments to verify the rationality of the components. Experi-
mental results demonstrate the effectiveness of our method.

The rest of this paper is organized as follows. In the next section we review
related work. Section 3 illustrates the overall framework of our recommendation
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method. Section 4 evaluates the experimental results compared with baseline
models and section 5 presents ablation studies. Finally in section 6, we provide
a conclusion and discuss prominent future research directions.

2 Related Work

Collaborative Filtering (CF) is a prevalent recommendation technique and has
been successfully applied in multiple domains including e-commerce[3], movies[8]
and so on. The early CF methods [8] worked by establishing a database of users’
preferences for items.

With the development of intelligent technology[10, 4], especially the appli-
cation of graph convolution neural network (GCN)[11], researchers began to
explore GCN-based CF problems, they applied deep learning to CF problems
and made good progress. GCMC [2] represented interaction data such as movie
ratings as bipartite user-item graph with labeled edges, and then applied a graph-
based auto-encoder on it. In order to learn embeddings such as e-commerce item
embedding, NGCF [17] propagated embedding of users and items on the bipar-
tite graph, which effectively inject the collaborative signal into the embedding
process. Based on NGCF, LightGCN [6] simplified the GCN operation for collab-
orative filtering, so that the model only contains the most important components
in GCN, neighborhood aggregation.

The traditional CF algorithms have been widely used in academic paper
recommendation system. Yang et al. [19] presented an academic paper recom-
mendation system which uses a ranking-oriented CF method based on users’
access logs. Sugiyama et al. [14] developed an academic paper recommendation
system, which incorporate the associated papers information when building the
user profile according to the citation network. Xia et al. [18] proposed to es-
tablish the additional relationship between papers according to the co-author
information. They constructed the tripartite graph which contains user, papers
and authors to combine the co-author relationship between papers with users’
historical preferences for papers.

However, limited by structure of bipartite graph, GCN-based CF deep learn-
ing algorithms cannot fuse multi-features provided by the academic papers.
Meanwhile, the over-smooth property of GCN[9] limits the generation of em-
bedding with high-order similarity, resulting in the decline of recommendation
quality. Based on these problems, we propose to build our academic paper rec-
ommendation method based on hypergraph, which will be described in detail
later.

3 HyperGraph-based Academic Paper Recommendation

3.1 Architecture of recommendation method

Figure 1 sketches the overall framework of our proposed academic paper recom-
mendation method. The method is divided into two stages: APRHG construc-
tion and L-HGCF algorithm. APRHG is used to describe the complex academic
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Fig. 1. The overall framework of our proposed academic paper recommendation
method.

relationship between users and papers, and L-HGCF algorithm is proposed to
provide trusted recommendations based on the constructed hypergraph.

Section 3.2 and section 3.3 will introduce the detail of APRHG construction
and L-HGCF algorithm, respectively.

3.2 Academic Paper Relation Hypergraph

Hypergraph is a special graph whose edge connect two or more vertices [1]. Based
on Hypergraph, we propose an APRHG (Academic Paper Relation Hypergraph)
which is defined as follows:

Definition 1. APRHG (Academic Paper Relation HyperGraph) is defined by
G = (P,E,W ) , where

– P = {p1, p2, ..., pn} is the vertex set, pi represent academic paper i;
– E = {eri = (pri1, p

r
i2, ..., p

r
ik)|r ∈ R} is the hyperedge set, where R denote

different kinds of hyperedge. Each hyperedge eri is the subset of the paper set,
they have academic relation r with each other;

– W is a diagonal matrix assign weight to each hyperedge.

From the definition of APRHG, it can be seen that academic papers that have
academic relation can be gathered by hyperedge. If some vertices are surrounded
by more same hyperedges, it indicates that they have higher correlation and the
corresponding papers have more similarity.

An APRHG can be denoted by a |P | × |E| incidence matrix H, with entries
defined as Eq. (1)

h(p, e) =

{
1, p ∈ e
0, p /∈ e

(1)
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Considering the academic relationship including relation between users and
papers, as well as papers, we define three types of hyperedges:

1): Hyperedges based on users’ historical preference for papers. Each user in
the record is regarded as a hyperedge, by which the user’s preferred papers are
connected with each other.

2): Hyperedges based on co-citation relationship between papers. Given the
original citation network, each time one vertex in the citation network is selected
as the center point and its connected vertices including the center point itself
are used to generate one hyperedge.

3): Hyperedges based on co-keyword relationship between papers. Consider-
ing that the keywords of title has rich semantics, the semantic information of
the title will be diluted if the title and abstract are processed into bag of word
together, so we treat keywords in the title as hyperedges, and papers whose ti-
tle contain this keyword are treated as vertices which are connected by these
hyperedges.

In this paper, we adopt the stack strategy to obtain the complete hypergraph
structure, which can be formulated as H = H(0)∥H(1)∥H(2)∥...∥H(n), where ∥
denotes concatenation operation, H(0) to H(n) denote hyperedges constructed
by different features, respectively.

3.3 Light Hypergraph Algorithm based Collaborative Filtering

Inspired by the work of Feng et al.[5] and Jiang et al.[7] , we propose L-HGCF
algorithm in this paper.

Firstly, The title, abstract, and keywords of papers are processed into the
bag of words as papers attribution X(0). Based on X(0), the embedding ma-
trix X(1) is obtained through an embedding component. The paper embedding
matrix X(1), together with the constructed incidence matrix H of ARPHG, are
then transferred into the simplified HGCN (HyperGraph Convolution Network)
layer[5].

For the target paper pi, messaging happens between pj connected by the com-
mon hyperedges, and then follows an aggregation process which is weighted ac-
cording to weight of hyperedges. It can be represented in a matrix form as Eq. (2)

X(l+1) = σ(D
− 1

2
p HWD−1

e HTD
− 1

2
p X(l)θ(l)) (2)

where X(l) is the input of (l)-th layer. Dp and De are the diagonal matrices
of the paper degree defined as d(p) =

∑
e∈E W (e)h(p, e) and hyperedge degree

defined as δ(e) =
∑

p∈P h(p, e), respectively. W is a diagonal matrix store all

the positive weight of hyperedges. θ(l) is the learnable weight matrix and σ(.) is
non-linear activation function like eLU and LeakyReLU.

In order to light the burden of model, we abandon the use of feature trans-
formation θ(l) and nonlinear activation σ(.), and retain only the most impor-
tant component in HGCN, neighborhood aggregation, in our model. As shown
in Eq. (3).
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X(l+1) = D
− 1

2
p HWD−1

e HTD
− 1

2
p X(l) (3)

The input of the first layer HGCN X(1) , is the embedding from the attribute
values of the original papers X(0). Once X(1) are given, the embeddings at
higher layers are computed via our Simplified HGCN layer which is defined
in Eq. (3). After K-layer calculation, we further combine the embeddings which
are obtained at each layer to form the final representation of a paper, show
in Eq. (4):

X =

K+1∑
k=1

αkX
(k) (4)

where αk > 0 denotes the importance of the k-th layer embedding in constituting
the final embedding. In our experiment, we set αk uniformly as 1/(1 + k).

In our proposed academic paper recommendation method we regard only
papers as vertices. Therefore, a strategy is needed to aggregate user embedding.
In this paper, user embedding is obtained by averaging embedding of historical
preferred papers, show as Eq. (5).

xu =
1

N

N∑
i=1

xi (5)

And then the similarity between users and papers is defined as the inner
product of their final representations, show as Eq. (6):

yui = xT
uxi (6)

The final recommendation results to user u are decided according to the
descending order of similarity yui.

The only trainable parameters in our algorithm come from the embedding
component which outputs X(1), i.e.,θ = {X(1)} . We design a tuple-wise loss
function which satisfies the hyperedge property as show in Eq. (7).

L = −
M∑
u=1

∑
i∈u

(
∑

j∈u,j ̸=i

lnσ(xT
i xj)−

∑
k/∈u

lnσ(xT
i xk)) + λ∥X(1)∥2 (7)

where λ controls the L2 regularization strength. σ(.) is the sigmoid function.
M includes only hyperedges which are based on users’ historical preference for
papers. We see papers connected by these hyperedges as positive examples, and
sample the negative samples to be 10 times the amount of the positive samples.
This loss function encourages the prediction of positive entry to be higher than
its negative counterparts. We employ the Adam optimizer and use it in a mini-
batch manner.

The computational cost of our approach to generate paper recommendations
for users mainly comes from three steps: paper similarity computation - equa-
tion Eq. (3)(4). User embedding computation - Eq. (5) and recommendation
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list generation - Eq. (6). In order to avoid repeat computing, we calculate the

matrix of D
− 1

2
p HWD−1

e HTD
− 1

2
p and store it beforehand, so that time complex-

ity of the first step is O(n2d), the second step is O(mn), and last one is O(mn).
Where we assume the number of user and paper is m and n, the dimension of
paper paper attribution is d.

4 Experimental Analysis

4.1 Experimental Settings

Table 1. Statistics of the preprocessed experimented data.

Dataset #User #Paper #Interaction #Citation #Key word

CiteUlike-A 4880 11845 172267 31517 582

We select dataset collected on the famous academic literature sharing web-
site CiteULike1, named CiteUlike-A[15]. The dataset contains users’ historical
preference for papers, the citation network of papers and raw data of title and
abstract, for which the statistics are shown in Table 1. For this dataset, we filter
out the papers and their records with damaged title or abstract, and filter out
users less than 10 records and papers less than 5 records. And then we randomly
divide the dataset into two subsets, in which 80% of the historical preference
records constitute the training set and the other 20% of the preference records
constitute the test set.

For performance evaluation, we adopt three widely-used metrics, including
precision@K, recall@K, and normalized discounted cumulative gain (ndcg@K).
The metrics are computed by the Eq. (8), Eq. (9), and Eq. (10), respectively.
In our experiments, K is set as 20.

precision@k =

∑
u |R(u) ∩ T (u)|∑

u |R(u)|
(8)

recall@k =

∑
u |R(u) ∩ T (u)|∑

u |T (u)|
(9)

where R(u) is the list of recommendations to user u and T (u) is the list of true
selections of user u.

ndcg@k = ZK

K∑
i=1

2ri − 1

log2(1 + i)
(10)

1 https://citeulike.org/
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where ZK is the normalization factor, the value of ri is 0 or 1, indicating the
predictive correlation of paper i, and 1/log2(1 + i) represents the importance
coefficient at i position.

The proposed L-HGCF algorithm is implemented in PyTorch. The hidden
dimension, i.e., the embedding size for papers, are fixed as 64 and the embedding
parameters are initialized with the Xavier method. The batch size is set as 32.
For all compared methods, we opt for the Adam optimizer and use the default
learning rate of 0.001 and the random seed of all models is set to 1024. The L2
regularization coefficient λ is searched in the range of {0, 1e−5, 1e−4, 1e−3, 1e−
2, 1e−1}. The layer combination coefficient αk is uniformly set to 1/(1+k), where
K is the number of layers. We test K in the range of 1 to 4, and satisfactory
performance can be achieved when K equals to 2.

4.2 Performance Comparison with Baseline Models

Four recent competitive methods are selected for performance comparison. They
are representatives of three graph structures, namely graph free structure (BPR-
MF[12]), simple graph structure (SNDE[16]) and Bipartite graph structure (
LightGCN[6], MCMC[2],), respectively.

(1) BPR-MF[12]: a classic matrix factorization method using the BPR as loss
function, which optimizes the embedding of users and items through pairwise
ranking between the positive instances and sampled negative items.

(2) SDNE[16]: a graph representation learning frame-work which jointly ex-
ploits the first-order and second-order proximity to preserve the network struc-
ture.

(3) GCMC[2]: a graph auto-encoder framework for recommendation system
from the perspective of matrix completion, in which a graph convolution layer
is introduced to generate user and item embeddings through message passing.

(4) LightGCN[6]: a simplified GCN-based recommendation framework which
integrates the user-item interactions into the embedding process. For this method,
we construct two bipartite graphs. One is the general model namely LightGCN-
1 as Eq. (11). In the other one namely LightGCN-2, extra citation network is
introduced to build the graph as Eq. (12).

A =

(
0 R
RT 0

)
(11)

A =

(
0 R
RT C

)
(12)

where R is the Rating matrix, C is Citation network between papers.
Meanwhile, according to the different types of hyperedge. Four hypergraphs

for L-HGCF algorithm are designed. They are:
1): APRHG-1 contains hyperedges based on users’ historical preference for

papers;
2): APRHG-2 adds additional hyperedges based on co-citation relationship;
3): APRHG-3 adds additional hyperedges based on co-keyword relationship;
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4): APRHG-4 combines all the three hyperedges.

And corresponding algorithms are named as L-HGCF-1, L-HGCF-2, L-HGCF-
3 and L-HGCF-4, respectively.

Table 2. Overall performance comparison of all baselines and L-HGCF algorithm.

Method recall precision ndcg historical preference co-citation co-keyword

BPR-MF 0.02248 0.00768 0.06669 ✓
SDNE 0.00629 0.00215 0.02145 ✓
GCMC 0.02413 0.00824 0.07120 ✓

LightGCN-1 0.03446 0.01177 0.10485 ✓
LightGCN-2 0.01949 0.00665 0.05835 ✓ ✓
L-HGCF-1 0.03491 0.01192 0.10776 ✓
L-HGCF-2 0.03507 0.01198 0.11197 ✓ ✓
L-HGCF-3 0.03491 0.01192 0.11136 ✓ ✓
L-HGCF-4 0.03507 0.01198 0.11197 ✓ ✓ ✓

The experimental results are shown in Table 2. From these results we can
have the following observations.

1): BPR-MF: BPR-MF is the only model that does not rely on graph struc-
ture for information transmission in our experiment. It’s simple and effective
design brings good performance. The recall@20 of BPR-MF achieves 0.02248.

2): SDNE: The performance of SDNE is poor, and its recall@20 is only
0.00629. The reason is that in SDNE every two papers marked by the same
user are connected as neighbors, and the large number of generation of edges
blur the relation between papers, which result in the decline of the quality of
recommendation.

3): GCMC: GCMC achieved similar performance with BPR-MF(the recall@20
of GCMC is 0.02413). From the perspective of features used, both of them use
only users’ historical preference for papers. Structurally, GCMC uses only one-
layer GCN, which failed to mine the high-order relationships between papers.

4): LightGCN-1 and LightGCN-2: The bipartite graph structure and three-
layers GCN operation of LightGCN-1 lead to good results. The recall@20 of
LightGCN-1 achieves 0.03446. However, when it comes to LightGCN-2, in which
extra citation network is introduced to build the graph, the recall@20 achieves
only 0.01949. Integrating extra citation network results in poor performance. It
can be seen that the effect of bipartite graph structure in multi-feature fusion is
not satisfactory.

5): L-HGCF: Due to the flexible modeling of APRHG and well-crafted L-
HGCF algorithm, our method of attribute combination for hyperedge all have
achieved excellent performance. APRHG modeling meets the requirements com-
plex relationship description and multi-features fusion. The L-HGCF algorithm
has a clear logic and an advantage in embedding propagation compared with
GCN.
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5 Ablation and Effectiveness Analysis

5.1 On the Number of Layers

Simplified-HGCN plays an important role in our L-HGCF algorithm. To ex-
plore how the number of layers of Simplified-HGCN affects the performance of
our L-HGCF algorithm, we vary the depth of Simplified-HGCN in the range of
{1, 2, 3, 4}. At the same time, we design two variant components to verify the
beneficial of Simplified-HGCN and layer combination in our L-HGCF algorithm:

1): Complete-HGCN that use complete HGCN defined by Eq. (2) instead of
simplified HGCN as Eq. (3), and we applied layer combination in this variant
component.

2): Single-HGCN that use only the output of the last layer of simplified
HGCN and does not use layer combination.

Fig. 2. (up)Optimal performance of recall@20 and ndcg@20 at different layers of
Simplified-HGCN, the variant Complete-HGCN and Single-HGCN. (down) Conver-
gence performance of recall@20 and ndcg@20 w.r.t. epoch of Simplified-HGCN at dif-
ferent layers

Figure 2(up) shows optimal performance of recall@20 and ndcg@20 at dif-
ferent layers of Simplified-HGCN, Complete-HGCN and Single-HGCN, respec-
tively.

Focusing on Complete-HGCN, whose recall@20 declines from 0.03581 of layer
1 to 0.00450 of layer 4. With the increase of network layers, its performance
continues to decline. The reason is that the increasing number of learnable pa-
rameters causes the over-fitting problem in the model.
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Focusing on Single-HGCN, we find that when the number of layers increases
from 1 to 4, its performance improves at the beginning, the peak point is located
at layer 2 and the recall@20 is 0.01379. And after that, it decreases and drops
to the worst point of layer 4, where the recall@20 is only 0.01078. This shows
that the embedding of smoothing vertices using first-order and second-order
neighbors is useful for recommendation, but it will suffer from over-smoothing
problems when using higher-order neighbors.

Focusing on Simplified-HGCN whose recall@20 varies from 0.03581 of layer 1
to 0.02652 of layer 4, its performance is significantly better than Single-HGCN.
Compared with quickly drop of Complete-HGCN, Simplified-HGCN has a much
more stable and nice performance. This shows the effectiveness of layer combi-
nation for addressing over-smoothing and simplified HGCN for addressing over-
fitting problem.

Figure 2(down) shows the convergence curve of Simplified-HGCN at different
layers. Although 1-layer Simplified-HGCN obtains an optimal performance with
recall@20 is 0.03581 at the second epoch, it couldn’t maintain this advantage
later. In comparison, 2-layer Simplified HGCN has a much more robust and
stable performance whose best recall@20 is 0.03507 at the 11th epoch. Therefore,
the final number of layers of Simplified-HGCN is determined as 2.

5.2 On the aggregation schemes of user embedding

In our proposed academic paper recommendation method, we regard only papers
as vertices, and an extra strategy is needed to generate user embedding. To
explore how the aggregation schemes of user embedding affects the performance,
we design three strategies to generate user embedding.

1): Mean-strategy: All the papers are assigned by the same weights, which is
applied in our method;

2): Norm-strategy: Different papers are assigned by different weights. Suppose
the weight matrix is denoted by M , paper weight can be computed by Eq. (13):

M = D− 1
2RB− 1

2 (13)

where R is the rating matrix, D and B are the diagonal matrices indicate degree
of the users and papers, respectively.

3): Net-strategy: We take users as vertices and construct the other hyper-
graph model. The generated users embedding then be transferred to the L-HGCF
algorithm for training together with papers embedding.

Figure 3 shows the convergence curves of recall@20 and ndcg@20 of three
strategies. since the high similarity of curves of mean-strategy and norm-strategy,
the details of them at epoch 4 to 15 are show in the figure in the right. It can be
seen that compared with Norm-strategy, Mean-strategy has subtle advantages,
and they both achieve convergence from the 3th epoch. The net-strategy has the
slowest convergence speed and insufficient performance of recommendation. The
convergence curves show that mean-strategy is effective, therefore we adopted
the mean-strategy in our L-HGCF algorithm.
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Fig. 3. Convergence performance of recall@20 and ndcg@20 w.r.t. epoch of the 2-layer
L-HGCF with different choices of user aggregation schemes. the details of the mean
and norm at epoch 5 to 15 are show in the figure right

6 Conclusions

In this work, we proposed a hypergraph-based academic paper recommendation
method. The method is divided into two stages: APRHG construction and L-
HGCF algorithm. Specifically, it allows explicitly modeling complex academic
relationship and realizing multi-features fusion, and thus can yield more infor-
mative embeddings using the proposed L-HGCF algorithm, which can provide
trusted recommendations. Extensive experiments on public dataset demonstrate
significant improvements over competitive baselines. As shown in the experimen-
tal results, we can conclude that the hypergraph modeling and multi-features
information are useful for papers representation.

Digital libraries are on the rise, and online research social platforms such as
ScholarMate2 are more and more popular, we believe that academic paper recom-
mendation model is instructive for the future development of them. Hypergraph
naturally has the ability of modeling complex relationships and multi-features
fusion. Future work will focus on the construction of user portrait that can mine
high-order similarity between users and improve the recommendation ability of
our academic paper recommendation method.
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