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Abstract. Recent developments in Artificial Intelligence and Machine Learning have led to new 

sophisticated approaches to solve complex engineering problems. This study proposes an ad-

vanced Convolutional Neural Network based data driven framework to infer load or pressure 

values from velocity profiles. Convolutional Neural Networks are chosen over conventional Neu-

ral Networks because CNNs require reduced training variables which leads to optimized compu-

tational time and resources required for training. The model spatially extracts features from fluid 

flow data using convolution filters and attempts to map them with pressure profile. Hyperparam-

eters of the model are finely tuned to ensure optimum functioning and results. Performance of 

the predictive model is tested on two flow cases – Converging Diverging Channel and Parametric 

Bump for multiple Reynolds Numbers. An opensource validated Dataset was utilized for ensur-

ing standardized training of the model. Overall, the framework is found to be effectively efficient 

and a high degree of accuracy is observed in the results.  
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1 Introduction 

Calculating loads in a flow field is of significant practical importance in fluid me-

chanics. Moreover, widely accepted experimental techniques to visualize and measure 

fluid flow like Particle Image Velocimetry require heavy post-processing to obtain 

pressure, vorticity values. This demands for an effective and computationally efficient 

framework which can extract flow field features and map them to desired quantities 

like pressure, vorticity etc. 

 

 The rapid surge in the advancement of deep learning models has enabled the map-

ping of complex domains with each other. A neural network is widely considered as a 

universal function approximator with the potential to learn the relationship between 

involuted domains[1]. The unprecedented advancement in computational power and 

huge amounts of simulation data has made these deep learning frameworks more pow-

erful than ever before for many engineering problems like active flow control, turbu-

lence modeling, flow field feature extraction and prediction, reduced order models and 

many more[2]. Convolutional Neural Networks (CNN) are an advanced version of va-

nilla neural networks with significantly reduced number of trainable weights and ability 

to extract spatial features from the data [3]. This considerably enhances the computation 

time and helps the model to extract features from the data more efficiently. 
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Motivated by the impressive performance of Convolutional Neural Networks in pattern 

recognition and image analysis [4] this work attempts to develop a CNN based frame-

work to predict loads in a flow field from velocity distribution. The proposed predictive 

model is tested on two different use cases including a Convergent Divergent Channel 

and Parametric Bumps for different Reynolds Numbers. The hyperparameters of the 

model are tuned to optimize prediction accuracy. This framework is evaluated for its 

potential to optimize computation time and maximize the accuracy of predictions. 

 

The paper has been arranged as follows: Section 2 reviews the existing literature most 

relevant to the proposed work. Section 3 delineates the methodology followed along 

with an explanation of fundamental principles related to the work in detail. Section 4 

discusses the results obtained and the efficiency of the model. Finally, Section 5 in-

cludes the concluding remarks.  

 

2 Literature Review 

Machine Learning has been popularly put into practice to solve many problems in 

fluid mechanics like turbulence modelling, shape optimization, active flow control, and 

reduced-order models. This is primarily because of these algorithm`s exceptional abil-

ity to learn hidden features from the data and provide unprecedented insights into the 

physical behaviour of the fluid. Wang et al. [5] the improved predictive ability of the 

Reynolds Averaged Navier Stokes turbulence model by mitigating the discrepancies in 

the RANS-modeled Reynolds stresses using physics informed machine learning ap-

proach. The discrepancies were modelled as a function of the mean flow features. They 

specifically implemented Random Forest regression technique for this purpose. Beck 

et al. [6] used CNNs to close Large Eddy Simulation based turbulence models. They 

developed a non-linear mapping from coarse grid quantities of decaying homogenous 

isotropic turbulence to the closure terms. Bhatnagar et al. [7] developed a Convolutional 

Neural Network based framework to predict flow field around airfoils at a different 

angle of attacks and Reynolds number. Basu et al [8] developed a neural network-based 

framework to map pressure fields from particle image velocimetry data.  

 

Zhang et al [9] developed a CNN based framework for predicting the lift coefficient 

of different shaped airfoils for multiple Reynolds Number, Mach numbers and angles 

of attack. Ye et al [10] used a similar architecture to evaluate the pressure coefficient 

around the cylinder. They further enhanced their predictions by implementing transfer 

learning which improved their model`s performance manifold. Murata et al [11] de-

composed the flow field using CNN based autoencoder for flow around a cylinder. 

They showed their model to perform better than the conventional Proper Orthogonal 

Decomposition Method. Wang et al [12] implemented CNNs for microfluidic applica-

tions. They improved the computation time and resources by converting the problem of 

predicting the fluidic behaviour of microfluidics into an image recognition task.  Puffer 

et al [13] utilized the image feature extraction capability of CNNs to model 
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incompressible fluid flow. Strofer et al [14] developed a data driven framework to dif-

ferentiate the features of different flows without incorporating physics. Miyanawala et 

al [15] integrated a reduced order modeling technique with a deep learning framework 

to predict the unsteady flow fields. These impressive applications and results of Con-

volutional Neural Networks for problems in fluid mechanics have motivated us to im-

plement them for load prediction from velocity profile to optimize the computation time 

and enhance the accuracy. 

3 Methodology 

3.1 Neural Networks    

Neural Networks are a network of neurons that contains the neurons connecting each 

other. These structures are inspired from the biological form of neurons. The simplest 

form of neural network is called Perceptron which contains simple input to produce an 

output and has been extensively used to produce outputs for binary classifications. A 

simple view of a perceptron is shown in Figure 1.  

 
Fig. 1. A perceptron 

 

A perceptron is called a single layered neural network containing input layer, acti-

vation layer and an output layer which predicts between range 0 and 1. A general form 

of the perceptron is a neural network that contains three layers – input, hidden and 

output layers. The input is transformed by the use of activation functions. Commonly 

used activation functions are relu, tanh, leaky relu, etc.  These structures are also called 

Multi-layer Perceptron or MLP. Each layer is multiplied with weights and activation 

function is applied before feeding it to the next layer. The structure is shown in Fig 2. 
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Fig. 2. General structure of a neural network 

 

Mathematically, equation 1 represents the functioning of neural network 

 

𝑂 = 𝑓(𝑏 + ∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖)                                   (1) 

 

where b is the bias, x is the input to the neuron, w is the weight, n is the number of 

inputs to this layer and i is a counter from 1 to n.  

3.2 Convolutional Neural Network  

Convolutional Neural Network is a type of neural network which can take the image 

as input and assigns importance to features based on learnable weights and biases. As 

compared to other algorithms in machine learning, CNN doesn't need much pre-pro-

cessing. They are very successful in capturing spatial and temporal dependencies of the 

image through the use of kernels. The kernels are the first part of these networks. These 

filters move to the right with certain strides in such a way that it covers the whole part 

of the image. The objective of these filters is to find out important features from the 

image. A CNN convolution operation is shown in Fig 3. To reduce the dimensionality 

in the CNN structures pooling layers are used. There are various types of pooling layers 

such as max pool, average pool. As denoted by the name, max pool returns the maxi-

mum value of pixels covered by the kernel in the image while the average pool returns 

the mean value. The size of the image so reduced after applying kernels can be kept 

same or increased by the use of Pooling layers. If  I denotes image ,kernel by h, indexes 

of rows and columns of the resulting feature map matrix F by m and n respectively, 

then 

 

                  𝐹[𝑚, 𝑛] = ∑ ∑ ℎ [ 𝑗, 𝑘 ] × 𝐼 [ 𝑚 − 𝑗, 𝑛 − 𝑘 ]𝑘𝑗                             (2) 
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Fig. 3. Convolution Operation in a CNN 

3.3  Data Generation  

 

Data is an integral component of the framework proposed in this work. The training 

data consists of velocity and pressure contours for three different test cases namely, 

Convergent Divergent Channel, Curved Backward facing step and Parametric Bumps. 

These profiles have been created using Reynolds Average Navier Stokes Equation 

based OpenFOAM simulation utilizing k-ε turbulence model. In order to standardize 

the model performance, we have used open-source validated data developed by 

McConkey et al [16]. The velocity and pressure contours are converted into images of 

size 264 X 264 X 3 and standardly normalized before feeding them to the model. A 

subset of the velocity contour plots for each case are shown in Fig 4. 

 

         
 a.1)Velocity in x direction (Ux)                            a.2) Velocity in y direction (Uy) 

 

a) Parametric Bump 
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b.1)Velocity in x direction (Ux)                            b.2) Velocity in y direction (Uy) 

 

b) Convergent Divergent Channel 

 

Fig. 4. Sample Velocity Contours from the Dataset  

 

3.4 Supervised Learning Problem  

Supervised learning is a type of machine learning problem in which there are output 

label attached to each of the training and testing data points. If X is the input data point 

and Y is the output label for each such X, then the algorithm learns a mapping function 

from input to output.  There are some steps needed to be followed in order to perform 

a supervised learning problem.  

1. The foremost step is to decide what kind of data needs to be used for training 

the algorithm. 

2. The next step is to prepare training data. A set of input and output are gath-

ered. 

3. In this step, the representation of input data is determined also called feature 

map. 

4. After determining the structure of the input data algorithm is decided. 

5. Algorithm is trained on training data and various training parameters are 

controlled in this step. 

6. The accuracy of the algorithm is measured on the testing data in this step. 

Our problem is a supervised problem and we have chosen CNN to be trained on our 

data. The structure of CNN is tabulated in Table 1. 

 

4 Results  

The dataset is split into two parts – training and testing in the ratio 80 and 20 respec-

tively. Since the problem is a supervised learning problem, while training the model 
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learned a feature map from input to output. The input images fed to the network are of 

size 264 x 264 x 3 and are normalized in the range [-1,1].  

 

                 Table 1. Structure of Convolutional Neural Network 

 

 

The network is trained using an RMS prop optimizer with a learning rate of 2e−3.The 

tuning of hyperparameters is done by using the grid search method. The loss evolution 

of the model is shown in Fig 5. As seen in the graph loss is decreasing with epoch and 

finally converges to value 0.04. 

 

Fig 6  shows the comparison between real and generated samples by the model after 

training. The quality of the model is assessed by mean squared error (MSE) which is 

the squared difference between actual and predicted points. Lower value of MSE points 

indicate towards the closeness of predicted points to actual points. The model is per-

forming well on training and testing data. It is able to predict the points with a MSE of 

0.04. From Fig 6. the high proximity of predicted pressure to actual pressure can be 

visualized. A slight deviation of the predicted values which is observed in the contour 

plots can be attributed to the small size of training data and relatively smaller size of 

the network. This can be further improved by training a larger CNN model but it will 

lead to expensive computation. 

Layer No of filters Activation 

1st Convolution + Max pooling 2 x 2 , 32 , 3 x 3 relu 

2nd Convolution+ Max pooling 2 x 2 ,64 , 3 x 3 relu 

3rd Convolution+ Max pooling 2 x 2 ,128 , 3 x 3 relu 

4th Convolution+ Max pooling 2 x 2 ,256 , 3 x 3 relu 

5th Convolution+ Max pooling 2 x 2 ,512 , 3 x 3 relu 

Flatten + 1st Dense 1,000 tanh 

2nd Dense 1,000 tanh 

Ouptut layer 10,000 linear 
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Fig. 5. Loss decreasing as the number of epochs increases 

 

           
a.1) Actual Pressure Contour                        a.2) Predicted Pressure Contour 

a) Converging Diverging Channel  

 

 
b.1) Actual Pressure Contour                      b.2) Predicted Pressure Contour 

b) Parametric Bump 

Fig. 6. Comparison of actual and generated pressure points. The left side plots are ac-

tual pressure point while right side are predicted by the model. 
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5 Conclusion  

 

In this study, we have predicted pressure points from the velocity field using CNN 

architecture. The model was trained on 80 data points and performed well with MSE of 

0.04. There is very close agreement between predicted and actual pressure value. The 

slight deviation and noise seen in the result as compared to the actual pressure can be 

further enhanced by training on more data and using more advanced algorithms like 

Generative Adversarial Networks. 
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