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1 Introduction
Multibody systems with large rotations may be described conveniently and free of singularities in non-
linear configuration spaces with Lie group structure. Lie group integrators preserve this structure in the
sense that the numerical solution will remain (by construction) in the Lie group. The methods go back to
the work of Crouch and Grossman (1993) and Munthe-Kaas (1998), see [5], and have become one of the
standard approaches in flexible multibody dynamics with the seminal paper of Brüls and Cardona (2010)
on Lie group time integration for constrained systems [2].
Today, virtually any classical time integration method from system dynamics has its Lie group coun-
terpart including implicit and (half-)explicit methods, methods for constrained and for unconstrained
systems, variational integrators, one-step and multistep methods, Newmark type methods etc. There is
not much known about the numerical stability of these methods in the application to stiff systems.
More precisely, one would be interested in criteria and step size bounds that guarantee that the distance
between two numerical solutions for different initial values remains bounded on infinite time intervals.
In linear spaces, such error bounds are known, e.g., from the theory of B-stability for systems that satisfy
a one-sided Lipschitz condition [4].
For differential equations on Riemannian manifolds, a first stability result of that type was presented
by Owren at the FoCM 2023 conference in Paris. He proves B-stability of the geodesic implicit Euler
method on Riemannian manifolds with non-positive sectional curvature [1, Theorem 3.1]. In the present
paper, we follow a different path and focus on the application of Lie group integrators to test problems
from rigid body dynamics.

2 Test equations in linear spaces
This work was inspired by the classical Dahlquist equation ẏ = λy with a parameter λ ∈ C−. The
Dahlquist equation results, e.g., from the equation

mξ̈ +dξ̇ + kξ = 0 (∗)

of an oscillating point mass m with stiffness and damping parameters k > 0, d ≥ 0 if the equivalent
first order system in terms of (ξ , ξ̇ ) is transformed to two decoupled equations ẏi = λiyi, (i = 1,2), with
λ1,2 = (−d±

√
d2−4km)/2m and y1 := λ2ξ − ξ̇ , y2 := ξ̇ −λ1ξ .

The scalar test equation (∗) represents all linear time-invariant systems Mẍ+Dẋ+Kx = 0 with sym-
metric positive definite mass and stiffness matrices M,K ∈ Rn×n and Rayleigh damping in terms of
D = cMM+ cKK with constants cM,cK ≥ 0: In a first step, the mass matrix M is diagonalized by or-
thogonal transformations resulting in M = UM ΛΛΛM U>M with ΛΛΛM = diagi mi. Then, a second orthogo-
nal transformation ΛΛΛ
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scalar equations miξ̈i +diξ̇i + kiξi = 0, (i = 1, . . . ,n), in terms of (ξ1, . . . ,ξn)
> = ΛΛΛ
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with di = cMmi + cKki, see (∗). I.e., the A-stability analysis for the scalar Dahlquist test equation and
the equation (∗) for the oscillating point mass with a damped linear spring give insight for a rather large
class of (linear) problems.

3 Test problem: Rotating ball with (damped) torsional spring
In a Lie group setting, the natural counterpart to the scalar system mξ̈ +dξ̇ + kξ = 0 is a (damped)
torsional spring being attached to a rigid ball with homogeneous mass distribution that has its centre in
the origin and rotates around a fixed axis n ∈ R3, ‖n‖2 = 1. In SO(3), the orientation of the body is
given by R = expSO(3)(α ñ) with α ∈ R denoting the angle of rotation and the skew symmetric matrix
ñ ∈ R3×3 that represents the vector product in the sense of ñw = n×w , (w ∈ R3 ). The exponential map



is invertible in a neighbourhood of the origin and defines an inverse map l̃ogSO(3) : SO(3)→ R3 with

l̃ogSO(3)
(
expSO(3)(θ̃θθ)

)
= θθθ .

The ball’s inertia tensor J = mI3 results in gyroscopic terms that vanish identically: ωωω×Jωωω = mωωω×ωωω

= 0 . Here, ωωω ∈ R3 denotes the angular velocity that is parallel to the axis of rotation: ωωω = vn with v ∈ R .
With these notations, the torsional spring is characterized by a torque vector −

(
d ωωω + k l̃ogSO(3)(R)

)
=

−(dv+ kα)n with damping and stiffness parameters d, k and yields equations of motion [3, Section 2.1]

Ṙ = R ω̃ωω , Jω̇ωω +d ωωω + k l̃ogSO(3)(R) = 0 (1)

in the tangent bundle T SO(3) . For the local parametrization based approach of Munthe-Kaas [5, Sec-
tion 3], we consider incremental rotation vectors θθθ r(t) ∈ R3 that parametrize R(t) = expSO(3)

(
θ̃θθ r(t)

)
R(tr)

and solve a locally defined initial value problem

θ̇θθ r(t) =
(
TSO(3)(θθθ r(t))

)−1
ωωω(t) , θθθ r(tr) = 0 (2)

with the tangent operator TSO(3) of expSO(3), see [2]. This operator represents the dexp
θ̃θθ r

operator [5]
in matrix form. Taking into account that TSO(3)

(
s(t)n

)(
ṡ(t)n

)
= ṡ(t)n for any scalar function s(t) ,

the solution of (2) with ωωω(t) = v(t)n is given by θθθ r(t) = sr(t)n with ṡr(t) = v(t) and sr(tr) = 0, i.e.,
R(t) = expSO(3)

(
α(t) ñ

)
with α̇(t) = ṡr(t) = v(t) , α̇(t)n = ωωω(t) , α̈(t)n = ω̇ωω(t) and 0 = mα̈ +dv+ kα

= mα̈ +dα̇ + kα , see (1).
Time step tr→ tr+1 = tr +h of a Runge-Kutta Munthe-Kaas method [5] defines Rr+1 = expSO(3)(θ̃θθ

+
r )Rr

with θθθ
+
r = h ∑ j b jθ̇θθ r j and ωωωr+1 = ωωω+

r = ωωωr +h ∑ j b jω̇ωωr j . The stage vectors are ωωωri = ωωωr +h ∑ j ai jω̇ωωr j ,
θθθ ri = h ∑ j ai jθ̇θθ r j ,

ω̇ωωri =−J−1(d ωωωri + k l̃ogSO(3)(Rri)
)
, Rri = expSO(3)(θ̃θθ ri)Rr , θ̇θθ ri =

(
TSO(3)(θθθ ri)

)−1
ωωωri , (3)

( i = 1, . . . ,s ). As for the analytical solution
(
θθθ r(t),ωωω(t)

)
and its time derivative, we see that all stage

vectors θθθ ri, θ̇θθ ri,ωωωri, ω̇ωωri are parallel to n resulting in numerical solutions Rr+1 = expSO(3)
(
αr+1 ñ

)
and

ωωωr+1 = vr+1 n with (αr+1,vr+1) being the result of a classical Runge-Kutta step for the first order system
α̇ = v , mv̇ =−dv− kα starting from (αr,vr) . For this test problem, the Runge-Kutta Lie group inte-
grator shares one-by-one the well known stability properties of its classical counterpart applied to the
second order problem in linear spaces.
Initial values ωωω(t0) being not parallel to vector n may cause a more complex behaviour of Lie group
integrators that will be illustrated by a series of numerical test results.

Acknowledgments The author acknowledges gratefully fruitful discussions with Elena Celledoni, Er-
gys Çokaj, Brynjulf Owren (Trondheim) and Denise Tumiotto (Halle) on contractivity of Lie group time
integration methods.
That research has been part of the THREAD project, see https://thread-etn.eu/, that
has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 860124.
The present paper reflects only the authors’ view and the European Commission’s Research Executive
Agency is not responsible for any use that may be made of the information it contains.

References
[1] M. Arnold, E. Celledoni, E. Çokaj, B. Owren, and D. Tumiotto. B-stability of numerical integrators

on Riemannian manifolds. arXiv:2308.08261 [math.NA], August 2023.

[2] O. Brüls and A. Cardona. On the use of Lie group time integrators in multibody dynamics. ASME J.
Comput. Nonlinear Dynam., 5:031002 (13 pages), 2010.

[3] O. Brüls, A. Cardona, and M. Arnold. Lie group generalized-α time integration of constrained
flexible multibody systems. Mechanism and Machine Theory, 48:121–137, 2012.

[4] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic
Problems. Springer–Verlag, Berlin Heidelberg New York, 2nd edition, 1996.

[5] A. Iserles, H.Z. Munthe-Kaas, S. Nørsett, and A. Zanna. Lie-group methods. Acta Numerica, 9:215–
365, 2000.


