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Abstract: Machine learning algorithms that handle a variety of data kinds are typically the 

backbone of real-world intelligent systems. Due to its inherent complexity, graph data have 

presented machine learning with hitherto unheard-of hurdles despite their widespread use. 

Since graph data are embedded in an irregular domain, unlike text, audio, and image data, some 

fundamental operations of current machine learning methods cannot be used. To address these 

issues, numerous graph learning models and algorithms have been created. In this article, the 

most recent graph learning techniques are reviewed in detail, along with some of their possible 

uses. The article has several functions. For researchers and practitioners in a variety of fields, 

including social computing, information retrieval, computer vision, bioinformatics, 

economics, and e-commerce, it serves as a rapid reference to graph learning. Second, it offers 

details about active fields of study in the area. Thirdly, it hopes to pique interest in graph 

learning and inspire fresh research ideas. 
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I. Introduction 

GRAPHS, often known as networks, can be derived from a variety of real-world relationships 

among numerous entities. Social networks, biological networks, patent networks, traffic 

networks, citation networks, and communication networks are examples of typical graphs that 

have been widely utilised to define various relationships [1]–[3]. A graph is frequently defined 

by two sets: vertex and edge. In a network, vertices represent entities, while edges represent 

relationships between them. Because of its many real-world applications, such as data mining 

and knowledge discovery, graph learning has gotten a lot of attention. Because graphs exploit 

crucial and meaningful interactions among vertices, graph learning methods have grown in 

favour for capturing complicated relationships [4], [5]. The spread trajectory of rumours can 

be traced in microblog networks, for example, by recognising information cascades. By 

inferring protein interactions in biological networks, new therapeutics for complex diseases 

can be discovered. Human mobility patterns in transportation networks can be predicted by 

looking at the co-occurrence phenomenon with different timestamps [6]. The way networks 

are represented has a huge impact on the efficiency of network analysis. 

 

A. Graph Learning: Graph learning refers to machine learning on graphs in general. Graph 

learning methods link a graph's features to feature vectors in the embedding space with the 

same dimensions. Without projecting the network into a low-dimensional space, a graph 

learning model or algorithm translates the graph data straight into the output of the graph 

learning architecture. Because deep learning approaches can encode and display graph data as 

vectors, most graph learning methods are based on or generalised from them. The graph 

learning output vectors are in continuous space. The goal of graph learning is to extract desired 

graph features. We attempt to study machine learning algorithms on graphs that fall into the 

category, as indicated in Fig. 1: graph signal processing (GSP)-based methods. GSP is 



 

concerned with graph sampling and recovery, as well as learning topology structure from data. 

  
Fig. 1. Category of graph learning 

 

The model architectures of the methods/techniques are fundamentally different. This article 

provides a comprehensive overview of current graph learning approaches. To represent a 

network, researchers have traditionally used an adjacency matrix, which can only record the 

relationship between two neighbouring vertices. This simple depiction, however, cannot 

capture many complicated and irregular structures. Traditional approaches for analysing large-

scale networks are computationally expensive and difficult to deploy in real-world 

applications. As a result, proper representation of these networks is a critical issue to address 

[4]. Recently developed network representation learning (NRL) may learn latent network 

vertices properties with low dimensional representation [7]–[9]. Following the learning of the 

new representation, earlier machine learning methods can be used to analyse the graph data 

and identify hidden relationships. Communication patterns, community organisation, and 

information diffusion are all investigated using graphical network representation [12], [13]. 

Graph learning tasks can be split into three groups depending on the qualities of vertices, edges, 

and subgraphs: vertices-based, edges-based, and subgraph-based. Designing appropriate graph 

sampling algorithms to preserve the properties of the original graph is critical for GSP, which 

attempts to recover the original graph efficiently [16]. In the event of partial data, graph 

recovery algorithms can be employed to reconstruct the original graph [17]. The topology 

structure can then be learned from graph data via graph learning. In conclusion, graph learning 

can be used to solve the problems listed below, which are difficult to answer using typical 

graph analysis approaches [18]. 

1) Irregular domains: Traditional sensors collect data in a grid layout. Graphs, on the other 

hand, exist in an irregular domain (i.e., non-Euclidean space). Data in non- Euclidean space 

are not sorted in the same way that data in regular domains are. As a result, defining 

distance is challenging. As a result, typical machine learning and signal processing 

approaches cannot be readily applied to graphs. 

2) Heterogeneous networks: Traditional graph analysis algorithms frequently include 

homogeneous networks. The suitable modelling approaches simply consider the network's 

direct connections and ignore all other useless data, greatly simplifying the processing. It 
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is, nevertheless, prone to causing data loss. The edges between vertices and the sorts of 

vertices are frequently different in the real world, as demonstrated in the academic network 

in Fig. 2. As a result, discovering potential value from heterogeneous information networks 

with many vertices and edges is difficult. 

 

 
Fig. 2. Heterogeneous academic network [28] 

 

3) Distributed algorithms: In large social networks, millions of vertices and edges are 

common [19]. Centralized methods can't manage this since the computing complexity of 

these algorithms increases dramatically as the number of vertex increases. A significant 

difficulty that has yet to be solved is the creation of distributed algorithms for coping with 

large networks [20]. Distributed algorithms have the advantage of being able to operate on 

numerous CPUs or GPUs at the same time, reducing the overall running time dramatically. 
 

B. Related Surveys 

 

There are various surveys that are linked to the topic of this article in some way. GSP is 

specifically mentioned as a method for graph learning that is not covered by previous 

studies. Zhang et al. [4] reviewed NRL approaches and addressed their applicability based 

on two categories: unsupervised NRL and semisupervised NRL. Nickel and colleagues 

[23] introduced two types of knowledge extraction methods: latent feature models and 

graph-based models. Akoglu et al. [24] examined state-of-the-art approaches for event 

identification in graphed data and their real-world applications. Wu et al. [25] evaluated 

and described current GNN algorithms and their applications in many sectors. GSP 

strategies for representation, sampling, and learning were introduced and described by 

Ortega et al. [26]. Huang et al. [27] looked at how GSP may be used in functional brain 

imaging and how to accomplish brain network analysis from a signal processing 

standpoint. In conclusion, none of the currently available surveys provide a comprehensive 

picture of graph learning. They barely go on a few aspects of graph learning, namely 

network embedding and deep learning-based network representation. The GSP techniques 



 

are not covered by the NRL and/or GNN-based surveys. Graph learning is a crucial 

strategy for GNNs, thus we cover GSP techniques in the context of graph learning. This 

comprehensive article, in particular, integrates cutting-edge machine learning techniques 

for graph data, provides a general overview of graph learning, and examines its 

applications in numerous fields.  

C. Contributions and Organization 

This article's contributions can be summarised as follows. 

1. A comprehensive overview of current graph learning methods: We provide an essential 

introduction to graph learning methods, which includes technical sketches, application 

scenarios, and prospective research areas. 

2. Graph learning taxonomy: We present a technical classification of popular graph learning 

methods based on theoretical models. Wherever possible, technical descriptions are 

supplied to aid understanding of the taxonomy. 

3. Insights regarding graph learning's future directions: We summarise many outstanding 

issues and pertinent challenges to throw light on prospective research directions in the field 

of graph learning, in addition to qualitative examination of existing methods. 

The rest of this article is organized as follows. An overview of graph learning approaches 

containing GSP-based methods is provided in Section II. The applications of graph learning 

are examined in Section III. Some future directions as well as challenges are discussed in 

Section IV. Finally, Section V concludes the article. 

 

II. GRAPH LEARNING MODELS AND ALGORITHMS 
 

In prior machine learning methods, the feature vectors that represent distinct categorical 

attributes were used as input. Graph learning [21] must, however, handle the mapping from 

the input feature vectors to the output prediction results. Deep learning is considered one of 

the most successful artificial intelligence approaches [29], [30]. In domains like pattern 

recognition and image processing, extracting complex patterns using deep learning from a 

large amount of irregular data has shown to be quite effective. As a result, there has been a lot 

of interest in how to use deep learning techniques to extract patterns from complex graphs. 

GNNs, GCNs, and GAEs are examples of deep learning on graphs. In addition, GSP has been 

proposed for graph analysis [26]. A set of values is stored on a set of vertices, which are 

connected by edges in one of the most common instances [31]. Graph signals can be used to 

model a variety of real-world occurrences. Users on Facebook, for example, can be described 

as vertices and their friendships as edges in social networks. In this social network, each 

vertex's number of followers is indicated. 

Many standard signal processing techniques (e.g., convolution, filter, wavelet, etc.) can be used 

for GSP with appropriate changes based on this assumption [26]. We examine graph learning 

models and algorithms of GSP-based methods in this section. The abbreviations used in this 

article are listed in Table I. 

 



 

TABLE I DEFINITIONS OF ABBREVIATIONS 

 

Graph Signal Processing : Signal processing is a well-known topic that deals with signals in a 

conventional data domain. Researchers have recently extended classic signal processing 

techniques into graphs [22]. Graph analysis can be done using traditional signal processing 

techniques and tools like the Fourier transform and filtering. Graphs, in general, are a type of 

irregular data that is difficult to handle directly. GSP presents a unique perspective on spectral 

analysis of graphs as a complement to learning methods based on structures and models. GSP, 

which is derived from signal processing, can explain graph properties such as connectedness, 

similarity, and so on.  

 

1)Representation on Graphs: The rapid rise of graph learning has been aided by a meaningful 

representation of graphs. GSP is divided into two types: adjacency matrix-based GSP [31] and 

Laplacian-based GSP [32]. Algebraic signal processing (ASP) [33], which interprets linear 

signal processing from algebraic theory, provides an adjacency matrix-based GSP. Signals, 

filters, and signal modification are all part of linear signal processing. It works in both discrete 

and continuous time domains. In ASP, the fundamental postulate of linear algebra is extended 

to algebra space. ASP can get distinct examples in linear signal processing by choosing the 

right signal model. The signal model in adjacency matrix-based GSP is created from a shift. A 

shift in GSP is a graph domain filter, similar to classical signal processing [31], [34], [35]. 

Adjacency matrices are commonly used in GSP to create graph signal models. A graph's 

signals are generally defined at its vertices. Spectral graph theory gives rise to Laplacian-based 

GSP. A portion of the Laplacian basis is used to convert high-dimensional data into a low-

dimensional space [36]. To achieve distributed processing of graph signals, some researchers 

used sensor networks [37]. Other scholars solved the problem at a global level, assuming a 

smooth graph.  

 The Laplacian matrix, unlike adjacency matrix-based GSP, is symmetric with real 

and nonnegative edge weights and is used to index undirected graphs. Although several 

matrices are used as basic shifts in the models, most of the concepts in GSP are drawn from 

signal processing. In these frameworks, concepts with distinct definitions may have 

comparable meanings. They all correspond to signal processing ideas. Signals in GSP are 

graphed values that are commonly expressed as a vector, � = ���, ��, … , ��	�
 ∈ ℂ�. Each 

element in the vector represents the value on a vertex, and N is the number of vertices. Even 



 

while most applications are based on real-value signals, certain studies [26] enable complex-

value signals.  

 A graph can be represented as a triple G(V, E, W) in adjacency matrix-based GSP, 

where V is the vertex set, E is the edge set, and W is the adjacency matrix. We can define 

degree matrix Dii = di with the definition of graphs, where D is a diagonal matrix and di is the 

degree of vertex i. L = D-W is the graph Laplacian formula, while Lnorm = D-1/2LD-1/2 is the 

normalised Laplacian formula. Filters in signal processing can be thought of as a function that 

amplifies or decreases relevant frequencies while removing others that aren't. In linear space, 

matrix multiplication equals scale shifting, which is the same as filtering in the frequency 

domain.  

 The GSP formula �
�� = � ��� where H stands for a filter, makes it clear that matrix 

multiplication can be used as a filter. Shift is a key concept for describing signal variation, and 

time-invariant signals are widely utilised [31]. In fact, there are several options for GSP shifts. 

The shift in an adjacency matrix-based GSP is A. L is used in Laplacian-based GSP [32], and 

other matrices are also used by some studies [38]. Shift invariance is defined in GSP by 

following time invariance in traditional signal processing. Shift-invariant filters are 

commutative with shift, which can be represented as AH = HA. It is shown that the shift can 

represent a shift-invariant filter. The features of shift are crucial, as they impact the popularity 

of other terms like Fourier transform and frequency. Shift A’s eigenvalue decomposition in 

adjacency matrix-based GSP is � = �Λ�	� where � is the eigenvector matrix ���, �, … , ��	�
 
and Λ = ���            ⋱            ��	�

� is a diagonal matrix of eigen values. The Fourier transform matrix, 

or � =  �	� is the inverse of �. Total variation, or the difference following a shift, is the 

definition of frequency of shift ��� = ∥∥∥� − �
"#$% �� ∥∥∥�here the normalized factor of the 

matrix is 
�

"#$%. This indicates that the frequencies of eigenvalues on the complex plane that 

are far from the biggest eigenvalues are high. After shift filtering, a large frequency indicates 

that signals are modified on a broad scale. Fig.3 depicts the variations between minimum and 

maximum. 

                  
Fig. 3. Illustration of difference between minimum and maximum frequencies. (a) The maximum 

frequency and (b) The minimum frequency. 
 



 

 

In general, when the overall variation is lower than the frequency, and vice versa, the 

frequency tends to be larger. While larger eigenvectors can be used to create low frequency 

filters that capture fundamental features, smaller eigenvectors can be utilised to capture 

variance between neighbouring nodes. We can distinguish the correct answers for topology 

learning tasks based on known information. When topology information is only partially 

known, we can infer the entire graph using the known data. If the topology information is 

unknown but the signals on the graph can still be seen, the topology structure must be derived 

from the signals. Blind topological inference is also known as graph topology (or structure) 

learning, and the former is frequently solved as a sampling and recovery issue. 

 

2) Sampling and Recovery: In conventional signal processing, we frequently need to replicate 

original signals with the fewest samples possible while preserving all of the original signals' 

information. Data is lacking when there are few samples, whereas more samples necessitate 

greater storage space. The prerequisites for full time-domain signal recovery are specified by 

the well-known Nyquist Shannon sampling theorem. Researchers have moved sampling ideas 

into GSP in order to study the problem of sampling on graphs. Because some real-world 

applications, including sensor networks and social networks, contain massive data volumes, 

sample less and recover better are crucial for GSP. The majority of techniques and frameworks 

for resolving sampling problems really require the network to represent the correlations within 

the signals that were captured on it [39]. The sampling problem is defined as reconstructing 

signals from samples on a subset of vertices, and the signals in this problem are typically band-

limited. The graph signals were added to the Nyquist-Shannon sampling theorem in [40]. For 

GSP, the normalised Laplacian matrix is used to define the sampling theorem and cutoff 

frequency. Additionally, the author provided instructions on how to choose the sample set for 

a particular bandwidth and how to get the cutoff frequency from a sampling set. It is important 

to emphasise that the sampling theorem there only applies to undirected graphs. Because the 

Laplacian matrix only characterizes undirected graphs, the sampling theory for directed graphs 

makes use of an adjacent matrix. An optimum operator that ensures perfect recovery and is 

noise-resistant for generic graphs was proposed in [35]. The fact that the signals of the former 

fall under the regular domain while those of the later fall under the irregular domain is one of 

the explicit differences between GSP and traditional signal processing. Classical signal 

processing can sample subsequent signals and recover subsequent signals from samplings to 

address sampling and recovery issues. GSP samples a discrete sequence and then reconstructs 

the original sequences from the samples.  

By approaching the problem in this specific way, it is usually possible to divide it into 

two parts: selecting sampling vertex sets and reconstructing the original signals using various 

models.However,some algorithms call for matrix decomposition for a huge dataset in order t

o save eigenvalues and retrieve frequencies, which is nearly difficult to accomplish. A rando

m method can also be used in sampling as an easy method that can be applied to big datasets.

Two sample strategies were put out by Puy et al. [41]: an adaptive random sampling strategy 

and a nonadaptive one that depends on a parameter. They expanded random sampling to 

large-scale graphs by loosening the optimal limitation. An further popular method is greedy 

sampling. To determine cutoff frequency precisely, Shomorony and Avestimehr [42] 

suggested an effective technique based on linear algebraic conditions. In the worst-case 

scenarios, Chamon and Ribeiro's [43] near-optimal guarantee for greedy sampling ensures that 



 

it will perform as expected. Selective sampling, in which signals are seen on a selection of 

vertices, can be applied to all of the aforementioned sample techniques [43]. A type of 

sampling termed aggregation sampling [44], which employs observations taken at a single 

vertex as input and sequentially applies the graph shift operator, exists in addition to choosing 

sampling. As in conventional signal processing, the reconstruction work on graphs can also be 

seen as a data interpolation problem [45]. Projecting the samples into the proper signal space 

allows researchers to acquire interpolated signals. Reconstruction using least squares is a useful 

technique. Gadde and Ortega's generative model for signal recovery was developed using a 

pairwise Gaussian random field (GRF) and a covariance matrix on graphs [46]. The maximum 

posterior inference of GRF with low-rank approximation can be thought of as the 

reconstruction of graph signals under sampling theorem. In order to achieve the distributed 

reconstruction of time-varying band limited signals, Wang et al. [47] devised iterative 

distributed least squares reconstruction (DLSR). Time-varying signals can be traced and 

flawlessly recreated using DLSR. Di Lorenzo et al. [48] established the linear mean squares 

(LMS) approach for adaptive estimation. LMS can enable online reconstruction and tracking 

by using a subset of the observed vertices. It enables the subset to change over time as well. 

Additionally, a sparse online estimator was suggested as a solution to the issues with uncertain 

bandwidth. Smoothness is another popular method for restoring original signals. In graph 

signals with low frequencies, missing values are inferred using smoothness. The term "local 

set" was defined by Wang et al. [17]. Two iterative methods to recover band-limited signals 

on graphs were presented based on the notion of graph signals. Additionally, Romero et al 

[49]'s recommendation of kernel regression as a paradigm for GSP modelling and 

reconstruction is noteworthy. To address a single optimization problem for parameter selection 

in estimators, two multikernel techniques were proposed. Other problems with compressed 

sensing recovery were also investigated by several researchers [50]. Additionally, 

investigations on sampling a variety of signals, such as piecewise smooth, piecewise constant, 

and smooth graph signals, have been conducted [51]. Chen et al. [51] offered a unified 

approach for analysing graph signals. In [52], it was investigated how to recover a known graph 

signal with sparse signal, or few nonzero vertices. Three distinct rebuilding strategies that 

correspond to various seeding patterns were examined. By comparing single simultaneous 

injection, single consecutive value injection, and multiple successive simultaneous injections, 

the prerequisites for flawless reconstruction on any vertices were discovered.  

 

3) Learning Topology Structure From Data: Most application sceneries use links between 

entity correlations to build their graphs. For example, in sensor networks, the correlations 

between the sensors usually correspond to their distance. Social networks' edges are 

connections between people, such as friends or coworkers [53]. Edges in biological networks 

are the result of interactions. Despite the fact that GSP is a helpful framework for dealing with 

graph-related problems including sampling, reconstruction, and detection, it is lacking a step 

for extracting relationships from datasets. Numerous datasets still include linkages even when 

there are no explicit records. There are a few different ways to infer them, which is fortunate. 

In order to learn whole graphs from datasets, scholars are interested in estimating graph 

Laplacian. The problem of learning a graph from a dataset is defined as a Laplacian, or graph 

topology[54]. Typically, they demand that the graph satisfy specific requirements, including 

smoothness and sparsity. Smoothness is a typical assumption in networks built from datasets. 

It is therefore frequently used to restrict observed signals and provide graph signals a logical 



 

guarantee. Researchers have utilised it for graph topology learning. According to the theory 

underpinning smoothness-based algorithms, the lowest frequency is often attained by shifting 

the result because the majority of signals on a graph are stationary. A popular theory for 

teaching graph topology in GSP is the Gauss Markov random field (GMRF) [54, [57], [58]. 

The graphs that are chosen by the GRMF-based graph topology learning models are those that 

are more likely to produce signals that resemble those produced by GMRF. Egilmez et al. [54] 

formulated the problem as a maximum posterior parameter estimation of GMRF, and the graph 

Laplacian is a precision matrix. Pavez and Ortega [57] also formulated the problem as a 

precision matrix estimation, and the rows and columns are updated iteratively by optimizing a 

quadratic problem. Both of them restrict the result matrix, which should be Laplacian. In [58], 

Pavez et al. chose a two steps framework to find the structure of the underlying graph. First, a 

graph topology inference step is employed to select a proper topology. Then, a generalized 

graph Laplacian is estimated. An error bound of Laplacian estimation is computed. In the next 

step, the error bound can be utilized to obtain a matrix in a specific form as the precision matrix 

estimation. It is one of the first work that suggests adjusting the model to obtain a graph 

satisfying the requirement of various problems.  

A useful model that can be used to address the topology interfering problem is diffusi

on [39],[59]-[61]. Diffusion describes how a node continuously affects the areas around it. In 

graphs, nodes with higher values will have an increased influence on nodes that are close by. 

Using a limited number of components to represent signals will make it easier to identify the 

crucial components in signal production. Diffusion models commonly make the assumption 

that identical signals are dispersed independently. Pasdeloup et al. [59] established the concept 

of valid graphs and assumed that the signals are identified after diffusion in order to explain 

signals. Segarra et al. [60] also agreed that the shift proceeds via a diffusion process and that 

indicators can be noticed. The signals in [61] were explained by a linear combination of a few 

components. Researchers sought to build time-sequential networks for time series captured in 

data. For example, Mei and Moura [62] introduced an estimation approach for graphs that takes 

into account both time and spatial dependencies and models them using an autoregressive 

process. An approach that Segarra et al. [63] suggested can be thought of as a development of 

graph learning. The article's goal was to find a solution to the issue of jointly identifying a 

graph filter and its input signal. A well-known partial inference issue for recovery algorithms 

is recommendation [45], [64], and [65]. Collaborative filtering (CF) is the common algorithm 

used in recommendation [66].  The goal of CF is to estimate the entire rating matrix from the 

observed ratings in a matrix. On networks expressing correlations between people and items, 

Huang et al research [65] showed that CF might be thought of as a particular band-stop graph 

filter. Furthermore, the band-limited interpretation problem can be used to describe linear 

latent factor approaches. 

 

Discussion: Because GSP algorithms place stringent restrictions on experimental data, they 

are less frequently used in practical settings. Additionally, as GSP techniques require the input 

data to precisely match the entire graph, only a portion of the graph's data can be used as an 

input. As a result, this type of methods may have a high computational complexity. The 

scalability of GSP algorithms is subpar when compared to other types of graph learning 

techniques. 

 

III. APPLICATIONS 



 

Graph learning techniques, including as supervised, semisupervised, unsupervised, and 

reinforcement learning, can address a wide range of issues. The applications of graph learning 

have been categorised by some researchers into three categories: structural scenarios, 

nonstructural scenarios, and other application scenarios [18]. Explicit relational structures, 

such as those seen in physical systems, chemical structures, and knowledge networks, are 

examples of structural situations. Nonstructural scenarios are situations where data, such 

images and messages, have ambiguous relationship structures. Combinatorial optimization 

issues and model integration are two examples of other application scenarios. 

 

A. Datasets and Open-Source Libraries: A variety of datasets and benchmarks are used to 

assess how well graph learning techniques perform in solving issues. numerous tasks, 

including graph visualisation, node categorization, and link prediction. For instance, nodes, 

edges, labels, or node attributes are included in datasets like Cora1 (a citation network), 

Pubmed2 (a citation network), BlogCatalog3 (a social network), Wikipedia4 (a language 

network), and PPI5 (a biological network). Several academic institutions have created libraries 

of graph learning algorithms, both common and traditional. For instance, OpenKE6 is a 

PyTorch-based Python toolkit for knowledge graph embedding. The implementations of 

RESCAL, HolE, DistMult, ComplEx, etc. are available in the open-source framework. The 

CogDL7 framework for learning graph representations can be used for a variety of tasks, 

including graph classification, link prediction, and node classification. 

 

B. Text: Many data sources, including web pages, emails, documents (technical and 

corporate), books, digital libraries, consumer complaints, letters, and patents, all contain large 

amounts of text. Given that writing frequently provides rich contextual information, textual 

data are poorly organised for extracting any relevant information. Text can be used in a wide 

variety of applications, such as text categorization, sequence labelling, sentiment classification, 

etc. One of the oldest issues in natural language processing is text classification. 

 

C. Images:  Social relationship understanding, image classification, visual question answering 

(VQA), object recognition, region classification, semantic segmentation, and other 

applications of graph learning to images are included. Automatically analysing these ties is 

crucial for comprehending human actions since in the actual world, social relationships like 

friendships serve as the foundation of social networks. In order to learn a propagation 

mechanism, GRM introduces GGNNs. The classic challenge of image categorization has seen 

promising results using GNNs. Natural language processing and computer vision are both used 

in the learning activity known as VQA. A VQA system receives an open natural language 

query in the form of a specific image as input and produces a natural language response as 

output. 

 

IV. OPEN ISSUES 

 

A. Dynamic Graph Learning 

We briefly review a number of potential future research topics and open graph learning issues 

in this section. Most current techniques are acceptable for static networks without any 

particular restrictions for the purpose of graph learning. Dynamic networks, like traffic 

networks, change with time, though. They are challenging to manage as a result. In the 



 

literature, dynamic graph learning methods have rarely been investigated. Designing dynamic 

graph learning algorithms to retain good performance is crucial, especially when dealing with 

dynamic graphs. 

 

B. Generative Graph Learning 

 

Generative graph learning algorithms, which were inspired by GANs, can combine the 

generative and discriminative models by engaging in a game-theoretical min-max game. By 

improving the performance of generative and discriminative models alternately and repeatedly, 

this generative graph learning technique can be utilised for link prediction, network evolution, 

and recommendation. 

 

C. Fair Graph Learning 

 

The majority of graph learning techniques use deep neural networks, and the generated vectors 

might have unintentionally gathered sensitive data. Since the bias in the network is perpetuated, 

it is crucial to incorporate fair metrics into the graph learning algorithms to solve the problem 

of inherent bias. 

 

D. Interpretable Graph Learning 

 

By including both network structure and feature information, graph learning models are 

typically complex. Since the structures of graph learning algorithms are still a mystery, the 

interpretability of graph learning (based) algorithms remains an open problem. Examples of 

applications for graph learning algorithms include drug discovery. However, neither the 

method nor the rationale for this drug's invention are known. It is important to continue 

researching the interpretability of graph learning. 

 

Conclusion: 

 

This article provides a general overview of graph learning and a thorough analysis of the 

cutting-edge graph learning techniques. GSP-based techniques primarily describe the graph 

learning applications that have been demonstrated in fields including text, images, science, 

knowledge graphs, and combinatorial optimization. We then go over some potential future 

areas for graph learning research. At this time, graph learning is expanding at an unprecedented 

rate. We sincerely hope that this study will aid practitioners and researchers in their work on 

graph learning and related fields. 

 

1[Online]. Available: https://relational.fit.cvut.cz/dataset/CORA 

2[Online]. Available: https://catalog.data.gov/dataset/pubmed 

3[Online]. Available: http://networkrepository.com/soc-BlogCatalog.php 

4[Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Database_download 

5[Online]. Available: https://openwetware.org/wiki/Proteinprotein_interaction_databases 

6[Online]. Available: https://github.com/thunlp/OpenKE 

7[Online]. Available: https://github.com/THUDM/cogdl/ 
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