
EasyChair Preprint
№ 10095

Can Reinforcement Learning Improve Order
Decision in Multi-Echelon Inventory Systems? A
Linear System Case Study

Mingxuan Sun

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 12, 2023

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

Can Reinforcement Learning Improve Order
Decision in Multi-echelon Inventory Systems? A

Linear System Case Study
Indicate Submission Type: Completed Research Paper

Abstract

In this paper, we introduce a novel formulation for the Markov Decision Process (MDP) model
specifically tailored for linear inventory systems and present a cutting-edge reinforcement
learning (RL) algorithm, termed Shaped-nStep-Double-DQN. By establishing various three-
echelon linear inventory systems, we convert the pertinent order placement challenges into
optimal policy determination problems within the MDP framework. The experiments
demonstrate that the order placement strategies learned by the Shaped-nStep-Double-DQN
algorithm in deterministic linear inventory systems are nearly consistent with the optimal
order placement strategies, serving as a good approximation. In stochastic linear inventory
systems, the ordering strategies learned by the Shaped-nStep-Double-DQN algorithm perform
better than the base-stock policy, exhibiting superior inventory performance.
Keywords: Reinforcement Learning, Shaped-nStep-Double-DQN, Linear Inventory Systems,
Order Decision

Introduction

Inventory encompasses items held by enterprises for maintenance, production, and resale, spanning raw
materials, components, work-in-progress, finished products, equipment, spare parts, and services. An
inventory point is a location designated for holding stock, and when multiple inventory points are
organized within a system, it becomes a multi-echelon inventory system, as a crucial component of
supply chains. Holding inventory provides businesses with several benefits, such as coping with
uncertain demand, exploiting economies of scale, and addressing strategic needs. However, it also
incurs various holding costs, thus making efficient management of multi-echelon inventory systems
crucial. A critical issue in managing these systems is the ordering problem, which determines when and
how much to order at each inventory point. The efficacy of order management strategies is paramount
for an organization's long-term sustainability and prosperity. And by employing effective ordering
approaches, companies can reduce inventory expenses, enhance efficiency, expedite delivery times,
bolster operational performance, elevate service quality, augment customer satisfaction, and fortify
supply chain resilience.

Over the past several decades, inventory research has centered on addressing ordering challenges in
order to achieve superior inventory control[1]. However, despite over 60 years of exploration and
accomplishments in resolving a variety of common inventory system issues, optimal strategic solutions
for numerous inventory management concerns remain scarce. These constraints predominantly
encompass: 1) the lack of solving algorithms for the majority of ordering problems, or the existence of
only suboptimal algorithms; 2) challenges in the practical application of algorithms; 3) inadequate
computational performance of extant solving algorithms; and 4) elevated academic prerequisites for
inventory management personnel. On the other hand, RL has emerged as a prominent field in AI,
demonstrating its capabilities and prospects across various industries. From AlphaGo's victory against
the world's top Go player, Ke Jie, to DeepMind's AlphaTensor solving a 50-year-old open problem in
mathematics, RL has played an indispensable role. Besides, OpenAI's ChatGPT, a chatbot based on the
GPT-4 model, also showcases impressive results in professional and academic exams, reflecting an
intelligence level close to humans.

In summary, efficient ordering strategies in multi-echelon inventory management constitute a vital
aspect of supply chain operations, proving indispensable for the ongoing viability of organizations. RL,

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

as an AI technology with immense potential, could be a promising solution to tackle existing limitations
in ordering and lead to better-performing multi-echelon inventory systems. By integrating RL
algorithms into the ordering process, organizations can benefit from more efficient ordering strategies
that improve multi-echelon inventory management, thus supply chain resilience, and competitiveness
in the global marketplace.

Literature Review

Clark and Scarf's (1960)[1] groundbreaking paper first introduced the concepts of "echelon inventory"
and "linear systems," laying the foundation for further research in this area. They transformed high-
dimensional optimization problems into a series of nested one-dimensional problems and demonstrated
that the optimal ordering strategy is an echelon-base-stock policy. Chen and Zheng (1994)[2] provided
an indirect proof, while Muharremoglu and Tsitsiklis (2003)[3] offered a direct proof for the validity of
the echelon-base-stock policy. Despite the simplicity of this optimal inventory strategy, calculating the
optimal echelon-based stock level can be quite complex due to the intricate cost function. Bertsekas et
al. (1997)[4] were the first researchers to explore the application of RL to inventory management.
Following their groundbreaking work, Kimbrough et al. (2002)[5] investigated the performance of
reinforcement learning-trained agents in the MIT Beer Game and its variants, leading to substantial
reductions in supply chain costs and the mitigation of the bullwhip effect. Giannoccaro et al. (2002)[6]
delved into a three-echelon linear inventory system characterized by stochastic lead times and demand,
formulating a RL algorithm known as "SMART" to tackle this problem. This algorithm outperformed
a traditional periodic review base-stock policy in terms of total cost and customer waiting time. Other
notable studies in this field include van Tongeren et al. (2007)[7], who employed Q-learning in the Beer
Game and demonstrated a significant alleviation of the bullwhip effect, and Chaharsooghi et al.
(2008)[8], who applied Q-learning to the same game while using genetic algorithms as a benchmark for
performance comparison. Besides, Valluri et al. (2009)[9] investigated the use of linear function
estimators, SARSA(λ) methods, and tiling coding TD(λ) methods in a four-level linear inventory system
with constant demand. Her results indicated that the TD(𝜆) method with linear function estimators and
tiling coding exhibited superior convergence properties. Mortazavi et al. (2015)[10] evaluated learned
ordering strategies through simulation, considering factors such as inventory levels, total inventory
costs, and customer waiting times. Kara et al. (2018)[11] compared base-stock policies, Q-learning, and
SARSA algorithms in perishable inventory management to understand their respective performances in
a single inventory point ordering problem. Boute et al. (2021)[12] offered recommendations for
implementing DRL techniques across various inventory systems. Goedhart et al. (2022)[13] apply RL
in omni-channel retailing.

Problem Setting

The inventory system investigated in this study is a three-echelon linear inventory system involving a
single, non-perishable product. In this system, the inventory points are arranged from downstream to
upstream, sequentially consisting of the retailer, warehouse, and manufacturer. External to the system,
consumers are associated with the retailer, while suppliers are linked to the manufacturer. Consumers,
retailers, warehouses, and manufacturers are only permitted to place orders with their immediate
upstream inventory points. We assume that the specific sequence of events in the linear inventory
system in one time period:

• Step 1 Shipping: The supplier ships to the manufacturer; the manufacturer ships to the warehouse;
the warehouse ships to the retailer; the retailer ships to the consumer.

• Step 2 Receiving goods: The manufacturer receives goods from the supplier; the warehouse receives
goods from the manufacturer; the retailer receives goods from the warehouse; the consumer receives
goods from the retailer.

• Step 3 Ordering: The consumer orders from the retailer; the retailer orders from the warehouse; the
warehouse orders from the manufacturer; the manufacturer orders from the supplier.

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

• Step 4 Receiving orders: The retailer receives orders from the consumer; the warehouse receives
orders from the retailer; the manufacturer receives orders from the warehouse; the supplier receives
orders from the manufacturer.

• Step 5 Calculating costs: Calculating the total cost of the inventory system in the current time period.

Figure 1: Three-echelon Linear Inventory System

MDP Setting

To effectively implement RL algorithms, a robust Markov Decision Process (MDP) model that captures
problem-specific features is crucial. Based on existing literature and linear inventory system features,
we develop a novel discrete-time MDP for formalizing the ordering process.

State

Let IL!(𝑖) denote the inventory level at inventory point 𝑖 at time period 𝑡 when ordering; 𝐈𝐋! represents
the vector of inventory levels at each inventory point at time period t when ordering, i.e., 𝐈𝐋! =
(IL!(1), IL!(2), IL!(3)); IO!(𝑖) is the amount of goods ordered but not yet received at the inventory
point 𝑖 at time period 𝑡 when ordering; 𝐈𝐎! represents the vector of goods ordered but not yet received
at each inventory point at time period 𝑡 when ordering, i.e., 𝐈𝐎! = (IO!(1), IO!(2), IO!(3)); SS!(𝑖) is
the amount of goods shipped from inventory point 𝑖 + 1 but not yet received at time period 𝑡 when
ordering; 𝐒𝐒! represents the vector of goods shipped but not yet received at each inventory point at time
period 𝑡 when ordering, i.e., 𝐒𝐒! = (SS!(1), SS!(2), SS!(3)).

Fundamentally, in RL, the state summarizes all decision-related variables that have occurred before the
current time step. Therefore, a well-designed state should include as much relevant historical
information as possible to allow the agent to make better decisions. Thus, we define the state S! at time
𝑡 as S! = ((𝐈𝐋!"#$%, 𝐈𝐎!"#$%, 𝐒𝐒!"#$%, D!"#$%), (𝐈𝐋!"#$&, 𝐈𝐎!"#$&, 𝐒𝐒!"#$&, D!"#$&), … , (𝐈𝐋! , 𝐈𝐎! ,

𝐒𝐒! , D!)), where the parameter 𝑢 represents the number of steps traced back from time 𝑡 (including time
𝑡).

Action

Since the problem is an ordering problem, actions can generally be set in two ways in most cases in
current literature. The first method is used by Bertsekas et al. (1997)[4], where they directly use the
order quantity at the inventory point as the action. This setup is simple, direct, and interpretable.
However, without setting upper and lower bounds for the order quantity, the action space theoretically
forms a half-space, easily leading to the curse of dimensionality, especially when data is insufficient.
Kimbrough et al. (2002) [5], Tongeren et al. (2007) [7], and Chaharsooghi et al. (2008) [8] improved
upon the first method by using the change in the order quantity at an inventory point with respect to the
received order volume, or the vector it forms, as the action. This setup constrains the state space from
an unbounded set in the previous method to a bounded set. Although this requires manually setting a
boundary for the bounded set, it significantly narrows the scope of the action space, facilitating the
training of RL algorithms and the search for optimal policies, especially in cases of limited data
availability. However, both methods mentioned above share a notable drawback: they do not
incorporate useful expert knowledge or prior information when selecting actions or making decisions,
diverging from rational human decision-making processes and resulting in weak interpretability of the
decision models.

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

Therefore, we redesign the action 𝒂! at time 𝑡 as 𝒂! = (𝑎!(1), 𝑎!(2), 𝑎!(3))', where 𝑎!(𝑖)∈[0,1]. We
define the column vector of order quantities at each inventory point at time t as 𝐎! = 𝐗!𝒂!, where the
order information matrix 𝐗! = (𝐎;! , 𝐎<! , 𝐎=!), 𝐎;! is the column vector of average order quantities at each
inventory point for the previous t periods, 𝐎<! is the column vector of average order quantities at each
inventory point for periods 𝑡 − 2, 𝑡 − 1 and 𝑡, and 𝐎=!t is the column vector of predicted order quantities
at each inventory point for period 𝑡. The exponential smoothing model is used to predict order quantities
in this part. It is evident that action 𝒂! is common for all inventory points, and the product of the row
vector of the 𝑖-th row of the order information matrix 𝐗! and action 𝒂! is the order quantity from
inventory point 𝑖 to inventory point 𝑖 + 1 at time 𝑡 . Furthermore, the dimension of action 𝒂! is
independent of the number of inventory points in the inventory system, theoretically facilitating
extension to any size inventory system.

Reward

Inventory systems aiming to minimize total costs, rewards are typically set as the negative of the total
costs for single or partial inventory points or the entire inventory system within a single time period, as
demonstrated by Bertsekas et al. (1997)[4], Giannoccaro et al. (2002)[6], and van Tongeren et al.
(2007)[7]. Thus, we use the negative of the total costs for the entire inventory system within each time
period as the reward.

Shaped-nStep-Double-DQN Algorithm

In the following, we present the framework of the algorithm below.

As can be seen, we employ (1) Q-learning and the idea of (2) sampling to calculate expected values in
designing the objective function; moreover, we use (3) the 2-step TD method to achieve a better balance
between update bias and variance, while the length of experience data does not increase significantly
compared to before, thus avoiding the pressure on experience data storage. Additionally, we utilize (4)
a fixed-target double network structure to reduce the impact of updates to the latest parameters on target
values, thereby minimizing training oscillations and divergence. Finally, we (5) employ the reward
shaping technique to stabilize training.

Table	1:	Shaped-nStep-Double-DQN	Algorithm

Algorithm：Shaped-nStep-Double-DQN Algorithm

Input：
Experience replay buffer capacity N；number of training episodes M；exploration rate sequence
{𝜺𝒌}，where 𝜺𝒌 ∈ [𝟎, 𝟏]，𝒌 = 𝟏, 𝟐,…；learning rate sequence {𝜶𝒌}，where 𝜶𝒌 ∈ [𝟎, 𝟏]，𝒌 =
𝟏, 𝟐,…；discount factor 𝜸；number of experiences randomly sampled from mini-batch 𝒏；target
network parameter update frequency C；linear transformation parameter for action value 𝒂；
another linear transformation parameter for action value 𝒃
Initialization: Experience replay buffer 𝒟 = {}； prediction Q network parameters 𝒘；target Q
network parameters 𝒘" = 𝒘
for episode =1 to M do:

Obtain initial state 𝑠#
for 𝑡 = 0: T − 1 do:
Select action 𝑎$ based on the prediction Q network (𝜀-greedy method)
Execute action 𝑎$；observe next state 𝑠$%&；receive reward 𝑟$%&
Select action𝑎$%& based on the prediction Q network (ε-greedy method)
Execute action 𝑎$%&；observe next state 𝑠$%'；receive reward 𝑟$%'
Store experience data (𝑠$, 𝑎$, 𝑟$%&, 𝑠$%&, 𝑎$%&, 𝑠$%') as	a	queue	in	experience	replay	buffer 𝒟
if |𝒟| ≥ 𝑚 do:

Randomly sample 𝑛 experience data {(𝑠()), 𝑎()), 𝑟()), 𝑠())", 𝑎())", 𝑟())", 𝑠())"")})+&,',…,.
if |𝒟| < N do:

𝑦()) = 𝑟()) + 𝛾𝑟())" + 𝛾'Q(𝑠())"", argmax
/

(Qa𝑠())"", 𝑎;𝒘c;𝒘")

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

if |𝒟| = N do:
Calculate the average reward value r̅ for all experience data (2N in total) in experience
replay buffer 𝒟
Update all action values Q as	Q + 0

&12
Q

𝑦()) = 𝑟()) + 𝛾𝑟())" − (1 + 𝛾)�̅� + 𝛾'Q(𝑠())"", argmax
3

Qa𝑠())"", 𝑎;𝐰c ;𝐰")
else:

𝑦()) = 𝑟()) + 𝛾𝑟())" − (1 + 𝛾)�̅� + 𝛾'Q(𝑠())"", argmax
3

Qa𝑠())"", 𝑎;𝐰c ;𝐰")

Minimize the loss function L = &
.
∑ (𝑦()) − Q(𝑠()), 𝑎()); 𝒘)).
)+&

Update 𝐰" = 	𝐰 every C iterations
𝑡 = 𝑡 + 1
end for

end for

In the reward shaping part, we provide a rigorous mathematical explanation through Lemma below to
proof the invariance of the optimal policy before and after reward transformation.

Lemma (Optimal Policy Invariance). Consider a Markov decision process with 𝑣∗ ∈ ℝ|𝒮| as the
optimal state value satisfying 𝑣∗ = max+  (𝑟+ + 𝛾P+𝑣∗). If every reward 𝑟 is changed by an affine
transformation to 𝑎𝑟	 + 𝑏, where 𝑎, 𝑏 ∈ ℝ and 𝑎 > 0, then the corresponding optimal state value 𝑣, is
also an affine transformation of 𝑣∗ :	𝑣, = 𝑎𝑣∗ + -

%".
𝟏, where 𝛾 ∈ (0,1) is the discount rate and 1 =

[1,… ,1]'. Consequently, the optimal policies are invariant to the affine transformation of the reward
signals.

Proof: For any policy 𝜋, define 𝑟+ = [… , 𝑟+(𝑠), …]' where 𝑟+(𝑠) = ∑  / 𝜋(𝑎 ∣ 𝑠) ∑  0 𝑝(𝑟 ∣ 𝑠, 𝑎)𝑟, 	𝑠 ∈
𝒮. If 𝑟 → 𝑎𝑟 + 𝑏 , then 𝑟+(𝑠) → 𝑎𝑟+(𝑠) + 𝑏 and hence 𝑟+ → 𝑎𝑟+ + 𝑏1, where 1 = [1,… ,1]' . In this
case, the BOE becomes 𝑣, = max

+
 (𝑎𝑟+ + 𝑏1 + 𝛾P+𝑣,) (*). We next solve the new BOE in (*). To do

that, we verify that 𝑣, = 𝑎𝑣∗ + 𝑘1 with 𝑘 = 𝑏/(1 − 𝛾) is the solution of (*). In particular, substituting
𝑣, = 𝑎𝑣∗ + 𝑘1 into (*) gives 𝑎𝑣∗ + 𝑘1 = max

+
 [𝑎𝑟+ + 𝑏1 + 𝛾P+(𝑎𝑣∗ + 𝑘1)] = max

+
 (𝑎𝑟+ + 𝑏1 +

𝑎𝛾P+𝑣∗ + 𝑘𝛾𝟏),where the last equation is due to 𝑃+1 = 1. The equation can be rewritten as. 𝑎𝑣∗ =
max
+
 (𝑎𝑟+ + 𝑎𝛾P+𝑣∗) + 𝑏1 + 𝑘𝛾1 − 𝑘1 , which is equivalent to 	 𝑏1 + 𝑘𝛾1 − 𝑘1 = 0 . Since 𝑘 =

𝑏/(1 − 𝛾), the above equation is valid and hence 𝑣, = 𝑎𝑣∗ + 𝑘1 is the solution to (*). Since (*) is the
BOE, 𝑣, is also the unique solution. Finally, since 𝑣, is an affine transformation of 𝑣∗, the relative
relationship among the action values remain the same. Hence, 𝑣, would lead to the same optimal
policies as 𝑣∗.

Experiments

The experiments in this paper are divided into two parts:

1. Testing the performance of the Shaped-nStep-Double-DQN algorithm under various MDP settings
(experiment 1).

2. Applying the Shaped-nStep-Double-DQN algorithm to a three-echelon linear inventory system
(experiment 2-3).

The hyperparameters for the Shaped-nStep-Double-DQN algorithm used in this study are as follows:
Table	2:	Parameters	of	MDP	and	hyperparameter	Settings	of	Shaped-nStep-Double-DQN	algorithm	

Hyperparameters Values
Number of steps to backtrack in the state 3

Experience replay buffer capacity N 20000
Number of training episodes M 2000

Number of time steps per episode T 200
Target network parameter update frequency C 20

Batch size for random sampling of experiences 𝑛 32
Discount factor 𝛾 0.99

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

Initial exploration ratein 𝜀-greedy policy 𝜀₀ 0.9
Exploration rate decay factor in 𝜀-greedy policy 0.99

Initial learning rate 𝛼# 0.1
Learning rate decay factor 0.99

Fully connected neural network (Q-network)
structure 30 ×80×20× 3

Learning rate in RMSProp algorithm 0.01
Decay factor in RMSProp algorithm 0.9

Stabilizing factor in RMSProp algorithm 																																										1014

Experiment 1: Performance of Shaped-nStep-Double-DQN Algorithm under Different MDP
Settings

In the experiment, we fixed the reward setting and examined the performance of the MDP with different
state and action settings. There are two options for the states: (1) a vector composed of the inventory
level, in-transit inventory, and received orders at each inventory point, and (2) a vector composed of
the inventory level at each inventory point and the shipment quantity in the past two time periods. There
are also two options for actions: (1) a vector of order quantities at each inventory point, and (2) a vector
of order quantity changes with respect to the received orders at each inventory point. For simplification,
we denote these as state setting 1 and state setting 2, and action setting 1 and action setting 2,
respectively. The action and state settings in the MDP model of this article are denoted as state setting
3 and action setting 3. We consider a specific inventory system where demand is constant, and the
demand at each time period is always 5. The lead times for all inventory points are 0 (i.e., no lead time).
The operational costs at each inventory point consist only of holding costs and stockout costs, both with
a unit cost of 1. The external supplier has an ample supply. In this inventory system, the 1-1 ordering
policy is optimal, meaning that downstream orders should match upstream orders. Thus, the optimal
ordering policy is to order 5 units of goods at each inventory point. Since the lead times are 0, the
inventory is received in the same time period as the order, so no holding costs or stockout costs are
incurred, and the optimal ordering cost is 0. We simulated the inventory system for 20 time periods,
repeating the simulation 50 times.

Table 3 shows the performance of the ordering policy learned by the Shaped-nStep-Double-DQN
algorithm under different MDP settings. The values in the table are the averages of 50 experiments. As
shown, the combination of state setting 1 and action setting 1, as the simplest MDP setting, results in
the worst performanc, with an average total cost of 29. The MDP setting with state setting 3 and action
setting 3 exhibits the best performance in minimizing inventory costs, with an average total cost of 2.
This is about 0.2 times the cost of the second-best MDP setting (state setting 2 and action setting 3) and
about 0.067 times the cost of the worst MDP setting (state setting 1 and action setting 1). Compared to
the ordering policies under other settings, the policy learned by the algorithm with state setting 3 and
action setting 3 is almost as good as the optimal 1-1 ordering policy. This further demonstrates the
importance of selecting a suitable MDP model setting, improving state representation capabilities, and
enhancing the relevance between actions and decisions in the learning of ordering policies.

Table 3: Performance of Shaped-nStep-Double-DQN Ordering Policies under Different MDP
Settings

 State Setting 1 State Setting 2 State Setting 3
Action Setting 1 -29 -25 -23

Action Setting 2 -24 -11 -12

Action Setting 3 -16 -10 -2

Experiment 2: Performance between Shaped-nStep-Double-DQN Ordering Policy and 1-1
Ordering Policy

In the second part of the experiment, we applied the Shaped-nStep-Double-DQN algorithm to the linear
inventory system based on the MDP model settings determined in the previous section. We set the

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

demand to be constant and equal to 5 for each time period. The lead time is 0 for each inventory location,
and the holding cost and stock-out cost per unit are both set to 1. The external supplier is assumed to be
sufficient. Figure 2 shows the training process of the learned ordering policy, with the orange horizontal
line indicating the fixed reward for the optimal 1-1 ordering policy (0). The light blue curve represents
the rewards obtained by the learned ordering policy in each time period. It can be seen that as the
training progresses, the performance of the learned ordering policy gradually improves, and the rewards
stabilize between -5 and 0, with a mean value of about -2, which is only 2 away from the optimal
inventory cost of 0. This demonstrates that the Shaped-nStep-Double-DQN algorithm is able to learn
an excellent ordering policy that approximates the optimal policy in a deterministic linear inventory
system. The results also suggest that the Shaped-nStep-Double-DQN algorithm performs	well	 in	
learning	the	ordering	policy	in	deterministic	linear	inventory	systems.	

	
Figure	2:	Shaped-nStep-Double-DQN	Ordering	Strategy	and	1-1	Ordering	Strategy	Performance	

Comparison	in	Deterministic	Linear	Inventory	Systems	

Experiment 3: Performance between Shaped-nStep-Double-DQN Ordering Policy and Base
Stock Ordering Policy

Next, we extend the deterministic linear inventory system to a stochastic linear inventory system. We
modify the lead time of each inventory point in the deterministic linear inventory system from a constant
zero to a normally distributed random variable with a mean of 0 and a variance of 1. We also change
the demand at each time period, which was previously always equal to 5, to follow a Poisson distribution
with a mean of 5.

Figure 3 depicts the training process of the Shaped-nStep-Double-DQN ordering strategy, where the
red curve represents the rewards per time period for the echelon base-stock strategy, and the green curve
represents the rewards per time period for the ordering strategy learned using the Shaped-nStep-Double-
DQN algorithm. As observed, the performance of the ordering strategy learned using Shaped-nStep-
Double-DQN improves during training. The rewards per time period gradually increase as the number
of episodes increases, eventually stabilizing between -45 and -55, with an average around -50,
outperforming the echelon base-stock strategy. This demonstrates that in this stochastic linear inventory
system, the ordering strategy learned using Shaped-nStep-Double-DQN is more effective in reducing
inventory costs and has better performance compared to the base-stock strategy.

Figure	3:	Comparison	between	the	Shaped-nStep-Double-DQN	Ordering	Strategy	and	the	Base-

Stock	Ordering	Strategy	

 Can Reinforcement Learning Improve Order Decision in Multi-echelon Inventory Systems? A Linear System Case Study

Conclusion

First of all, existing MDP models in the literature have limitations for linear inventory systems,
prompting us to propose a new MDP model, which is more suitable for linear inventory system.

To determine the optimal policy for this MDP model, we introduce a new RL algorithm called Shaped-
nStep-Double-DQN.In the experimental section, we design experiments and verify that our new MDP
model setting outperforms the existing MDP model settings. We then test the performance of the
Shaped-nStep-Double-DQN algorithm in the ordering problem of linear inventory systems.

The experimental results show that in deterministic linear inventory systems, the ordering strategy
learned using the Shaped-nStep-Double-DQN algorithm is nearly consistent with the optimal ordering
strategy in reducing inventory costs and is a good approximation. In stochastic linear inventory systems
with Poisson-distributed consumer demand, the Shaped-nStep-Double-DQN algorithm's ordering
strategy outperforms the base-stock ordering strategy in reducing inventory costs, exhibiting superior
inventory performance.

References

[1] Clark A J, Scarf H. Optimal policies for a multi-echelon inventory problem[J]. Management science,
1960, 6(4): 475-490.

[2] Chen F, Zheng Y S. Lower bounds for multi-echelon stochastic inventory systems[J]. Management
Science, 1994, 40(11): 1426-1443.

[3] Muharremoglu A, Tsitsiklis J N. Dynamic leadtime management in supply chains[J]. Preprint,
Massachusetts Institute of Technology, Cambridge, 2003.

[4] Van Roy B, Bertsekas D P, Lee Y, et al. A neuro-dynamic programming approach to retailer
inventory management[C]//Proceedings of the 36th IEEE Conference on Decision and Control. IEEE,
1997, 4: 4052-4057.

[5] Kimbrough S O, Wu D J, Zhong F. Computers play the beer game: can artificial agents manage
supply chains?[J]. Decision support systems, 2002, 33(3): 323-333.

[6] Giannoccaro I, Pontrandolfo P. Inventory management in supply chains: a reinforcement learning
approach[J]. International Journal of Production Economics, 2002, 78(2): 153-161.

[7] van Tongeren T, Kaymak U, Naso D, et al. Q-learning in a competitive supply chain[C]//2007 IEEE
International Conference on Systems, Man and Cybernetics. IEEE, 2007: 1211-1216.

[8] Chaharsooghi S K, Heydari J, Zegordi S H. A reinforcement learning model for supply chain
ordering management: An application to the beer game[J]. Decision Support Systems, 2008, 45(4): 949-
959.

[9] Valluri A, North M J, Macal C M. Reinforcement learning in supply chains[J]. International journal
of neural systems, 2009, 19(05): 331-344.

[10] Mortazavi A, Khamseh A A, Azimi P. Designing of an intelligent self-adaptive model for supply
chain ordering management system[J]. Engineering Applications of Artificial Intelligence, 2015, 37:
207-220.

[11] Kara A, Dogan I. Reinforcement learning approaches for specifying ordering policies of perishable
inventory systems[J]. Expert Systems with Applications, 2018, 91: 150-158.

[12] Boute R N, Gijsbrechts J, Van Jaarsveld W, et al. Deep reinforcement learning for inventory control:
A roadmap[J]. European Journal of Operational Research, 2022, 298(2): 401-412.

[13] Goedhart J, Haijema R, Akkerman R. Modelling the influence of returns for an omni-channel
retailer[J]. European Journal of Operational Research, 2023, 306(3): 1248-1263.

