
Kalpa Publications in Computing
Volume 4, 2018, Pages 219–233

28th International Workshop on
Principles of Diagnosis (DX’17)

Inference of fault signatures of discrete-event systems from
event logs

Cody Christopher1, Yannick Pencolé2, and Alban Grastien1

1 CSIRO, Data61 and Australian National University, Canberra, Australia
[first.last]@data61.csiro.au

2 LAAS, CNRS, Univ. Toulouse, Toulouse, France
yannick.pencole@laas.fr

Abstract

In this paper, we propose a method to diagnose faults in a discrete event system that only relies
on past observed logs and not on any behavioural model of the system. Given a set of tagged logs
produced by the system, the first objective is to extract from them a set of fault signatures. These
fault signatures are represented with a set of critical observations that are the support of the diagnosis
method. We first propose a method to compute the fault signatures from an initial log journal and
follow with detail on how the signatures can then be updated when new logs are available.

1 Introduction
This paper addresses the problem of fault diagnosis in dynamical discrete event systems (DES) such as
communication protocols [1], automated production systems [2], and business work-flows [3], etc. The
system generates a sequence of events, some of which are observable whilst others are not. Depending
on the type of events that is produced (normal/abnormal events) or depending on the way the events are
produced (event patterns [4, 5]), the system may change from a normal mode to an abnormal mode.
Given a flow of observations, the problem consists of on-line analysis of the observation flow and
retrieving the current mode of the system. We typically call the generic function that performs the
observation and mode analysis of the system a diagnoser. The general question is typically about how
we go designing such a diagnoser for any given system. In addressing this problem, there are two
main difficulties: the acquisition of knowledge about the behaviour of the system and the computational
complexity of the diagnosis problem based on the acquired knowledge.

The first method of acquiring knowledge consists in developing a behavioural model of the system
with help of experts. The result is a predictive model that describes how the system behaves (faultless
model or not). The main advantage of such a method is that the model describes the physical nature of
the underlying system so the knowledge about the system is rich and precise (white-box model) [6, 7].
The drawback of this approach is the complexity and cost in the design of such a model. As soon as the
system consists of complex parts of varying origin, acquiring knowledge from experts might become
prohibitive (high costs, confidentiality reasons, etc).

The contrasting method of knowledge acquisition is to use a data-driven approach. In this context,
the system is known only based on the sequences of observable events that it or similar systems have

M. Zanella, I. Pill and A. Cimatti (eds.), DX’17 (Kalpa Publications in Computing, vol. 4), pp. 219–233

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

produced in the past (a black-box model consisting of a set of event logs) [8]. In the era of BigData,
systems now can indeed generate tremendous amounts of data (multiple set of sensors, cyber-physical
systems, internet of things). For BigData to succeed we require that the logs obtained are meaningful
enough to extract some crucial pieces of information. In the context of health monitoring, the relevant
information we seek regards the relationship between the actual current flow of observations and some
faulty operation modes. The challenge of a data-driven method is in how we extract this information
from event logs and deduce fault mode signatures [9].

The second difficulty surrounds the complexity of the diagnosis problem. In both approaches
(model-based or data-based), a diagnoser has to complete two tasks—to analyse the current flow of
observed events that the system generates and to retrieve the set of possible fault modes that may have
occurred. In a typical white-box model the diagnoser is an algorithm that relies on a finite state machine
(or set of FSMs) that uses observable events to update the current diagnosis. This approach is advan-
tageous in that it retains the precision of the model, however the time and space complexity of such a
diagnoser can be an obstacle.

One approach to reducing the complexity of the algorithm is to consider that many observations
generated by the system are not relevant from a diagnosis point of view. Under this assumption, only a
subset of observable events within the observation flow are relevant and sufficient to perform diagnosis.
Such an approach relies on a recogniser [10] that reads the observations flow but only retains events that
are part of a given observable pattern, often called a chronicle1. Once a pattern has been recognised, the
diagnoser updates its belief about the current mode of the system with the information associated with
the recognised pattern.

In this paper, we propose using a data-driven approach to compute observable event patterns as a
solution to the diagnosis problem of DES. Our objectives are:

1. to design a diagnoser of the system without the need for a model that would require expertise,
simply based on data logs produced by the system;

2. to abstract away irrelevant information to provide a diagnoser that performs more efficiently by
simply recognising fault signatures represented by critical observations [11] and emit the associ-
ated diagnosis;

3. to continuously update the set of critical observations when more logs are available such that we
capture more fault signatures and therefore improve the diagnoser.

The paper is organised as follows. Section 2 introduces the problem formally along with necessary
notation. Section 3 recalls the theory of critical observations and describes a method to compute them
from a fixed set of event logs. Section 4 then provides an incremental version of this method that updates
the set of critical observations when new logs are available. Section 5 finally presents an illustrative
example about the proposed method.

2 Problem statement
This section formally introduces the problem that is addressed in this paper.

2.1 Notation
The present work takes place in the context and standard framework of discrete event systems (DES)
[12, 6]. A DES is a system that generates runs. A system run is a finite sequence of events (e), w =

1The term chronicle usually refers to event patterns where two events are constrained with time intervals [α, β]. In this work,
we do not deal with time intervals, only with event sequence.

220

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

e1e2 . . . ek and Σ denotes the set of events that the system could possibly generate in its runs. The
symbol ε denotes the empty sequence. By definition if e1e2 . . . ek, k > 1 is a run of the system, then
e1e2 . . . ek−1 is also a run of the system. The run ε is a run of any system. It follows that the set of runs
of a DES is a prefix-closed language, S ⊆ Σ?, where Σ? is the Kleene closure of Σ.

In this framework, we make the assumption that the set of events of the underlying system is par-
titioned into observable events Σo—events that are recorded—and unobservable events Σu—those that
are not. The observation flow o generated by run w = e1e2 . . . ek will be hereafter called the trace of
w: it is the projection (P) of w on the set of observable events (i.e., all unobservable events of the run
are deleted):

o = PΣo(w) =

 ε if k = 0
e1PΣo(e2 . . . ek) if k > 0 and e1 ∈ Σo
PΣo(e2 . . . ek) otherwise.

The Σ-language of a trace o, denoted Lo, is the set of finite sequences of events from Σ that could
produce the observed sequence:Lo = P−1

Σo
(o) = {w ∈ Σ? | PΣo(w) = o}.

2.2 Event logs

In this paper, we consider that the language S of the system is unknown. The only available information
we start from is a set of logs. A log results from a past run of the system (or a past run of a system that
is identical). It is simply the record of the trace of the run with information about the fault class.

Definition 1 (Log). A log l is a tuple (o, f) such that:

• there exists a run w ∈ S such that o = PΣo(w);

• f is a tag of the fault mode and the run w leads the system to be in this fault mode f .

The notion of fault mode here is generic. First, we denote N as the nominal mode as a specific fault
mode. Usually, if a run is in a fault mode f 6= N , it means that a fault event f ∈ Σ has occurred in the
run. However, a fault in DES can also be the occurrence of a more complex behaviour (denoted pattern
in [4, 5]) and f then means that such a pattern has occurred in the run. In the following and without loss
of generality, we suppose that if the system is in a fault mode f it means that a fault event f ∈ Σu is
part of that run of the system. With slight abuse of notation we write f ∈ w to indicate “f appears in
w” (i.e. w ∈ Σ?fΣ?).

Whereas it is pretty easy to record the trace o, the association between the trace and its fault class
f is not straightforward. There are basically two ways to get this fault class: by expertise, and by data
classification. In the case of expertise, the considered trace has already been analysed by a repair agent
that tagged the trace with what was actually found within the system (the set of components replaced
for instance). The second is to use automated classification techniques to automatically tag the set of
traces depending on some distance criteria. This is out of the scope of this paper.

2.3 Diagnosis problem and implementation

We recall the classical diagnosis problem in a DES and describe the proposed diagnoser that solves an
approximation of this problem.

As previously introduced, the set of unobservable events of the system includes a subset of fault
events, Σf ⊆ Σu. A set δ ⊆ Σf of faults is consistent with the system S and the trace o if there
exists a run w ∈ S that would produce this trace (PΣo(w) = o) and that exhibits exactly these faults

221

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

(w ∩ Σf = δ). The diagnosis of trace o, denoted ∆(o), is the collection of all consistent sets of faults:

∆(o) =

{
δ ⊆ Σf

∣∣∣∣ ∃w ∈ S.PΣo(w) = o ∧ δ = w ∩ Σf

}
(1)

We find it more convenient to define the diagnosis in terms of emptiness of languages. Let Lδ be the
language that represents all sequences that contain exactly δ:

Lδ = {w ∈ Σ? | w ∩ Σf = δ} =
⋂
f∈δ

Σ?fΣ? ∩
⋂

f∈Σf\δ

(Σ \ {f})?

That is, Lδ represents the set of all runs containing all of the faults of δ, intersected with all possible
runs where the faults not in δ never occur—the result is a set of all runs where the only faults that occur
are those in δ. With Lδ defined, we can equivalently express the diagnosis as an emptiness of languages
problem:

δ ∈ ∆(o)⇐⇒ S ∩ Lo ∩ Lδ 6= ∅. (2)

The classical definition of the diagnosis ∆(o) relies on S. In a classical model-based approach, this
language S is assumed to be known. However, in the presented framework, we do not know S but only
a set of logs L = {l1, . . . , ln}.

Assumption 1. Any log l = (o, f) of L is correct:

(f 6= N ⇒ (∃w ∈ S, (PΣo(w) = o) ∧ (w ∩ Σf = {f})))∧

(f = N ⇒ (∃w ∈ S, (PΣo(w) = o) ∧ (w ∩ Σf = ∅))).

The design of the proposed diagnoser only relies on the logs L and is based on critical observations
(introduced in § 3.2). A critical observation θ corresponds to an observable language resulting from the
abstraction of irrelevant observable events. The objective is to derive fromL a set of critical observations
{θ1, . . . , θm} that represent fault signatures. This means that each θi is associated with a fault δi ⊆ Σf
(note that a δi can be associated with multiple θi). The proposed diagnoser, denoted ∆L, then works as
follows.

Definition 2 (∆L diagnoser). Let o be a trace of the system.

δ ∈ ∆L(o)⇐⇒ (({∃θi 3 o} ⇒ δ = δi}).
∧ ({∀θi, o 6∈ θi} ⇒ δ = ∅))

Intuitively speaking, the diagnoser ∆L records a new trace o of the system and checks whether it
can find any critical observations θ in its database that o matches (in other words, the diagnoser checks
whether θ is recognised in o). If o matches θ then the diagnoser returns the fault class δ associated to θ.
In the case where o is not recognised by any of the critical observations then ∆L returns the unknown
diagnosis ∅.

3 Off-line inference of critical observations
The aim of this section is to describe the method that computes a set of critical observations from a
given set of logs L. This method first relies on the computation of a specific representation of the log
set L as a log tree.

222

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

3.1 Log tree
A log tree is a representation of a given set of logs L as a finite state machine.

Definition 3 (Log Tree). The log tree (L-tree) LgT (L) is a tree:

LgT (L) = (Q,Σ, δ, q0)

such that:

• Q is a finite set of nodes;

• Σ is a finite alphabet composed of the set of observable events Σo and the set of fault events Σf ;

• δ : Q× Σ→ Q is a transition function (defined below);

• q0 is the root node.

Let δ∗ denote the transitive closure of δ, that is δ∗(q, ε) = q and δ∗(q, e.w) = δ∗(δ(q, e), w) for
e ∈ Σ and w ∈ Σ∗. The transition function δ is defined by the following four conditions.

1. q0 has no predecessor: ∀q ∈ Q,@e : δ(q, e) = q0.

2. For any node q ∈ Q \ {q0}, |{q′,∃e, δ(q′, e) = q}| = 1 and ∃w ∈ Σ∗, δ∗(q0, w) = q (q always
has one predecessor q′ and is reachable from q0: LgT (L) is a tree.)

3. For any log l = (o = (e1 . . . en), N), there is a transition sequence such that ∃qn ∈ Q, qn =
δ∗(q0, o).

4. For any log l = (o = (e1 . . . en), f), let o1.e be the minimal prefix of o (o = o1eo2) such that o1.e
is not the prefix of any other log l′ = (o′′, f ′), f ′ 6= f or l′ = (o′′, N), then there is a sequence
qo1 = δ∗(q0, o1) followed by qo = δ∗(qo1 , feo2).

Consider for example, the following log set L whose log tree is represented in Figure 1:

L = (cccd,N), (aba, f1), (aba,N), (ccae, f2), (dbbdb,N), (abebda, f1), (ababcc, f2)

c c c d

a

b a

f2 a e

f2 b c c

f1

e b d a

d

b b d b

Figure 1: Log tree of L

Any normal log is associated with a unique path from the root node of the tree. Any fault log, like
(abebda, f1) is also represented with a unique path. In the example, the prefix ab is the longest prefix

223

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

of abebda that is common with a log of another class (normal log aba), which is why the log abebda
is represented by the path abf1ebda. Note also that in this example the log (aba, f1) is represented by
the same path of the log (aba,N) as the longest prefix of aba common to the modes f1 and N is the
sequence itself.

Proposition 3.1. For any set of logs L, the log-tree LgT (L) is unique.

Proof. By construction.

Based on the log-tree LgT (L), for any fault f present in the log L we can define the language LL,f
as the set of words e1, . . . , en represented by a path e1, . . . , ei−1, f, ei, . . . , en from q0. Any word of
LL,f is thus a sequence of observations that always results in the diagnosis of fault f according to the
log L. Back to Figure 1, LL,f1 = {abe, abeb, abebd, abebda}. Note that aba is not part of LL,f1 even
if the logs of L contain (aba, f1) as (aba,N) is also part of L. The sequence aba leads to an ambiguity
according to L.

3.2 Theory of sub-observations
Our objective now is to generate fault signatures from the log-tree LgT (L), that gathers a subset of
traces of the system. We propose updating the theory of critical observations introduced in [11] to infer
fault signatures as critical observations. Before the notion of critical observations can be introduced, we
first define the idea of a sub-observation.

A sub-observation, in a practical sense, is intended as a relaxation of the information given in some
trace o of the system. Sub-observations allow for the abstraction (’hiding’) of events such that only the
most relevant information is present. In the following we distinguish between ‘hard’ and ‘soft’ events
— A hard event is a singleton observable event, x ∈ Σo, and represents the firm occurrence of an event,
and a soft event is a subset of observable events, y ⊆ Σo, that any number (incl. zero) of which may
have occurred along with any number of unobservable events (Σu), and these events may occur multiple
times.

Definition 4 (Sub-observation). A sub-observation, θ, is an abstraction over a trace that represents an
intentional relaxation of the concrete knowledge in the trace, and is a strict time-ordered alternating
sequence of soft and hard events, commencing and ending with a soft event: θ = y0x1y1 . . . xnyn.

A sub-observation θ implicitly defines, and thus can be expressed as, a language over the alphabet
Σ = Σo ∪ Σu:

Lθ = (y0 ∪ Σu)∗x1(y1 ∪ Σu)∗ . . . xn(yn ∪ Σu)∗.

A given trace o of the system can be abstracted in several manners (choices between hard and soft
events), so a trace o is associated with a space of sub-observations, denoted O(o). Now, if we consider
the set of possible traces of Σ∗o , it can be associated with the global space of sub-observations:

O =
⋃
o∈Σ∗o

O(o).

Into the space O, we inject any trace o to a most refined sub-observation, denoted sub(o) where the
hard events are the events of o and the soft events are empty.

Definition 5. The function sub(·) generates the most-refined (or least abstract) sub-observation in O(o)
from a given trace o, by inserting empty soft events at either end of the trace, and between hard events:

o = e1 . . . en

sub(o) = ∅e1∅ . . . en∅ ∈ O(o) ⊆ O

224

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

{ac} b {cd} a {c} d {c} a ∅

{abcd} a {bcd} a ∅

Figure 2: Two sub-observations with a map m satisfying �

Space O gathers the set of all possible sub-observations that are more or less abstracted. We equip
O with a partial order, denoted �, to allow us to distinguish whether a given sub-observation is ‘more’
or ‘less‘ abstract than some other sub-observation. � is defined as follows.

Definition 6. The relation � over O is defined such that θ′ � θ if and only if there exists a mapping
function m:

Given |θ′| = n, |θ| = n′

m : {0, . . . , n+ 1} → {0, . . . , n′ + 1} such that
m(i) < m(i+ 1), m(0) = 0, m(n+ 1) = n′ + 1

x′i = xm(i)

y′i ⊇
⋃

m(i)≤j≤m(i+1)−1

yj ∪
⋃

m(i)<j<m(i+1)

xj

The relation � is provably a partial order over O.

In words: θ′ � θ if there exists some m that maps the hard events in θ′ to an equivalent sequence
in θ, retaining the ordering of both, and each y′i in θ′ captures the union of all intervening events – yj
(inclusive) and xj (exclusive), for j ranging between m(i) and m(i + 1) − 1. As an example, take
θ = {ac} b {cd} a {c} d {c} a∅ and θ′ = {abcd} a {bcd} a∅. The hard events in θ′ are matched to x2

and x4 in θ, and each y′i ‘consumes’ the other information. Specifically, m(1) = 2,m(2) = 4, satisfies
the constraints for θ′ � θ. We illustrate this in Figure 2. One can read θ′ as a regular expression:
[abcdΣu]∗(a)[bcdΣu]∗(a).

The fundamental principle of a sub-observation θ is that it implicitly represents the set of traces for
which it is a more abstract form of:

ψ(θ) = {o ∈ Σ∗o | θ � sub(o)}

Therefore, θ′ � θ ⇒ ψ(θ′) ⊇ ψ(θ). To summarise, the notion of sub-observations leads to the definition
of a formal abstraction space:

Definition 7. The set of sub-observations ver the observable alphabet Σo is a partial-order set
〈O,�, sub〉.

3.3 Critical observations and log-based diagnosis
In [11], critical observations are computed with respect to the model of the system S. Given a trace o,
a critical observation is a sub-observation θ that is precise enough to infer the original diagnosis of o
given S and that is also maximally abstracted. That is, the sub-observation θ cannot further be abstracted
without compromising the known diagnosis of the original observation o.

In this paper, we take S to be unknown, with LgT (L) available as a partial model of the system. We
now adapt the definitions of sufficiency and criticality in [11].

225

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

Definition 8. The diagnoses of a sub-observation θ is the union of the diagnoses of the fault traces of
the logs L for which θ is the more abstract form of:

∆L(θ) =
⋃

o∈(ψ(θ)∩
⋃

f∈L LL,f)

∆L(o)

=
⋃

o∈(ψ(θ)∩
⋃

f∈L LL,f)

{f}

Therefore, if θ � sub(o) then δ ∈ ∆L(θ) if δ ∈ ∆L(o).

Definition 9 (Sufficient). Given a log o ∈ LL,f , a sub-observation θ � sub(o) is sufficient for o if
∆(θ) = {f}.

Sufficiency, then, is the formalisation of the property that information lost to abstraction does not
affect the known diagnosis by making other potential diagnoses feasible (that is, others logs l′ ∈ L with
f 6= f ′ are not captured by θ):

∆L(θ) \ {f} = ∅ (3)
Observe that by Definitions 7, and 8, the naïve sub-observation, sub(o), satisfies the criteria to be
sufficient for o, and means that at least one solution can be found:

∆L(sub(o)) =
⋃

o∈(ψ(sub(o))∩
⋃

f∈L LL,f)

∆L(o)

= ∆L(o) = {f}
We are then left to search for a ‘maximally abstract’, or critical, sub-observation, and define that as

follows:

Definition 10 (Critical). Given a log o ∈ LL,f , a sub-observation θ � sub(o) is critical for o if it is
sufficient for o and there is no strict sub-observation of θ that is also sufficient:

∀θ′ � θ if (∆L(θ′) = {f}) then (θ′ = θ) . (4)

Noting that� is only a partial order, it is possible that there could be several critical sub-observations.
Back to Definition 2, the full log-based diagnoser ∆L can then be defined as follows.
Let Θ = {θ1, . . . , θm} be the set of critical observations that have been inferred, for any further se-
quence o produced by the system, ∆L returns:

∆L(o) =
⋃

θ∈Θ,o∈ψ(θ)

∆L(θ).

The log-based diagnoser ∆L may not be accurate as it is based on a partial knowledge of the underlying
system. For a given new trace o, it returns a set of diagnoses δ ∈ ∆L(o) based on the fact there exist
some logs o′ with θ � sub(o′) and θ � sub(o) for which δ is certainly the diagnosis of o′ according the
available set of logs L.

Theorem 3.2. For any fault f , ∆L converges to the model-based diagnoser ∆ with respect to the size
of L:

(∃o ∈ Σ∗o , {f} = ∆(o))⇒ (lim
|L|→∞

∆L(o) = {f})

Proof. (sketch) By convergence, we mean here that the larger L is, the more likely ∆L(o) = ∆(o) =
{f}. As L gets bigger, it captures more and more behaviours from the underlying system S. If S is
such that ∃o ∈ Σ∗o , {f} = ∆(o) (i.e. the fault f can be diagnosed with certainty by observing o), then it
is guaranteed, if L is big enough, that ∆L will know a critical observation θ such that θ � sub(o) a nd
∆L(θ) = {f} and no other available critical observations θ′ 6= θ will be such that o ∈ ψ(θ′).

226

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

Procedure FINDCRITICALOBSERVATIONS
input: logtree LgT (L)
input: log o ∈ L(L, f)
output: critical observation
diag := f ; θ := sub(o)
candidates := children(θ)
while candidates 6= ∅ do

θ′ := pop(candidates)
if ∆L(θ′) = diag then

θ := θ′

candidates := children(θ)
end if

end while
return θ

Figure 3: Finding a critical observation

3.4 Inferring the Critical Observations Set
The remaining question is now how to infer a set of critical observations from LgT (L). From [11] we
also take two other results:

1. The finiteness of the set of sub-observations O(o), and

2. The monotonicity of Definition 9 – given θ1, θ2 such that θ1 � θ2 � sub(o), if θ1 is sufficient for
o, then so is θ2.

These together grant there are no unreachable sufficient sub-observations, and that at least one critical
sub-observation exists at a finite depth, k, of abstraction away from sub(o).

To define a valid search space for algorithmic use, we must first define explicitly the children (suc-
cessors) of a sub-observation:

Definition 11. A child of sub-observation θ is a strict sub-observation θ′ of θ such that no sub-
observation sits ’between’ θ′ and θ.

θ′ ∈ children(θ)⇐⇒ (θ′ ≺ θ) ∧ (@θ′′ ∈ O. θ′ ≺ θ′′ ≺ θ) .

This provides a practical characterisation of criticality: a sufficient sub-observation θ is critical if
and only if none of its children are sufficient. This then provides all the conditions necessary to define
a terminating search algorithm (such as that given in [11], along with child generation, which as been
adapted for this setting) presented in Figure 3.

We can now create the diagnoser ∆L that makes use of a set of critical observations, Θ, derived
from LgT (L). We construct Θ as follows. Taking L, construct the log tree LgT (L) as defined in
§ 3.1. Then compute the critical observations {θo} for each trace with a fault mode that is not nominal:
o ∈

⋃
f 6=N LL,f , and set Θ =

⋃
o {θo}.

By further extending Algorithm 3 to maintain all currently sufficient children in the queue, and to
save all valid critical observations for a given trace rather than just the first, we can guarantee a complete
set as L approaches the underlying model (L → L∞ ≈ S). This extension does not ultimately affect
the complexity of the algorithm, as it is equivalent to the worst-case exhaustive search under the greedy
approach. In [11] it was demonstrated that the equivalent of Algorithm 3 had complexity O(n2m2) in
the number of calls to the model based diagnoser ∆. We provably retain the same bound but in calls to

227

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

∆L(·) at worse for each trace, and can be dramatically improved with heuristics that allow us to recall
and then avoid the types of abstraction that caused pruning earlier in the search.

As is typical in diagnosis problems we often prefer minimal diagnoses (with respect to some notion
of minimality: cardinality, set inclusion, etc.). Whether this type of minimality property can be ex-
tended to Θ is an open question, as without computing the full set of critical observations for any given
observation, the completeness of Θ can not necessarily be guaranteed.

In particular, consider the following scenario: l1 and l2 are both associated with the same fault
mode f , but produce different critical observations, θ1 and θ2 such that (θ1 6� θ2) ∧ (θ2 6� θ1), with
o1, o2 ∈ ψ(θ1) and o2 ∈ ψ(θ2). Under a set-inclusion minimality, we would remove θ2 from Θ as it
would be seen as superfluous. Suppose then that logs l3 and l4 which both matched θ2 are queried on
∆L. As Θ = θ1 in this case unfortunately we provide an inaccurate diagnosis.

4 Online inference of the critical observations
We now discuss the problem of inferring an update of the set of critical observations. Given a log tree
LgT (L) and a new available log l = (o, f), the objective is to update the set of critical observations to
keep the consistency between the diagnoser ∆L and its current new knowledge. In other words, if L′

denotes L ∪ {l}, the objective of the critical observation update is to actually update ∆L to ∆L′ (see
Definition 2).

To intuitively explain the objective of the incremental method that is proposed here, consider that
the diagnoser ∆L is available (relying for instance on the method that is detailed in Section 3) and in
charge of analysing the new sequence of observations o (that is part of the new available log l = (o, f)).

The diagnoser ∆L might simply return ∅, in this case it means that the sequence o belongs to a
type of observable sequences that is unknown from the log L or ambiguous. It might also return a
diagnosis δ = f ′ due to the fact that ∆L knows some critical observations that are associated with
fault f ′. What happens now if the tag of the new log is not f ′? Based on the current knowledge,
the set of critical observations of ∆L must be revised. In this example, the critical observation of ∆L

leading to an inconsistency with respect to the new log l is either too abstracted (not only it captures
behaviours of fault mode f , but also it captures newly discovered behaviours of fault mode f ′) or simply
removed (diagnosability issues between fault mode f ′ and fault mode f , the system generates the same
observable behaviour for both modes).

To perform online inference of critical observations, we first update the log-tree from LgT (L) to the
new log tree LgT (L ∪ {(o, f)}) (see for instance the update of the log-tree from Figure 1 to Figure 5).
After updating the log tree we can proceed to updating Θ, the current set of critical observations. First
observe that the critical observations in Θ can never be made more abstract in the presence of new logs.

Theorem 4.1 (Most Abstract). Each θ ∈ Θ is maximally abstract and cannot be made more abstract.
Formally, ∀θ ∈ Θ that matches some subset of the logs of a class f , λ ⊆ LL,f , θ cannot be made more
abstract. That is, if ∃θ′ � θ such that ∀(o, f) ∈ λ, (θ′ � sub(o)) ∧ (∆(θ′) = f), then θ′ = θ.

Adding new logs can only cause sub-observations to become refined again. By construction, θ is as
abstract as possible. Should a new log, l = (o, t), become available that matches a critical observation
θ associated with fault mode f , there are two cases to consider:

1. That o is tagged with the fault class of θ, t = f

2. That o is tagged with a different class, t 6= f .

Lemma 4.2 (Sketch). If l = (o, t) is tagged with the same fault class of θ (t = f), then θ remains
critical. Assume there exists a sufficient θ′ ≺ θf matching l and all prior logs l′ ∈ λ. However, θ is by

228

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

construction critical (no sufficient children) prior to the update and matches l, inducing a contradiction.
Therefore no such θ′ exists, as if it did then θ = θ′ before the update, and θf maintains criticality.

Lemma 4.3 (Sketch). If l = (o, t) has a different class tag to θ, t 6= f , then it is the case that θ is no
longer sufficient by definition 9. Assume there exists some sufficient θ′ � θ. However, by monotonicity,
θ is therefore sufficient, inducing a contradiction. Therefore no such θ′ exists, and some less abstract
parent of θ is the nearest sufficient sub-observation.

Proof of Theorem 4.1. Lemmas 4.2 and 4.3 together show that Θ is maximally abstract at all times, and
can only be made more concrete when correcting for a conflict.

Given Theorem 4.1, we know that repairing Θ involves the finding of less abstract sub-observations.
However, backtracking in this search space is not trivial, as for any given sub-observation θ there is no
unique parent (the successor function children(θ) is not invertible).

There are two possible solutions to this problem. The naïve approach involves the recomputation
of all conflicting critical observations, restarting the computation of these observations from the top (at
sub(o) for all corresponding traces). This approach is quite expensive however, and ignores the works
already done in finding the prior result. The alternative is to remember the search path through O,
trading off the time-cost for a space-cost (linear in the size of Θ).

For each θ′ thrown into the contention by the new log l, we backtrack all stored search paths by
undoing abstractions until the sub-observation is sufficient again, and resume the abstraction process
from this new point, storing any new critical observations found and associated search paths for future
use.

We make use of an algorithm similar to that discussed in § 3.4 for the search resumption, and call
this combined procedure upd(Θ, {l}) = Θ′. By using this approach we can guarantee that iteratively
updating with new logs over time in this way allows us to converge to the same ΘL∞ , and therefore the
same diagnoser ∆L∞ , that would be produced had all logs been available.

Theorem 4.4 (Convergence of Θ). For any set of logs L, the critical observation set ΘL converges to
ΘL∞ independent of the order of the updates taking L to L∞. That is, given L and two updates L1, L2

with L1 6= L2 we have:

upd(upd(ΘL, L1), L2) = upd(upd(ΘL, L2), L1)

Proof (sketch). For all Θ and any possible update L′, collect all θ ∈ Θ that are no longer sufficient (i.e.
conflict with L′), and call this set Θc. By Theorem 4.1 and the monotonicity of O, we say without loss
of generality that either:

1. ∀θc ∈ Θc there exists some chain of ancestors θ′1, . . . , θ
′
k (possibly zero length) with respect to

each trace connected to θc, that are not sufficient, ending in some sufficient θa such that θc �
θ′1 � . . . � θ′k � θa; or

2. There is no sufficient ancestor.

For the first—in all conflict cases where a sufficient (not necessarily critical) θa can be found after any
update, that ancestor is a at worst a sufficient sub-observation, and by monotonicity, any θ ∈ ΘL∞ in
the final state must either be one of these ancestors, or descendant on a different branch, which must
have been located by the update process, by construction.

For the second—in conflict cases where θc cannot be repaired with respect to any matching trace o
and is removed, the conflicting logs are by definition still present in L∞. Whether these conflicting logs
are nominal, or tagged with a different mode, they necessarily still supersede in the limit as the size of
L approaches infinity, and the conflicting θc nor any ancestor exist in ΘL∞ .

229

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

1

start

2 3

4 5

6

7 8

a

{b, e}

b

a

f1

{a, d}

f2

c

{c, d}

{b, c, d}

f2

a

{b, c, d, e}

Figure 4: Underlying system of the illustrative example.

The remaining case for consideration is that where the new log fails to match on any θ ∈ Θ. In this
instance, as there is no updating required, we simply compute the critical observations for this new log
and update as per the above.

5 Illustrative example
We present an illustrative example demonstrating how the fault signatures are inferred from a set of logs.
For the sake of illustration, Figure 4 shows the underlying system that generates the described logs. In
particular, it must be noticed that this system can generate the set of logs used to construct the log tree in
Figure 1. Taking the logs used to build Figure 1, we consider the faulty logs in L to compute an initial
Θ as follows:

1. Consider (aba, f1). In this case, as aba is also a nominal trace, we cannot produce a critical
observation that produces f1, and as such pass over it.

2. Consider (ccae, f2). We search O w.r.t. o, and find two critical sub-observations, which are added
to Θ:

θ1 = {Σo} c {Σo} a {Σo} θ2 = {Σo} c {Σo} e {Σo}

3. Consider (abebda, f1). From this log we add many critical sub-observations to Θ:

θ3 = {Σo} a {Σo} d {Σo} θ4 = {Σo} b {Σo} e {Σo}
θ5 = {Σo} d {Σo} a {Σo} θ6 = {Σo} e {Σo} b {Σo}
θ7 = {Σo} e {Σo} a {Σo} θ8 = {Σo} e {Σo} d {Σo}

Note that at this stage we are generating all sequential pairs that appear uniquely in the trace in
question.

4. Consider (ababcc, f2). From this log we get two further critical observations:

θ9 = {Σo} a {Σo} c {Σo} θ10 = {Σo} b {Σo} c {Σo}

Also it is of interest to note that every soft event is the trivial Σo. Both this and the pairing phenomenon
are brought about because we as of yet lack of lot of information about the underlying system, and
indeed many of these are actually not sufficient in ‘reality’. As more logs are added we would expect
some of these to become sequential triples first, in addition to seeing non-trivial soft events.

230

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

The diagnoser ∆L then starts with Θ = {θ1, . . . , θ10} as the recogniser. Suppose now that ∆L is in
use and the system produces a trace like cccdabac: ∆L then recognises θ1, θ5, θ9, θ10 so the diagnosis
of cccdabac by ∆L is {f1, f2}.

Now we show the incremental update process. Suppose a new log, (dbbdad, f2), is added to L.
Should this log not have been tagged as f2, ∆L would return f1 as a diagnosis due to the match against
both θ3 and θ5. However, as we do have a fault mode, Θ can be revised and refined.

Firstly, we determine whether this trace is recognised, and if so, if it is correctly identified—here
we see matches on patterns meant to recognise f1. Therefore θ3 and θ5 are no longer sufficient and too
abstract by Theorem 4.1. Upon updating LgT (L), we now consider these in turn.

We reverse the relaxation of θ3 until we reach a sufficient sub-observation. One step backwards we
find one: {Σo} a {Σo} b {Σo} d {Σo}, where {Σo} b {Σo} had been collapsed in our original search. We
resume abstracting at this point, and find that none of the children of this are sufficient, and so it becomes
the new critical sub-observation θ′3. We similarly consider θ5, and find that two steps backwards are
required for sufficiency, arriving at {Σo} e {Σo} b {Σo} d {Σo} a {Σo}. Resuming abstraction we find
that this sub-observation is already superseded by θ6, θ7, θ8, and that all remaining children are not
sufficient. This causes θ5 to be dropped from Θ entirely.

Further, we now search this new log for any new critical observations, and find three new critical
observations:

θ11 = {Σo} b {Σo} a {Σo} d {Σo}
θ12 = {Σo} b {Σo} b {Σo} a {Σo}
θ13 = {Σo} d {Σo} a {Σo} d {Σo}

This new set of critical observations then leads to the new diagnoser ∆L′=L∪{(dbbdad,f2)}. Now,
considering again the same trace cccdabac as above: the diagnosis of ∆L′ becomes only f2.

Suppose now that (aebeba,N) is added to L′. This particular trace matches θ4, θ6, θ7, and θ12. It
would be diagnosed as {f1, f2} were this not an update, as it matched some θ for both fault modes.
Since we have conflicting tags for several different critical observations, each must be updated.

We start with θ4. We backtrack until we find a sufficient ancestor in {Σo} b {Σo} e {Σo} d {Σo},
and then abstracts to θ8 with no other sub-observations being sufficient, allowing us to drop θ4 entirely.
Considering θ6 a similar thing happens. It is reversed to {Σo} e {Σo} b {Σo} d {Σo} which is similarly
caught by θ8, and has no other sufficient children. Consider now θ7, similarly to θ4 and θ6, we end up at
θ8 via the nearest sufficient ancestor {Σo} e {Σo} d {Σo} a {Σo}, and consequently θ7 is also dropped.
Lastly, consider θ12. In this case we step back to {Σo} b {Σo} b {Σo} a {Σo} d {Σo}, and discover that
only one sufficient child exists, and is equal to θ11.

The net result of the addition of this single log was the removal of four incorrect, then redundant,
critical observations. The resulting state of the log tree is shown in Figure 5.

6 Related work

Fault diagnosis in discrete event systems is a problem that has been intensively investigated. This prob-
lem was introduced in [13, 14] and a recent survey can be found in [7]. In these contributions, the
knowledge of the system is complete (white-box models), and the diagnosis methods consist usually in
compiling diagnosis information into finite-state machines that are able to provide diagnosis updates
after the occurrence of a new observed event. The main issue we face with this particular approach is
the combinatorial explosion of the diagnoser. One approach to this problem is to compute abstractions
that make the resulting diagnoser less complex while maintaining similar accuracy to the non-abstracted

231

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

c
c

c d

a

b a

e

b e b a

f2
a e

f2 b c c

f1

e b d a

d

b b d b

f2 a d

Figure 5: Update Log tree of L, with (dbbdad, f2) and (aebeba,N) added.

version [15, 16]. The theory of critical observations provides another way to perform these abstrac-
tions [11]. Then, by construction, a diagnoser that is based on critical observations simply becomes a
pattern recogniser similar in nature to the one presented in [10].

Solving the fault diagnosis problem without any explicit model of the system requires the use of
learning techniques. Our proposal can be considered a type of supervised learning technique closer in
style to grammatical inference [17], which mainly tries to identify the underlying system by learning
automata [18]. We do not attempt to learn the model of the system [19], but rather a set of concise
representations of the fault signatures such as proposed in [8, 20] in a unsupervised learning context
(classification).

7 Conclusion

In this work, we present an original approach for fault diagnosis in discrete event systems. In contrast
to many of the approaches that deal with this problem, our proposal does not rely on the knowledge
of a model but only on an available set of tagged logs. By using critical observations, we propose
generating fault signatures based on the given logs that are as abstract as possible but are guaranteed to
not contradict the available information about the system.

Based on a given log, the diagnoser can diagnose any future trace to be faulty if it is certain it is
similar to one that is known to produce the same fault according to the current set of tagged logs. Us-
ing critical observations serves two goals: to generalise by abstraction the available knowledge about
the system (knowledge inference), and to represent fault signatures as a set of hard/soft events which
require only the implementation of a recogniser that performs diagnosis in a similar fashion to a chron-
icle recogniser (computational performance). As new logs may become available, fault signatures are
revised. This revision of the fault signatures always consists of a refinement of the set of critical obser-
vations, making the diagnoser progressively more precise when new logs are available.

The proposed approach is monolithic and purely data-driven, however, it might be interesting to
consider as an extension that we know some of the structural model of the system (a set of interacting,
possibly specified, components) making it possible to design a distributed set of log-based diagnosers.
Another avenue would be to start from untagged logs and to use the generation of critical observations
as a way to generate the fault class of the underlying system. Lastly, other techniques from grammatical
inference and automata learning could be used to improve the structure of the log-tree, in particular for
identifying loops that are present in the underlying system.

232

Inference of fault signatures of discrete-event systems from event logs Christopher, Pencolé, and Grastien

References
[1] Y. Pencolé and M.-O. Cordier. A formal framework for the decentralised diagnosis of large scale discrete

event systems and its application to telecommunication networks. Artificial Intelligence, 164(2):121–170, 5
2005.

[2] Y. Qamsane, A. Tajer, and A. Philippot. Distributed supervisory control synthesis for discrete manufacturing
systems. In 8th IFAC Conference on Manufacturing Modelling, Management and Control, Troyes, France,
June 2016.

[3] L. Console et al. WS-DIAMOND: Web services: Diagnosability, monitoring, and diagnosis. In At Your
Service: Service-Oriented Computing from an EU Perspective, pages 213–240. MIT PRESS, 2008.

[4] T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier. Supervision patterns in discrete event systems
diagnosis. In 8th International Workshop on Discrete Event Systems, pages 262–268, Ann Arbor, MI, United
States, 6 2006.

[5] H.-E. Gougam, Y. Pencolé, and A. Subias. Diagnosability analysis of patterns on bounded labeled prioritized
Petri nets. Discrete Event Dynamic Systems, 27(1):143–180, 2017.

[6] M. Zanella and G. Lamperti. Diagnosis of active systems. Kluwer Academic Publishers, 2003.
[7] J. Zaytoon and S. Lafortune. Overview of fault diagnosis methods for discrete event systems. Annual Reviews

in Control, 37:308–320, 2013.
[8] F. Fessant and F. Clérot. An efficient som-based pre-processing to improve the discovery of frequent patterns

in alarm logs. In DMIN, pages 276–282, 2006.
[9] M.-O. Cordier, L. Travé-Massuyès, and X. Pucel. Comparing diagnosability in continuous and discrete-event

systems. In Proceedings of the 17th International Workshop on Principles of Diagnosis (DX-06), pages 55–60,
2006.

[10] C. Dousson. Extending and unifying chronicle representation with event counters. In Proceedings of the 15th
Eureopean Conference on Artificial Intelligence, ECAI’2002, Lyon, France, July 2002, pages 257–261, 2002.

[11] C. Christopher and A. Grastien. Formulating event-based critical observations in diagnostic problems. In 54th
IEEE Conference on Decision and Control (CDC-15), pages 4462–4467, 2015.

[12] C. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer Academic Publishers, 1999.
[13] F. Lin. Diagnosability of discrete event systems and its applications. Journal of Discrete Event Dynamic

Systems: Theory and Applications, 4(2):197–212, 5 1994.
[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-

event systems. Transactions on Automatic Control, 40(9):1555–1575, 9 1995.
[15] B. Guerraz and C. Dousson. Chronicles construction starting from the fault model of the system to diagnose.

In International Workshop on Principles of Diagnosis (DX04), pages 51–56, Carcassonne, France, 2004.
[16] A. Schumann and Y. Pencolé. Efficient on-line failure identification for discrete-event systems. In 6th IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes, pages 1294–1299, Beijing,
China, 8 2006.

[17] C. de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition, 38(9):1332–1348,
2005.

[18] M. A.L. Thathachar and P. S. Sastry. Varieties of learning automata: An overview. Trans. Sys. Man Cyber.
Part B, 32(6):711–722, December 2002.

[19] A. Maier, O. Niggeman, and J. Eickmeyer. On the learning of timing behavior for anomaly detection in cyber-
physical production systems. In Proceedings of the 26th International Workshop on Principles of Diagnosis
(DX-15), pages 217–224, Paris,France, 2015.

[20] A. Subias, L. Travé-Massuyès, and E. Le Corronc. Learning chronicles signing multiple scenario instances.
In 25th international workshop of diagnosis (DX14), Graz, Autriche, 2014.

233

	Introduction
	Problem statement
	Notation
	Event logs
	Diagnosis problem and implementation

	Off-line inference of critical observations
	Log tree
	Theory of sub-observations
	Critical observations and log-based diagnosis
	Inferring the Critical Observations Set

	Online inference of the critical observations
	Illustrative example
	Related work
	Conclusion

