
EPiC Series in Computing

Volume 70, 2020, Pages 149–162

Proceedings of the 12th International Conference
on Bioinformatics and Computational Biology

Multi-objective Optimisation of Gene Regulatory

Networks: Insights from a Boolean Circadian Clock Model

Ozgur E. Akman1∗and Jonathan E. Fieldsend2

1 Department of Mathematics, University of Exeter, Exeter, United Kingdom
O.E.Akman@exeter.ac.uk

2 Department of Computer Science, University of Exeter, Exeter, United Kingdom
J.E.Fieldsend@exeter.ac.uk

Abstract

The gene regulatory networks that comprise circadian clocks modulate biological func-
tion across a range of scales, from gene expression to performance and adaptive behaviour.
These timekeepers function by generating endogenous rhythms that can be entrained to
the external 24-hour day-night cycle, enabling organisms to optimally time biochemical
processes relative to dawn and dusk. In recent years, computational models based on
differential equations, and more recently on Boolean logic, have become useful tools for
dissecting and quantifying the complex regulatory relationships underlying the clock’s os-
cillatory dynamics. Optimising the parameters of these models to experimental data is,
however, non-trivial. The search space is continuous and increases exponentially with sys-
tem size, prohibiting exhaustive search procedures, which are often emulated instead via
grid-searching or random explorations of parameter space. Furthermore, to simplify the
search procedure, objective functions representing fits to individual experimental datasets
are often aggregated, meaning the information contained within them is not fully utilised.

Here, we examine casting this problem as a multi-objective one, and illustrate how the
use of an evolutionary optimisation algorithm — the multi-objective evolution strategy
(MOES) — can significantly accelerate the parameter search procedure. As a test case, we
consider an exemplar circadian clock model based on Boolean delay equations — dynamic
models that are discrete in state but continuous in time. The discrete nature of the model
enables us to directly compare the performance of our optimiser to grid searches based
on enumeration of the parameter space at a fixed resolution. We find that the MOES
generates near-optimal parameterisations in computation times which are several orders
of magnitude faster than the grid search. As part of this investigation, we also show that
there is a distinct trade-off between the performance of the clock circuit in free-running
and entrained photic environments. Importantly, runtime results indicate that the use of
multi-objective evolutionary optimisation algorithms will make the investigation of larger
and more complex models computationally tractable.
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1 Introduction

Mathematical modelling of gene regulatory networks (GRNs) is a critical component of com-
putational biology. Arguably, parameter optimisation is the key bottleneck in constructing
such models, because the kinetic parameters quantifying the biochemical processes comprising
a GRN are typically unknown — or difficult to measure in vivo — and are therefore constrained
by fitting to experimental data [1–4]. Comprehensive parameter space explorations are neces-
sary for alternative models of a GRN to be quantitatively compared and for the assumptions
made in constructing a model to be rigorously assessed [5–10]. Unfortunately, comprehensive
searches rapidly become intractable with increasing model size due to the parameter explosion
problem. Currently, this issue restricts the complexity and predictive power of the GRN models
that can be constructed. Consequently, there is a pressing need for robust optimisation algo-
rithms capable of dealing with highly parametrised computational biology models, allied with
alternative modelling methods that reduce the complexity of the models themselves [11, 12].

In terms of alternative modelling methods, approaches based on Boolean logic provide a
significant reduction in complexity compared to more biochemically detailed methods (e.g. dif-
ferential equation modelling). In Boolean models, the activity of each gene is described by a
two-state variable taking the value ON (1) or OFF (0), indicating that its products are present
or absent, respectively. Biochemical interactions are represented by simple binary functions, or
logic gates, that calculate the state of a gene from the activation state of its upstream compo-
nents [13–17]. This approximation dramatically reduces both the number of system components
and the number of system parameters, whilst still enabling complex dynamical behaviour to be
reproduced [4]. In terms of optimisation algorithms, computational biology has not yet fully
exploited the powerful techniques afforded by the evolutionary computation field. Moreover,
although multi-objective methods have begun to be utilised [18, 19], it is still common to cast
the problem as a uni-objective one, in which the objective function is a weighted sum of least-
squares terms, each of which measures the goodness of fit of the model to a dataset measured
under a particular experimental protocol (e.g. temperature, light environment, genetic back-
ground etc.) [1–4,20,21]. However, combining multiple criteria into a single measure to optimise
requires a priori expression of preferences, and if a linear sum is used, and the criteria trade-off
is non-convex, then only extreme solutions will actually be returned (see e.g. [22]).

Here, we demonstrate that a better approach is to cast the problem as a multi-objective
one. As a test case, we optimise an exemplar Boolean GRN model to synthetic experimental
data, comparing our results with those obtained previously using grid-searching [4]. The multi-
objective optimiser is seen to provide solutions equivalent to or better than those achieved
through grid search in orders of magnitude fewer function evaluations. It also does not require
a priori preference articulation in terms of criteria, which may bias the final solution returned,
instead returning a set of optimal trade-off solutions to be selected from a posteriori.

2 Modelling circadian clocks

Circadian clocks are gene networks found in almost all organisms, controlling biological pro-
cesses ranging from cyanobacterial cell division to human sleep-wake cycles [23]. These networks
operate by generating endogenous ∼24 hour oscillations in gene expression that can synchronise
to the external light-dark cycle. This entrainment process enables organisms to optimally time
biochemical processes relative to dawn and dusk, thereby providing an adaptive advantage [24].
The core clocks of different organisms appear to have a similar structure, based on interlocked
sets of negative gene-protein feedback loops augmented by additional positive loops [25].
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2.1 An exemplar clock model

Computational models of these feedback structures have proved useful in elucidating the general
design principles of clocks, and have also led to the discovery of novel circadian regulators [1–
4,21,25–28]. The majority of clock models constructed thus far have been based on differential
equations and possess on the order of 10 to 100 parameters [4, 25]. A canonical model of this
type is the minimal ordinary differential equation (ODE) model of the clock in the fungus
Neurospora crassa, based on a single negative feedback loop in which the frequency (FRQ)
gene is repressed by its protein product. FRQ transcription is upregulated by light, thereby
providing a mechanism for light entrainment [29]. The model comprises 3 differential equations
describing the dynamics of FRQ mRNA and the cytoplasmic and nuclear forms of FRQ protein:

dM

dt
= (vs + L (t))

kNI
kNI + PN

n

− vm
M

km +M
,

dPc

dt
= ksM − vd

Pc

kd + Pc
− k1Pc + k2Pn,

dPn

dt
= k1Pc − k2Pn,

L (t) =

{

LM if tDAWN ≤ mod (t, 24) ≤ tDUSK ,
0 otherwise.

(1)

A circuit diagram of the model can be seen in Fig. 1(a). As is common for models of this type,
Hill and Michaelis-Menten kinetics are assumed for transcription and degradation respectively,
whilst translation and transport are modelled as first order reactions. Collectively, the reactions
are parameterised by 10 kinetic constants, the values of which are taken from the original
study [29]. In the M equation of system (1), the forcing term L (t) models the effect of light,
which perturbs the clock by upregulating FRQ transcription. Setting L to 0 simulates constant
darkness (DD), yielding free-running oscillations with a period of just under 24 hours [29].
Entrainment to light-dark (LD) cycles is modelled by switching L between 0 and a maximum
value LM at lights-on (tDAWN ), and then switching L back to 0 at lights-off (tDUSK).

2.2 The Boolean model formalism

In this study, we consider a particular class of Boolean models that are well-suited to simulations
of GRNs — Boolean delay equations (BDEs) [4, 14, 16, 17, 30]. BDEs are parameterised by a
collection of logic gates together with the set of signalling delays that specify the time it takes for
state changes to take effect [14]. In previous work, Akman et al. introduced a general scheme for
modelling biochemical oscillators using this formalism, constructing Boolean versions of several
clock models [4]. These included model (1), which can be expressed in general BDE form as:

xM (t) = G (xP (t− τ2) , g2)ORL (t− τ3) , xP (t) = G (xM (t− τ1) , g1) . (2)

The circuit diagram for this model is shown in Fig. 1(b). In (2), xM is FRQ mRNA, xP is
lumped FRQ protein (combining the cytoplasmic and nuclear forms) and τ = (τ1, τ2, τ3) are
the signalling delays. The light input L(t) is as in eqn. (1), with LM taking values 0 or 1.

The function G(x, g) in (2) implements the identity or NOT gate, modelling activation and
repression by x respectively, depending on the value of the bit g: G(x, 0) = x,G(x, 1) = NOT x.
The bitstring g = g1g2 thus specifies the collection of logic gates, referred to as the logic
configuration (LC). There are 4 possible LCs, consistent with the underlying directed graph of
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Figure 1: (a) Circuit diagram of the ODE model (1) for the N. crassa circadian clock. FRQ
mRNA (M) is translated into protein (Pc) in the cytoplasm and then transported into the
nucleus (Pn) where it represses FRQ transcription. Light (flash symbol) entrains the model
by upregulating transcription. (b) Circuit diagram of the general Boolean formulation (2) of
(a). xM denotes FRQ mRNA and xP denotes bulk FRQ protein. L indicates light, {τ1, τ2, τ3}
represent the signalling delays and {TM , TP} are the discretisation thresholds used to fit the
discrete model to continuous data. g1, g2 ∈ {0, 1} index logic gates that can be varied to
generate different regulatory structures, or logic configurations (LCs). The LC consistent with
the ODE model (the DE LC) is {g1 = 0, g2 = 1} — its circuit diagram is plotted in (c).

the ODE model (i.e. the graph with connections M → Pc → Pn → M), of which only one,
g = 01, is consistent with the pattern of activation/inhibition of the ODE model (activation of
xP by xM ; repression of xM by xP – cf. Fig. 1(c)). This configuration is hence referred to as
the DE LC. The other 3 configurations represent alternative regulatory structures consistent
with the model graph: e.g. g = 00 corresponds to a double positive feedback loop circuit.

3 Optimisation protocol

3.1 Synthetic data & thresholding

Following the approach used in [4], we optimise the BDE model (2) to synthetic mRNA and
protein data generated from the corresponding ODE formulation (1) using the variant of Gille-
spie’s stochastic simulation algorithm introduced by Gonze et al. [31]. 4 independent sets of
{M(t), Pc(t), Pn(t)} timeseries were generated over the interval 0 ≤ t ≤ 120 (5 circadian cycles),
starting from an initial condition on the system attractor; next, the cytoplasmic and nuclear
proteins were summed to obtain a bulk protein variable P = Pc + Pn; finally the mRNA and
protein traces {(M(t), P (t)) : 0 ≤ t ≤ 120} were sampled every τS = 0.5h, reflecting the mini-
mum possible experimental resolution [4]. Here, we present the results obtained for one set of
timeseries (shown in Figs. 6(a-b)) that is representative of the results obtained with the others.

In order to enable this data to be compared to the solutions of (2) for a given logic con-
figuration g and delay set τ , the sampled timeseries were normalised between 0 and 100, and
then discretised by applying thresholds 0 < TM < 100 (mRNA) and 0 < TP < 100 (pro-
tein), such that all subthreshold values are set to 0 (OFF) and all suprathreshold values to
1 (ON). This yields the sampled, discretised synthetic mRNA and bulk protein timeseries
{(DM (t;TM ), DP (t;TP )) : 0 ≤ t ≤ 120, t/τS ∈ Z}. The first cycle of discretised data is then
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used to generate predicted timeseries (x̂M (t), x̂P (t)) from (2) that are scored against the last 4
circadian cycles of data, as described below in sections 3.2 and 3.3.

3.2 Generating model predictions

The model prediction (x̂M (t), x̂P (t)) is calculated as

(x̂M (t), x̂P (t)) =

{

(DM (t;TM ) , DP (t;TP )) , if 0 ≤ t ≤ 24,
(G (PI(t), g2)ORL (t− τ3) , G (MI(t), g1)) , if 24 < t ≤ 120,

(3)

where PI(t) and MI(t) represent the protein and mRNA timeseries used to generate the predic-
tion in the projection interval 24 < t ≤ 120. We consider two choices for these timeseries that
yield different prediction methods. The first uses only the data timeseries for projection, and is
obtained by setting PI(t) = DP (t− τ2;TP ) and MI(t) = DM (t− τ1;TM ). As the predictions
are obtained from each model equation independently of the other one, this method is referred
to as serial updating. The second method numerically approximates true solutions of (2) by
solving the equations simultaneously, with the first cycle of data used as the system history [14].
It is obtained by setting PI(t) = x̂P (t− τ2) and MI(t) = x̂M (t− τ1). As the predictions are
now dependent on one another, this method is referred to as parallel updating.

We note that the thresholds (TM , TP ) act as meta-parameters in (3): although they do not
directly affect the form of model (2), which only depends on the delays τ and logic gates g,
they determine the data used to compute model predictions and to cost predictions against. We
further note that for a given combination of delays τ and thresholds T, an exact prediction gen-
erated using parallel updating (i.e. one for which x̂M (t) ≡ DM (t;TM ) and x̂P (t) ≡ DP (t;TP ))
is, by definition, an exact solution of (2), with the data as the initial history; furthermore, it will
automatically satisfy the serial update equations. However, the converse is not true: an exact
prediction (x̂M (t), x̂P (t)) obtained by serial updating will not necessarily satisfy the parallel
update equations. Accurate predictions obtained with serial updating thus generate timeseries
that are consistent with the model; some of these will also be true solutions of (2). Serial
updating can thus be considered a computationally cheap way of generating putative model
solutions. Following [4], we use the latter for all optimisations, and then implement parallel
updating to select viable models from the resulting ensemble of potential designs. As in [4],
both serial and parallel updating were implemented using timestepping, with the timestep ∆t
set to the sampling interval τS . Consequently, all τks are taken as integer multiples of ∆t.

3.3 Objective functions

In order to assess the goodness-of-fit of the model predictions (x̂M (t), x̂P (t)) generated using

serial updating, two objective functions f̂DD and f̂LD were used, scoring the model against
timeseries simulated in two light regimes: (i) constant darkness (termed DD), obtained by
setting LM = 0 in the L(t) equation (cf. eqns. (1)); and (ii) 12:12 light-dark (LD) cycles
(alternating 12h periods of light and dark), obtained by setting LM = 1, tDAWN = 6 and

tDUSK = 18 in the L(t) equation. The individual objectives f̂DD and f̂LD are calculated as

f̂i(τ ,g,T) =
∑

j=M,P f̂i,j(τ ,g,T), where

f̂i,j(τ ,g,T) =
1

N(τS)

120/τS
∑

k=24/τS

dH(x̂j(kτS ; τ ,g,T,Di(T)), Di,j(kτS ;Tj)), (4)
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and where Di(T) = {(Di,M (t;TM ), Di,P (t;TP )) : 0 ≤ t ≤ 120)} denotes the discretised data
generated in light condition i, x̂j(kτS ; τ ,g,T,Di(T)) is the corresponding prediction for vari-
able j generated from (3) (with all dependencies written explicitly), N(τS) = 96/τS + 1 is the
number of timeseries points used for costing and dH(·, ·) is Hamming distance between bit-

strings. The discrepancy f̂i,j between prediction and data for each variable is thus measured as

the Hamming distance normalised by bitstring length [4, 32]. It follows that 0 ≤ f̂i ≤ 2, with
lower costs indicating better fits of the model to data in each case.

In optimising model predictions to synthetic data, it is possible to obtain designs (τ ,T,g)
such that the thresholds are close to 0 or 100. In such cases, the discretised data contains
bitstrings composed almost entirely of 0s or 1s. This can yield solutions that, whilst having low
objective values, contain little temporal information [4, 30]. To mitigate against this problem,
we introduce a penalty term for each objective, based on calculating the score that would be
obtained by chance from timeseries containing the same proportion of 0s and 1s as the prediction
and discretised data [4,30]. Formally, given a threshold combination T, for each light condition
i and variable j, let pi,j and p̂i,j denote the proportion of ones in the resulting thresholded
data and model prediction, respectively. Further, let {ηDi,j,k, η

M
i,jk : 1 ≤ k ≤ N(τS)} be i.i.d.

Bernoulli random variables with means pi,j and p̂i,j , respectively. Then, if ηDi,j,k and ηMi,j,k are
independent for all k, the normalised Hamming distance between the random bitstrings is given
by 1

N

∑N
k=1

dH(ηDi,j,k, η
M
i,j,k), which follows a Binomial distribution with mean µi,j and standard

deviation σi,j =
√

µi,j(1− µi,j)/N , where µi,j = pi,j + p̂i,j − 2pi,j p̂i,j . Thus, as the sampling
interval τS → 0, N(τS) → ∞ and hence σi,j → 0; i.e., the distribution of normalised Hamming
distances converges to its mean value, µi,j . The optimisation results obtained previously for
the uni-objective optimisation problem returned threshold values Tj that maximised the binary
entropy of the data, i.e. thresholds yielding pi,j , p̂i,j ≈ 1/2 [4,30]. For such solutions, µi,j ≈ 1/2.
Accordingly, we define the final penalised cost function fi for i = {DD,LD} as

fi(τ ,g,T) =
∑

j=M,P

fi,j(τ ,g,T); fi,j(τ ,g,T) = f̂i,j(τ ,g,T) +
1

2
− µi,j(τ ,g,T). (5)

This means that for biologically feasible solutions, fi,j ≈ f̂i,j , and so no penalty is applied.
However, extreme thresholds yielding good scores (i.e. for which pi,j ≈ 0 or pi,j ≈ 1, but

f̂i,j ≈ µi,j) will be penalised, receiving a cost score of ≈ 1/2, rather than 0.

3.4 Multi-objective optimisation

Here, rather than summing fDD and fLD as was done in previous studies [4, 30], we instead
use a multi-objective approach, in which the objectives are optimised together, with no a priori
assumptions about the relative importance of each. In multi-objective optimisation, we seek
the Pareto optimal set of trade-off solutions — those where the improvement on any single fi,
by varying a solution, x, within some feasible domain, X , can only be achieved by degrading
the performance on one or more other criteria. Selection of a single solution (model) can then
be via a posteriori preference articulation [33]. Formally, a design x is said to dominate another
design x′ (x ≺ x′) if it is no worse on all criteria and strictly better on at least one. The set of all
possible Pareto optimal solutions (the Pareto set) is defined as P = {x ∈ X|∄x′ ≺ x,x′ ∈ X}.
The image of the Pareto set in objective space is known as the Pareto front, F .

This definition of dominance allows us to put a partial order on any two solutions (dom-
inated, dominating and mutually non-dominating). Given an exhaustive search over X , this
ordering allows the Pareto set to be found (the non-dominated subset). However, often such
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exhaustive search is infeasible, and so we must rely on search methods which deliver an approx-
imation to P . Probably the most popular family of such methods are those in nature-inspired
computation. These heuristic/stochastic approaches aim to roughly mimic the ways in which
various problems are solved in the natural world, via a computational analogue. Examples in-
clude genetic algorithms and evolution strategies (evolution), and particle swarm optimisation
(cognitive and social aspects of search in swarms/flocks), as well as many others [33–35].

3.5 The optimiser

In order to tackle the optimisation of our BDE model, we implemented a domain-specific
multi-objective evolution strategy (MOES), in which the parameter vector is defined as the
combination of delays and thresholds, x = (τ1, τ2, τ3, TM , TP ), and the objective vector is the
combined vector of DD and LD scores, y = (fDD, fLD). The constraints defining X are

0 ≤ τ1, τ2 ≤ 23.5, 0 ≤ τ1 + τ2 ≤ 23.5, 0 ≤ τ3 ≤ 12, 0 ≤ TM , TP ≤ 100. (6)

The delay constraints ensure that the sum of the signalling delays around the negative feedback
loop do not sum to a value greater than the period of free-running or entrained oscillations [4,30].
The grid search employed previously in [4] sought to minimise fDD + fLD, and exhaustively
searched over the finite, discrete design space, Xdiscrete, obtained by choosing delay-threshold
combinations with τk = {0.5p : p ∈ N ∪ {0}} and Tj = {2q : q ∈ N ∪ {0}}, subject to the con-
straints defined in (6). This required a total of 67,300,875 calculations of y for each LC g. The
MOES attempts to provide approximately the same results as the exhaustive grid search, but
with significantly fewer function evaluations. Briefly, the MOES iteratively evolves an archive,
A, comprising an estimate of the Pareto set, P . The algorithm starts by generating m random
solutions, from which non-dominated members are extracted to initialise A. At each subsequent
iteration, a member of A is randomly selected for mutation, and if its offspring is not dominated
by any elements of A, it is inserted into it, and any members dominated by it are removed.
The algorithm continues until n function evaluations have been executed. Detailed pseudocode
for the optimiser is given in section A1.1.

3.6 Optimisation experiments

For each fixed choice of gates g = g1g2, we optimise fDD and fLD over the combination of
delays τ = (τ1, τ2, τ3) and thresholds T = (TM , TP ), over the following two choices for X : (i)
the discrete space Xdiscrete defined above, in which the delays τk are integer multiples of the
sampling interval τS and the thresholds are varied in steps of 2%; and (ii) a mixed integer
space, Xmixed, in which the delays are varied as in (i), but thresholds vary continuously. As
Xdiscrete was fully explored in the previous uni-objective optimisation problem considered in [4],
experiment (i) enables us to directly compare the performance of our optimiser against grid
search on the multi-objective version of the problem, executed on the same domain. Experiment
(ii) assesses whether the optimiser is able to find superior solutions to those obtained with grid
search, when the domain is no longer discrete. In both experiments, a key aim is to assess
the ability of the optimisation protocol to recover the DE LC g = 01 — the configuration
corresponding to the ODE model used to generate the synthetic fitting data (see Fig. 1(c)).

3.7 Assessing optimiser performance

The set of solutions found using the MOES should be well converged to the Pareto front.
Furthermore, given that we are using a stochastic search process, we are concerned that the
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algorithm should perform consistently. A popular measure used to test solutions for these
properties is the hypervolume measure [36]. This calculates the proportion of volume in objective
space that is dominated by the Pareto front F , which is also dominated by the approximation
to F generated by the optimiser. Note that in order to calculate this, we must have access
to F . For Xdiscrete, the results from the exhaustive grid search give us this set, which we
denote Fdiscrete. A reference point also needs to be defined for the hypervolume calculation
(which, along with the Pareto front, defines the bounds of the volume being assessed). Here,
we know the worst possible objective values {fDD = 2, fLD = 2}, and so a natural reference
point is (2,2). Given these settings, if H(A) is high, this indicates that the members of A are
well converged to Pdiscrete and when H(A) = 1 then A = Pdiscrete (full convergence of the
approximation to the true front). For Xmixed, we do not have access to the true front, as the
full search space is computationally intractable. However, we can still compute hypervolume
using Fdiscrete and the worst-case reference point, with H(A) values greater than 1 now taken
to indicate that the mixed integer optimiser can find solutions better than those possible under
the exhaustive grid-search of Xdiscrete.

4 Results

The optimiser described above was run for a total of n = 100, 000 function evaluations on 100
separate runs (initialised from m = 100 uniformly drawn parameterisations — a different set
for each run). Visualising the cost landscape searched by the optimiser is non-trivial. We can,
however, illustrate the density mapping of solutions by uniformly sampling from X , and plotting
the corresponding points (fDD(x), fLD(x)) in each case. This is illustrated in Fig. 2 (top row),
where 1,000,000 uniform samples from X are taken. Across gate combinations, we clearly see
that a high density of solutions are mapped to the region around (fDD, fLD) = (1, 1) — models
that effectively behave at random. Also plotted are the members of Fdiscrete — the Pareto
front found by exhaustive grid-search of Xdiscrete. As can be seen, these are clearly drawn from
very small regions of Xdiscrete, indicating that the set of target points for the optimiser lies in
a region of the search space that is extremely difficult to locate using random search alone.

4.1 Searching over the discrete parameter space

For the first set of experiments, the random initialisation was drawn from the discrete delay-
threshold parameter space, Xdiscrete, and the discretised Gaussians used in the MOES variation
operations were configured such that only x combinations lying in Xdiscrete could be proposed
for evaluation. This meant that we had access to the actual Pareto set for this optimiser config-
uration (Pdiscrete), and could assess convergence rates (and consistency) to the corresponding
Pareto front (Fdiscrete). Fig. 3 (top row) illustrates the convergence properties of the MOES in
this case. For all logic configurations, the optimiser finds a reasonable approximation to Fdiscrete

within 1,000 function evaluations (on average to within 2% of Fdiscrete), and by 10,000 func-
tion evaluations, the majority of optimiser runs have found Fdiscrete. This is in contrast to a
uniform random search of Xdiscrete (also plotted) which after 100,000 function evaluations has
still not reached the same level that the MOES achieved in just 1,000 evaluations. The figure
also shows the consistency over time of optimiser performance, via the rapid tightening of the
interquartile ranges to the median hypervolume.

The progression of the optimiser over time can be more directly visualised by examining
the distributions plotted from a single run of the MOES shown in Fig. 2 (bottom row). For
each of the gates, the leading edge of the distribution (lower left edge) exhibits convergence to
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Figure 2: Cost distributions for each logic configuration g ∈ {0, 1}2. Top row: approximation
by uniformly sampling 1,000,000 points in X and plotting the corresponding values of fDD and
fLD as biobjective grid densities. The Pareto front Fdiscrete obtained by exhaustive grid search
is also shown (collection of darker points lying in lower left region of plot in each case). Bottom
row: 100,000 function evaluations during a single run of the discrete space optimiser.
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Figure 3: MOES convergence, as quantified by the hypervolume indicator, H(A). In each plot,
the solid black line denotes the median hypervolume (over 100 runs) of the estimate stored by
the MOES as the search progresses and the solid blue line shows the result obtained via uniform
sampling (note the abscissa is on a log scale). Dashed lines show the 25th and 75th percentile
results. Top row: convergence of the discrete space optimiser to Fdiscrete. An H(A) value of
1 indicates the Pareto front is attained. Bottom row: convergence of the mixed integer space
optimiser, with hypervolume computed as for the discrete search. Here Fmixed is unknown and
an H(A) value greater than 1 indicates that the mixed integer optimiser is able to find solutions
better than those in Fdiscrete. This is marked with a dot-dashed (red) line for convenience.

Fdiscrete, but a distinct trailing edge of less fit solutions can be seen leading away from this
area. However, comparison with the random search (top row) clearly demonstrates that the
optimiser rapidly converges towards the region of Xdiscrete containing the solutions of highest
quality (in particular, note the comparatively low density of points around the (1,1) random
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Figure 4: Parallel coordinate plots of the parameter space locations of the estimated Pareto sets
from the median performing run of each optimisation experiment. Top row: discrete parameter
search. Bottom row: mixed integer parameter search.

performance region). Fig. 4 (top row) shows parallel coordinate plots of the parameter space
locations of the archive of the median performing runs for each logic configuration.

4.2 Searching over the mixed integer parameter space

For the next experiments, the delay parameters τ were initialised and varied to discrete values
as before; however the thresholds T were initialised in the continuous space (enclosed by the
maximum and minimum permitted values) and the MOES variation operator for thresholds
was not discretised as solutions were evolved. This meant the search space became consider-
ably larger, but allowed us to investigate if solutions might exist in this space, Xmixed, which
outperformed those in Xdiscrete. In particular, when we are optimising across Xmixed, we do not
have an Fmixed to compare to. However, we can use Fdiscrete as a baseline to reach/improve
upon. Writing y = (fDD(x), fLD(x)) for x ∈ X , we note that since Xdiscrete ⊂ Xmixed, then
ymixed � ydiscrete|ymixed ∈ Fmixed,ydiscrete ∈ Fdiscrete. Results are provided in Fig. 3 (bot-
tom row). As can be seen, by 10,000 function evaluations this wider search has already found
solutions equivalent in quality to those obtained with exhaustive grid-searching over Xdiscrete,
and subsequently finds solutions that are even better, as quantified by hypervolume valuesH(A)
with H(A) > 1. Fig. 4 (bottom row) shows parallel coordinate plots for the archive of median
performing runs for each logic configuration. The parameters are located in similar ranges to
those found by the discrete search (cf. the plots in the top row of Fig. 4); however some can be
seen to lie in narrower bounded regions, which the continuous thresholds have rendered legal.

4.3 Comparing the discrete and mixed integer parameter searches

Fig. 5 (left plots) compares Fdiscrete with the estimates returned by the two implementations
of the MOES. The median performing result (w.r.t. hypervolume) of the corresponding 100
runs is plotted. For each logic configuration (LC), the grid-search utilised 67,300,875 function
evaluations; for each search mode (discrete and mixed integer) the MOES utilised 100,000. It
can be see that although the grid-search employed 673 times more function evaluations, the
discrete space MOES generates excellent approximations to it, with the entirety of Fdiscrete
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Figure 5: Left plots: comparison of the Pareto fronts computed for each logic combination (LC)
using exhaustive grid-search (◦), the MOES searching over the equivalent discrete representation
Xdiscrete (×) and the MOES searching over the mixed integer representation Xmixed (+). Right
plot: locations of the Pareto front Fdiscrete in the discrete search space for each LC.

found for LCs g = 01 (the data-generating, DE LC) and g = 10, and only one or two Pareto
set members missing for the other two LCs. The results also show that better solutions can
be found in Xmixed when compared to Xdiscrete, as the continuous space MOES has located
delay-threshold combinations which dominate (in the same number of function evaluations)
all of Pdiscrete for LCs g = 00, 10 and 11. In the case of g = 01, a small portion of the
approximation to Fmixed lies behind an element of Fdiscrete. This indicates that there are still
better solutions to be found by this particular optimiser run, as Xdiscrete ⊂ Xmixed. However,
discovering Pmixed via exhaustive search is infeasible, so we cannot say how well converged the
MOES approximations to it are, although Fig. 3 (bottom row) shows that by 100,000 function
evaluations, the algorithm is performing consistently.

The individual Pareto fronts Fdiscrete obtained for each LC can also be seen in Fig. 5 (right
plot), where they are all plotted together. Interestingly, there is a total order on these fronts,
with the front for the DE LC g = 01 dominating all the others. Finally, Figs. 6(c-d) shows all
the solutions obtained from the Pareto set corresponding to this front, computed with parallel
updating in each case (i.e. true solutions of eqns. (2)). It can be seen that whilst the periods of
the oscillations are quite consistent, the phases at which the model components switch between
OFF (0) and ON (1) vary across the front. The MOES has thus returned an ensemble of viable
solutions, from which one or more final designs could be selected for further investigation (e.g.
assessing the predictive performance of the model on an out-of-sample dataset).

5 Discussion & Conclusions

Recent years have seen increasing interest in methods for both reducing the complexity of GRN
models and efficiently searching the resulting cost landscapes [12]. However, the majority of
work in this area combines grid search (or random search) with local optimisation (e.g. simu-
lated annealing or further grid searches at successively finer resolutions) in order to determine
the best-fit model [1–4]. A problem with this approach is the computational cost of the prelim-
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Figure 6: Top row: synthetic mRNA timeseries M(t) (black lines) and protein timeseries P (t)
(blue lines) generated from the ODE eqns. (1) in DD (a) and 12:12 LD cycles (b). Simulations
of the BDE eqns. (2) in DD (c) and 12:12 LD cycles (d) for all parameter combinations within
the Pareto set Pdiscrete obtained by optimising the model to the synthetic data with the discrete
MOES for g = 01. Black/blue lines represent Boolean mRNA/protein timeseries xM (t)/xP (t),
respectively — these have been offset for clarity, with a more graded offset applied to solutions
obtained for different parameter sets. White/black bars represent light/dark, respectively

inary search, which precludes the tackling of anything other than relatively simple problems.

In this study, we have demonstrated that for an exemplar GRN model based on Boolean
logic, a multi-objective evolutionary optimiser is able to replicate the performance of grid-
searching with 3 orders of magnitude fewer function evaluations. Furthermore, when the con-
straints on the parameter space were relaxed so that the search became mixed integer rather
than discrete, the optimiser was able to find parameter combinations with superior performance
to grid-searching, whilst maintaining the same reduction in computational burden. In addition,
by utilising the hypervolume indicator, we demonstrated that our optimisation algorithm is
robust to both the initial population distribution and the stochasticity of the optimiser.

More generally, these results provide a firm basis for future work on multi-objective op-
timisation of GRN models, particularly those where different potential architectures can be
parametrised. Here, we ran separate optimisers for each logic configuration, obtaining Pareto
fronts with a total ordering. However, this may not be the case for other models, where the
Pareto fronts for different configurations may overlap, and hence — depending on the desired
trade-off — a different architecture may be preferred. As such, optimising across configurations
is a useful extension. This can be implemented for Boolean models by simply augmenting the
parameter vector with the bits that specify the logic gates, and this simple approach has been
shown to work well for the uni-objective problem [30]. It would also be instructive to further
explore the use of serial updating as a computationally cheap surrogate for parallel updating.
For example, rather than only applying parallel updating at the end of the optimisation proce-
dure, the surrogate error could instead be actively learned by intermittently querying the cost
function obtained with parallel rather than serial updating (e.g. every other generation).
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A Appendix

A1.1 Pseudocode for the multi-objective evolution strategy

The main loop is described in Algorithm 1. The variation mechanism is outlined in Algorithms
2–4. At a high level, as shown in Algorithm 2, after copying the sample (lines 2-3), the copy has
a 50% probability of both the delay and threshold elements being perturbed, a 25% probability
of only varying the delay elements and a 25% probability of only varying the threshold elements
(lines 4-12). Variation/perturbation itself is accomplished via draws G(x, σ2) from Gaussian
distributions with centre x and variance σ2, where σ is the square root of the valid range of
the variable. Discretised Gaussians are used for threshold perturbations when searching across
Xdiscrete, and for delay perturbations when searching across both Xdiscrete and Xmixed. As
outlined in Algorithm 3, when the thresholds T are varied, there is an equal probability of both
thresholds being varied, only the first threshold being varied and only the second threshold
being varied. Line 12 ensures that movements outside of X are truncated to the legal limit.

Algorithm 1 The multi-objective optimiser. m is
the number of initial random solutions, n is the
total number of evaluations and D is the data.

1: procedure Optimise(m,n,D,xmax,xmin)
2: X := initialise(m,xmax,xmin)
3: Y := evaluate(X,D)
4: {F,A} := nondom(Y,X)
5: k := m

6: while k < n do

7: {T, τ} := sample(A)
8: {T′, τ ′} := vary(T, τ ,xmax,xmin)
9: {y′} := evaluate({T′, τ ′},D)

10: {F,A} := nondom(F ∪ {y′}, A ∪ {T′, τ ′})
11: k := k + 1
12: end while

13: return {F,A}
14: end procedure

Algorithm 2 The variation mechanism.

1: procedure vary(T, τ ,xmax,xmin)
2: T′ = T

3: τ
′ = τ

4: r := U(0, 1)
5: if r < 0.5 then

6: τ
′ := τ perturb(τ ′,xmax,xmin)

7: T′ := threshold perturb(T′,xmax,xmin)
8: else if r < 0.75 then

9: τ
′ := τ perturb(τ ′,xmax,xmin)

10: else

11: T′ := threshold perturb(T′,xmax,xmin)
12: end if

13: return {T, τ}
14: end procedure

Algorithm 3 Threshold variation.

1: procedure threshold perturb(T′,xmax,xmin)
2: {Tmax,Tmin} := T bounds(xmax,xmin)
3: r := U(0, 1)
4: if r < 1

3
then

5: T ′

1
:= G(T ′

1
, Tmax

1
− Tmin

1
)

6: T ′

2
:= G(T ′

2
, Tmax

2
− Tmin

2
)

7: else if r < 2

3
then

8: T ′

1
:= G(T ′

1
, Tmax

1
− Tmin

1
)

9: else

10: T ′

2
:= G(T ′

2
, Tmax

2
− Tmin

2
)

11: end if

12: T′ := truncate(T′,Tmax,Tmin)
13: return T′

14: end procedure

Algorithm 4 Delay variation.

1: procedure τ perturb(τ ′,xmax,xmin)
2: {τmax, τmin} := τ bounds(xmax,xmin)
3: if U(0, 1) < 0.5 then

4: i := 1
5: j := 2
6: else

7: i := 2
8: j := 1
9: end if

10: if U(0, 1) < 0.5 then

11: τ
′

i := G(τ ′i , τ
max
i − τ

min
i )

12: τ
′

i := truncate(τ ′i , τ
max
i , τmin

i )
13: end if

14: if U(0, 1) < 0.5 then

15: τ
′

j := G(τ ′j , τ
max
j − τ

min
j )

16: end if

17: τ
′

j := truncate(τ ′j , τ
max
j − τi + 1, τmin

j )
18: if U(0, 1) < 0.5 then

19: τ
′

3
:= G(τ ′

3
, τmax

3
− τ

min
3

)
20: τ

′

3
:= truncate(τ ′

3
, τmax

3
, τmin

3
)

21: end if

22: return τ
′

23: end procedure
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