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Abstract

Sorting networks are sorting algorithms that execute a sequence of operations indepen-
dently of the input. Since they can be implemented directly as circuits, sorting networks
are easy to implement in hardware – but they are also used often in software to improve
performance of base cases of standard recursive sorting algorithms. For this purpose, they
are translated into machine-code instructions in a systematic way.

Recently, a deep-learning system discovered better implementations than previously
known of some sorting networks with up to 8 inputs. In this article, we show that all
these examples are instances of a general pattern whereby some instructions are removed.
We show that this removal can be done when a particular set of constraints on integers
is satisfiable, and identify conditions where we can reduce this problem to propositional
satisfiability. We systematically apply this general construction to improve the best-known
implementations of sorting networks of size up to 128, which are the ones most commonly
found in software implementations.

1 Introduction

Sorting networks are data-oblivious algorithms to sort a fixed number of inputs using only a
single type of gate (the comparator), which compares two elements and sorts them. Differently
from the common software algorithms, where the number of instructions executed depends on
the actual input being sorted, sorting networks prescribe in advance which elements should
be compared – meaning that, for some inputs, they will perform unnecessary comparisons.
This rigid structure makes sorting networks amenable to highly efficient hardware and software
implementations, where the cost of the extra operations is dwarfed by the speed at which they
can be performed.

Finding efficient sorting networks has been a challenging research topic since the 1960s.
Lower bounds on the minimal required number of comparators S(n) for a sorting network with
n inputs are mostly established by analysing the space of all possible combinations of a fixed
number k of comparators and showing that none of them form a sorting network. Progress in
this direction has been slow, and driven mostly by improvements in hardware or groundbreaking
insights on how to explore symmetries of the problem to reduce the size of the search space.
The only general theoretical result dates to the 1970s [28].

General constructions to build sorting networks are an extreme illustration of the difference
between theoretical results and practice. The asymptotically best known construction requires
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O(n log(n)) comparators [1], but it requires an unfeasible amount of comparators for any rea-
sonable number of inputs. By contrast, the systematic construction proposed by Batcher [2]
requires O(n2) comparators, but yields usable networks for all values of n of practical interest.

While sorting networks are typically referred to using hardware concepts such as “circuits”
and “gates”, they are also increasingly used in software to deal with base cases of general sorting
algorithms efficiently – one very prominent example is the implementation of Quicksort in the
GNU C library, which resort to hard-coded sorting networks when the number of elements to be
sorted falls below a fixed threshold. These implementations typically implement comparators
as sequences of instructions; they can be significantly optimized by taking into account the low-
level parallelism currently available in virtually all processors and concrete information about
e.g. cache effects [11], as well as wide SIMD vector instructions available in state-of-the-art
processors [29].

Very recently, computer experiments using deep learning showed potential for further op-
timization of these implementations [23] by identifying redundant instructions in the result of
applying the de-facto standard translation of a comparator as a sequence of 4 branching-free
instructions. In this article, we analyze the results of these experiments and show that the
optimizations reported can all be formulated as instances of a general principle. This yields a
systematic way to optimize any sorting network directly, by solving a constraint satisfaction
problem for each comparator. We show that we can use an off-the-shelf SMT solver to de-
cide these constraints, and further optimize the process by using a SAT solver to rule out a
significant percentage of candidates for elimination.

Contribution. This article updates the state-of-the-art in efficient implementations of sorting
networks, introducing a way forward to optimize the implementation of sorting networks by
identifying redundant instructions at the sub-comparator level. We begin by systematizing the
discovery from [23] and show how this systematization can be scaled from 8 up to 128 inputs
and beyond, covering all cases relevant in practice. We show that a variant of the the well-
established 0-1 principle (a comparator network that sorts all binary sequences also sorts any
sequence of numbers) also holds for our systematization. Finally, we provide empirical evidence
for the effectiveness and efficiency of our systematization.

Structure of the paper. We start by reviewing the basic concepts and history of sorting
networks in Section 2, as well as fixing the notation used throughout this presentation. Section 3
focuses on the optimization described in [23], extending its applicability from networks of up to
8 inputs to networks of up to 32 inputs. In Section 4, we show how to scale the minimization
even further to networks of 128 inputs and beyond, covering the practically important input
sizes of 16–128 typically used in the implementation of base cases of general sorting algorithms
such as Quicksort. We empirically evaluate our systematized minimization in Section 5 by
means of extensive experiments. Finally, in Section 6, we consider a potential relaxation of the
conditions of the systematized minimization, demonstrating an efficient and effective strategy
for computing minimization in the relaxed setting, which however does not provide further
benefits for sorting networks of up to 64 inputs. We conclude in Section 7 and outline directions
for future research.

2 Background and related work

Sorting networks have been studied from the 1960s, with the most comprehensive reference on
the topic being the dedicated chapter in [21]. Sorting networks are also interesting for practical
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applications [2, 12], in particular in the area of signal processing [5, 6, 20]. There are several
directions of research in the topic, and we briefly summarize the most important contributions.

Figure 1 introduces the notation we use in this article by illustrating a sorting network
that sorts a sequence of three inputs X0

0 , X
1
0 , and X2

0 into a sorted sequence of three outputs
X0

3 ≤ X1
3 ≤ X2

2 through the application of three comparators. The ℓ-th comparator (i, j)
takes as input the current values on channel i (i.e., the value Xi

m for the maximum m < ℓ)
and channel j (i.e., the value Xj

n for the maximum n < ℓ). By comparing and swapping, if
necessary, it produces outputs Xi

ℓ = min(Xi
m, Xj

n) and Xj
ℓ = max(Xi

m, Xj
n) on channels i and

j, respectively. We say that i is the top channel of comparator j while j is its bottom channel.

On the theoretical side, the two most studied problems deal with optimality: determining
the minimum size (number of comparators) S(n) and the minimum depth (number of layers
of independent comparators that can run in parallel) T (n) of a sorting network on n inputs.
Surprisingly, finding exact values of S(n) and T (n) is extremely difficult, essentially due to the
relative lack of general theoretical results: all known upper bounds are obtained by concrete
sorting networks, while lower bounds are typically established by brute-force analysis of the
search space of all candidate sorting networks of a given size or depth, combined with some
clever pruning techniques. Progress on lower bounds is closely tied to new insights that help
reducing this immense search space or advances in computational power. Contributing to
the complexity of the problem is a result from 1990 [8] that states that even the problem of
determining whether a particular configuration of comparators is a sorting network on n inputs
requires testing nearly all binary inputs of length n.

Finding good sorting networks is not trivial, as there are few intuitions about how they
work. Many of the best known sorting networks were found by trial-and-error, or by optimizing
previously discovered ones [16, 18]. Systematic, recursive constructions can be combined with
these to generate usable sorting networks for any n. Batcher’s odd-even construction [2] and
Parberry’s pairwise sorting [26] work especially well when n is a power of 2, while Coles’ con-
struction [13] is optimized for the case when n is a perfect square. An interesting example arises
from restricting comparators to work only on adjacent values; networks of these miniswaps [15]
can in particular implement the well-known bubble sort and insertion sort algorithms.

All the above constructions yield sorting networks of size S(n) = O(n2), well above the
theoretical O(n log n) achieved by many sorting algorithms. The AKS construction [1] yields
networks of size O(n log n), showing that sorting networks can also achieve optimal speed;
however, the constants hidden in the big-O notation are so huge that these networks are unusable
in practice. More recently, several authors have also experimented with genetic algorithms to
improve on known sorting networks since the 1990s [7, 22, 27], and SAT-solvers have been used
to generate sorting networks from scratch [24].

The exact values of S(n) for n ≤ 8 were known already in the 1960s [16], where the best
known sorting networks for these numbers of inputs were shown to be optimal. Lower bounds
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for S(3) and S(5) were determined by brute force, with some symmetry arguments to reduce
the number of subcases in the latter. The value of S(7) was established by a computer program
using similar arguments, and is one of the oldest computer proofs in record. The value of S(4)
follows from a mathematical argument that does not generalize to any other value of n, while
the values of S(6) and S(8) can be obtained by applying a theoretical result first published
in [28].

It took 50 years for additional progress to be made on the size optimality problem, when
the value of S(9) was established by two independent computer programs from the same au-
thors [10]. The method combines a generation phase with a pruning phase based on the notion
of filter [13] – a sequence of comparators that can be extended to an optimal-size sorting net-
work – and an adaptation of ideas previously used to tackle the optimal-depth problem [4].
The authors later verified their results using a certified checker obtained from a Coq formal-
ization of the problem [14]. A further extension of the same ideas established that the known
35-comparator sorting network for 11 inputs was also size optimal [19]. Both works applied the
theoretical result from [28] to establish also the exact values for S(10) and S(12).

The related problem of computing T (n) has proven to be slightly more tractable. While the
exact values of T (n) were again known for n ≤ 8 already in the 1960s [21], the next breakthrough
happened in 1989 when Parberry observed that the first layer of an optimal sorting network can
be assumed to be fixed [25]. This observation made the problem tractable with the computing
power available at the time, and determined the values of T (9) and T (10). Bundala and
Zavodny [3, 4] later extended these ideas to two-layer filters, and were able to generate a small
enough set that, combined with an encoding of the problem in SAT, established lower bounds
for T (n) with 11 ≤ n ≤ 16 coinciding with the previously best-known sorting networks. A
similar analysis of the last layers yielded the value of T (17), while at the same time improving
the best known networks for 19 and 20 inputs [9].

While the number of comparators and the number of layers suffice to describe the com-
plexity of sorting networks implemented in hardware, software implementations are sensitive
to the actual instructions used to encode individual comparators. Modern architectures use
instruction-level parallelism, which can be exploited by suitably sorting the comparators to
improve the actual performance [17]. Additionally, when n is not too small, cache effects also
start being relevant, allowing for even more optimizations [11]. The starting point for our work
is a recent development using deep learning, which showed that the standard implementation
can be optimized by removing some instructions that can be proven to be redundant [23].

3 Systematizing the optimization

In this section, we first describe the standard implementation of a sorting network, and analyze
and systematize the minimization procedure from [23]. Then, we show how to implement the
systematic construction as a forward pass and how to reallocate registers subsequently.

3.1 Systematization

Optimal sorting networks can be modularly translated to executable machine code by trans-
lating each individual comparator and concatenating the result. Assuming that the inputs of
comparator (i, j) on channels i and j are stored in registers ri and rj , respectively, we can trans-
late it into three instructions, corresponding to the standard implementation of a conditional
swap:

1. copy the value in register ri to a new register rk;
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2. if the value in register ri is greater than or equal to that in register rj , then copy the
value from rj into rk;

3. if the value in register ri is greater than or equal to that in register rj , then copy the
value from ri into rj .

This implementation has the disadvantage that it uses two conditionals. With the availability
of conditional move instructions for most CPU architectures, a conditional swap is nowadays
more commonly implemented instead by four (branching free) machine code instructions:

1. MOV ri rk

2. CMP ri rj

3. CMOVGE rj rk

4. CMOVGE ri rj

Here, MOV rx ry signifies that the value of rx is assigned to ry, CMP rx ry that the comparison
flags are set accordingly to the values of rx and ry, and CMOVGE rx ry that the value of rx is
assigned to ry if the comparison flags of the preceding CMP instruction indicate a greater than
or equal.

AlphaDev [23] is a machine-learning system that was trained using deep reinforcement
learning to discover implementations of sorting networks. An analysis of the solutions that it
found shows that they all coincide with the straightforward translation described above, with
one potential optimization: in some cases, the initial assignment for a comparator (i, j) is
skipped. This assignment is indeed redundant if the auxiliary register rk already contains the
correct final value (i.e., the value of ri) in case the swap is not executed; otherwise its value
is irrelevant, as it is overwritten with the value of rj . Furthermore, the analysis also reveals
that, in all these cases, the auxiliary register k is the register that was used in the previous
comparison on the top channel i.

As an example, consider once more the sorting network on three inputs from Figure 1.
Here, for the third comparator, we need to check whether the value on channel 0 can be reused,
potentially saving one instruction for implementing the comparator. Figure 2 illustrates this
situation, where we have to show that X0

0 = X0
2 in the case where the comparator does not

perform the swap, i.e., assuming that X0
2 < X1

1 . Furthermore, the preceding comparators yield
some constraints on the possible values of these variables, including but not limited to the
fact that the top channel output of the second comparator is the minimum of its two inputs
(X0

2 = min(X0
0 , X

2
1 )) and that the outputs of the first comparator are sorted (X1

1 ≤ X2
1 ). In

conclusion, for this example, we have to show that X0
2 < X1

1 ∧X1
1 ≤ X2

1 ∧X0
2 = min(X0

0 , X
2
1 ) →

X0
0 = X0

2 . To prove this manually, we can simply observe that the first two inequalities imply
that X0

2 < X2
1 , which immediately implies the conclusion.

This observation suggests a systematic optimization method for implementations of sorting
networks: for each comparator, check whether the register that was last used on its top chan-
nel already contains the right value, and in the affirmative case reuse it. This check can be
performed by writing it as a constraint satisfaction problem (CSP) in integers, which can be
handled by any state-of-the-art SMT solver supporting inequalities over integers.

At first sight, it is tempting to detect the pattern in Figure 2 and other examples from
AlphaDev [23] by a fixed pattern matching. This, however, would prevent us from realizing the
full potential of this optimization for larger sorting networks. Indeed, the network in Figure 3
shows an example with only five inputs where the removal of an assignment instruction relies
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Figure 2: A sorting network for three inputs, where the comparators and channel values crucial
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on five comparators and includes both min and max equalities. This motivates us to develop
a more general approach, which we describe in the next section.
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Figure 3: A sorting network for five inputs with comparators and channel values crucial
to optimizing the ninth comparator highlighted. The constraint for assignment removal
is X1
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7 ).

3.2 Implementation

We implemented the systematic construction described in the previous section as a forward pass
through the sorting network, represented as a list of comparators. This allows us to collect all
the constraints from the prefix of the network that might be relevant in determining whether one
of the inputs of a previous comparator can be reused. In particular, the ℓ-th comparator (i, j),
contributes with the constraints Xi

ℓ = min(Xi
m, Xj

n) and Xj
ℓ = max(Xi

m, Xj
n) for maximum

m,n < ℓ, as well as Xi
ℓ ≤ Xj

ℓ .
As we cannot predict whether the register storing the output of a comparator will be reused

by a later comparator, we initially use new registers for the outputs of the comparators. This
implies that for a network N of k = |N | comparators on n inputs, the number of registers
used is n + k rather than n + 1. Thus, for the shortest known network for 14 inputs with 51
comparators, even a CPU with 64 general purpose registers would have to store some of the
values in main memory.

To minimize the number of registers needed, we perform a live register analysis following
standard ideas of live variable analysis. We start with the output registers holding the results
of the comparator network as the rearmost live set. In a backward pass, for each comparator,
we compute the preceding live set by first removing the output register from the current live
set and then adding the inputs to it.
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Based on these live sets, in a forward pass, we substitute fresh output registers (i.e., ones
that have not been reused using our systematic construction) with variables that have been
freed. Here, the set of freed variables is collected by considering the set difference between the
current live set and the succeeding live set. During the forward pass, we keep a substitution
that maps the originally assigned registers to the reallocated registers, replacing all occurrences
of substituted registers in the program on the fly to avoid another forward pass.

(Liveness analysis and register reallocation are standard components of optimizing C com-
pilers. In principle, we could opt to emit C code [11] using C variables instead of registers and
rely on the compiler. While we implemented and tested this approach, we opted for our own
liveness analysis and reallocation implementation for the presentation of our results in order
to reliably benchmark and quantify the impact of our systematized optimization on register
usage.)

The resulting reallocated program uses a number of registers of at least n + 1 and surely
less than n + k. In practice, this means that a CPU with 32 general purpose registers is fully
sufficient for the shortest known network for 21 inputs, while a CPU with 64 general purpose
registers is sufficient for the shortest known network for 55 inputs.

4 Scaling the optimization

The bottleneck in our systematic construction for optimizing implementations of sorting net-
works lies in the use of an SMT solver to decide whether a given inequality holds given a set of
constraints. In this section, we first show how to reduce the size of the generated CSPs by a sim-
ple technique for networking slicing. Then, we show how to reduce the CSPs to SAT problems,
further improving the efficiency and, thereby, scalability of our systematized optimization.

4.1 Slicing the network

The examples in Figures 2 and 3 show that not all comparators contribute with constraints
crucial to proving that an assignment may safely be removed. While we currently know of
no way to predict accurately which constraints are needed, we can reduce their number by
identifying comparators for which we can prove that they only generate irrelevant constraints,
in the sense that they are sure not to contribute with constraints crucial for the proof.

The main intuition behind this identification is that we can view a comparator network as
a program, and apply principles of program slicing [30]. Concretely, this amounts to starting
from the ℓ-th comparator for which we want to check the applicability of our optimization and
performing a backward pass through the network. Initially, the set of channel values to consider
are the inputs to the ℓ-th comparator, and the set of potentially relevant comparators contains
only the ℓ-th comparator. During a backward pass, we collect the inputs of all comparators that
produce one of the channel values in our set, adding the comparator to the set of potentially
relevant comparators. At the end of the backward pass, this set is the network slice relative to
the ℓ-th comparator.

Figure 4 presents the results of applying network slicing relative to the seventh comparator
(marked in red) to the sorting network from Figure 3. While the two comparators following the
seventh comparator are naturally excluded from the slice, the fifth comparator is also excluded
because its outputs are not used as inputs to either the sixth or seventh comparator. For larger
comparator networks of size S and for ℓ ≪ S, network slicing significantly reduces the number
of constraints generated and, thus, the size of the CSPs to solve.
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Figure 4: The sorting network for five inputs from Figure 3 with comparators and channel
values crucial to optimizing the seventh comparator highlighted. Comparators irrelevant to
this optimization are drawn with pink dotted lines.

4.2 Reducing to SAT

Network slicing reduces the size and solving time of CSPs on average. However, it only has
a moderate effect on the runtime for the largest instances, i.e., when attempting to apply our
optimization to the ℓ-th comparator for ℓ close to the size of the sorting network. In these cases,
network slicing only removes a comparatively small number of comparators, effectively limiting
the applicability of our systematized optimization to e.g. 64 inputs. To scale the applicability
of our systematized optimization further, we show how we can make a first analysis replacing
CSPs and SMT solvers with more efficient SAT problems and SAT solvers.

Concretely, consider the optimization problem associated with a comparator (i, j). To show
that we can remove the assignment instruction rk = ri safely, we must show that the state
of rk after the next sequence of comparisons remains the same. The relevant case is when no
conditional assignments are made, and we need to show that rk = ri holds (otherwise the value
of rk is overwritten, and is therefore immaterial).

The part of the program executed up to this point gives us a set of constraints of the form
rm ≤ rn and rℓ = min(rm, rn), where ℓ,m, n are natural numbers. Furthermore, we also assume
that rk was used in the previous comparison involving the lower input to the comparator, so
this set includes a constraint of the form ri = min(rk, r

′) for some register r′.
Finally, since we only need to consider the case when the condition of the assignments is

false, we can assume an additional constraint ri < rj . Denoting the set of all these constraints
by Γ, our problem is showing that Γ |= rk = ri when all registers are assigned integer values.

While this CSP is amenable to SMT solving, as the size of the network grows, the problem
quickly becomes intractable. The following lemma shows that we can reduce the CSP to a SAT
problem, which has lower complexity and will be tractable for all practical applications.

Lemma 1. Suppose that Γ ̸|= rk = ri. Then there is a counterexample where rℓ ∈ {0, 1} for
all ℓ.

Proof. Assume that Γ ̸|= rk = ri. Then there is an assignment mapping each variable rℓ to an
integer aℓ such that all constraints in Γ hold and ak ̸= ai. From the constraint ri = min(rk, r

′),
it must be the case that ai ≤ ak. Together with ak ̸= ai, we thus have ai < ak.

We now define a new assignment by mapping rℓ to 0 if aℓ ≤ ai and to 1 otherwise. Clearly
this assignment falsifies rk = ri; we now show that it satisfies all constraints in Γ.

• If the constraint is of the form rm ≤ rn, this means that am ≤ an. If an ≤ ai, then
both rm and rn are mapped to 0, and the constraint holds; likewise, if am > ai then both
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rm and rn are mapped to 1, and the constraint holds. The only remaining case is that
am ≤ ai and an > ai, where rm is mapped to 0 and rn to 1, and the constraint again
holds.

• If the constraint is of the form rℓ = min(rm, rn), we observe that aℓ must be equal to
either am or an. If both am, an ≤ ai, then both rm and rn (and therefore rℓ) are mapped
to 0, and the constraint holds, while if am, an > ai then rm, rn, and rℓ are all mapped to
1 and the constraint again holds. If am ≤ ai and an > ai, then aℓ = am, and again rm
and rℓ are mapped to 0, while rn is mapped to 1, and the constraint holds. The argument
when an ≤ ai and am > ai is similar.

• If the constraint is the additional constraint ri < rj , then rj is assigned a value aj > ai
in the original assignment, meaning that it is now assigned to 1, while ri is assigned to 0,
so the constraint holds.

As a consequence, if the SAT solver returns UNSAT, we can conclude that the initial assig-
ment can be removed from the implementation of comparator (i, j). The converse is trivially
true, since any counterexample over {0, 1} is also a counterexample over the whole domain of
integers.

5 Empirical evaluation

The systematic construction presented in this articles was implemented as a proof-of-concept
using the Python programming language. Our implementation is able to produce machine
code instructions and C functions. Furthermore, for each successful removal of an assignment
instruction, a visualization of the sorting network and the involved comparators and channel
values in the style of Figures 2 to 4 can be output in LATEX format. The source code and log
data underlying the results reported on in this section can be found in a GitHub repository:
https://github.com/schneiderkamplab/snopt

All experiments reported on in this section were performed on a server running Ubtunu
22.04 with a 5.15.0 Linux kernel. The server is equipped with an AMD EPYC 7501 32-Core
Processor able to run 64 threads in parallel at 2.0 GHz. We used Python 3.10.13 with the
4.12.4.0 z3-solver, the 0.4.1 nnf, and the 0.1.8.dev12 python-sat modules.

5.1 Comparing to the state of the art (2 to 8 inputs)

Table 1 compares how many instructions can be removed by AlphaDev [23] and our systematized
optimization, respectively. Our systematization provides the same number of saved instructions
for all numbers of inputs except for 5 and 7.

For 5 inputs, the sorting algorithm found by AlphaDev reuses one of the registers assigned
when copying values from the memmory. This optimization is currently not implemented,
since our implementation currently only allows the reuse of registers assigned as outputs of
comparators. There is no reason to believe that our implementation could not be amended to
also consider the reuse of registers assigned for inputs.

For 7 inputs, our systematized optimization already finds 2 further instructions that can be
removed, demonstrating the inherent incompleteness of AlphaDev’s approach, even for relative
small numbers of inputs.
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#inputs #comp. naive AlphaDev [23] this article
#instr. #saved #instr. #saved

2 1 8 8 0 8 0
3 3 18 17 1 17 1
4 5 28 28 0 28 0
5 9 46 42 4 43 3
6 12 60 57 3 57 3
7 16 78 76 2 74 4
8 19 92 91 1 91 1

Table 1: Comparison of the results of AlphaDev [23] and our systematized optimization on the
best known sorting networks for 2 to 8 inputs.

5.2 Going beyond the state of the art (9 to 128 inputs)

To test our approach more systematically, we applied our systematic optimization to the sorting
networks on 9–128 inputs generated by Batcher’s systematic construction [2]. Figure 5 visualizes
the number of instructions that could be removed for each number of inputs, and shows that
the former grows roughly linearly with the latter.
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Figure 5: Number of instructions that could be removed for the sorting networks on 2 to 128
inputs obtained using Batcher’s construction.

The step-like appearance of the increase is likely grounded in particulars of Batcher’s con-
struction, which relies heavily on powers of 2. Indeed, the “jumps” in the plot occur when the
number of inputs is only slightly larger than close to powers of 2.

We also experimented with other systematic constructions, finding larger possibilities for
runtime reduction. That said, the total number of instructions after reduction was always
favouring Batcher’s construction, as it involved fewer comparators to start with.

5.3 Impact of the optimization on register use

Figure 6 visualizes the number of additional registers needed for storing values when using
the systematized optimization. Clearly, there is a small but considerable overhead in register
use associated with our optimization. Thus, it is prudent to experiment a bit in order to
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find an optimal balance between the decreased number of instructions and the availability of
adequately-sized general purpose registers.
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Figure 6: Number of registers used for a given number of inputs. The blue line represents
the number of registers used in the unoptimized setting, i.e., n + 1 for n inputs. The orange
line represents the number of registers used with the systematized optimization after register
reallocation. For this figure, we used sorting networks of 2 to 128 inputs using Batcher’s
construction [2].

5.4 Network slicing for scaling the optimization

Figure 7 depicts the improvement in runtime when applying network slicing, as introduced
in Section 4.1. We observe that runtime is reduced by approximately one-third when using
this analysis. While this result demonstrates the utility of network slicing, this first scaling
technique is obviously not essential to be able to apply our systematized optimization.
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Figure 7: Scatter plot of runtimes (in seconds) when using slicing on the (linear) x-axis and
the without slicing on the (linear) y-axis. For this figure, we used sorting networks of 2 to 64
inputs using Batcher’s construction [2].

In our implementation, we also experimented with limiting the size of the slices, i.e., we
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fixed the number of comparators that are included in the slice for the ℓ-th comparator to ⌊ ℓ
k ⌋

for some k. Experimenting with k ∈ {2, 4, 8, 16, 32}, we found that k = 8 provides a further
runtime reduction of one-fifth without compromising completeness for up to 128 inputs. For
k ∈ {16, 32} we observe runtime reductions around two-fifths, but fail to identify one-third and
two-thirds of the assignment instructions, respectively.

5.5 SAT solving for scaling the optimization

Figure 8 visualizes the improvement in runtime when using a SAT solver instead of an SMT
solver, capitalizing on the results presented in Section 4.2. For larger sorting networks, we
observe that the backend based on SAT is at least a decimal order of magnitude faster than
the backend based on SMT. With the relative improvement increasing for larger instances, this
second scaling technique is clearly essential for being able to apply our optimization for sorting
networks of 128 inputs and beyond.
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Figure 8: Scatter plot of runtimes (in seconds) for the optimization in seconds with the SAT
backend on the (logarithmic) x-axis and the SMT backend on the (logarithmic) y-axis. The
orange diagonals represent (from top to bottom) a 1-order-of-magnitude difference favoring
SAT, equality between SAT and SMT, and a 1 order-of-magnitude difference favoring SMT.
For this figure, we used sorting networks of 2 to 64 inputs using Batcher’s construction [2].

6 Further optimizations

Our reduction to SAT relies on the fact that we are checking the auxiliary register lastly used
for a comparison on the lower input to the current comparator. Without this restriction,
Lemma 1 no longer holds – it is easy to find sets of constraints of the form we consider that
have counterexamples over the integers but not over {0, 1}.

We reran our experiments for up to 64 inputs to see if removing this restriction would lead
to further assignments being removed. The strategy was:

• For each available register, use SAT to check whether there is a counterexample to Γ |=
ri = rj over {0, 1}. If this is the case, this register cannot be reused.

• If there is no counterexample, check whether Γ contains a constraint ri = min(rj , r
′) for

some r′. If this is the case, then this register can be reused (and the assignment removed).
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• Otherwise, run an SMT solver to check whether there is a counterexample to Γ |= ri = rj
over the integers. If this is the case, this register cannot be reused, otherwise it can be
reused and the assignment removed.

In all the tests we ran, no additional assignments were removed. Our tests showed that the last
step was executed often, and every time it disagreed with the result of the SAT solver. These
results show two things: on the one hand, “false” removals flagged by SAT do occur in practice;
on the other hand, however, the only register that works as a replacement for a fresh one is
the one identified by analyzing the results of AlphaDev [23] – in which case Lemma 1 applies.
We do not know if this is a general phenomenon, or whether it is due to most sorting networks
tested being instances of systematic constructions. We plan to investigate this matter further
in future work.

7 Conclusions and future work

In this article, we have shown that implementations of sorting networks can be optimized by
identifying redundant instructions at the sub-comparator level, systematizing the very recent
deep learning-assisted discovery from AlphaDev [23]. We introduce network slicing and prove
a variant of the 0-1 principle, allowing us to scale our optimization from 8 up to 128 inputs and
beyond. As a consequence, we cover all cases relevant in practice such as when using sorting
networks as base cases for general sorting algorithms such as Quicksort. In practice for a base
case size of 32, this means that for each invocation, at least 17 machine instructions can be
saved. These savings accumulate to a significant runtime and energy reduction for sorting larger
sequences.

Future research should investigate whether different sorting networks yielded by different
constructions, non-systematic generation methods such as genetic algorithms and/or compara-
tor reordering exhibit differences in their sub-comparator level optimization potential and regis-
ter usage. Furthermore, the relation between our optimization as presented in this article and a
dual case relying on bottom instead of top channel outputs might be investigated, with the most
interesting question revolving around whether these dual optimization might be combined to
further improve sub-comparator level efficiency. Last but certainly not least, there are theoret-
ical and practical issues to consider regarding implementation-optimal vs size-/depth-optimal
sorting networks.
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