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Abstract

Curvature plays an important role in the function of biological membranes, and is
therefore a readout of interest in microscopy data. The PyCurv library established itself
as a valuable tool for curvature estimation in 3D microscopy images. However, in noisy
images, the method exhibits visible instabilities, which are not captured by the standard
error measures. In this article, we investigate the source of these instabilities, provide ade-
quate measures to detect them, and introduce a novel post-processing step which corrects
the errors. We illustrate the robustness of our enhanced method over various noise regimes
and demonstrate that with our orientation correcting post-processing step, the PyCurv
library becomes a truly stable tool for curvature quantification.

1 Introduction

The development of 3D microscopy modalities, such as cryo-electron tomography, is providing
valuable insights into the intricate geometry of biological objects at the cellular and intracellular
level. The shape of the membrane of cells, organelles, or vesicles, quantified by their curvature,
is of particular interest as it informs on underlying structural and functional properties [3, 5].
However, accurate curvature estimation from large, information-rich microscopy image volumes
poses a significant challenge due to acquisition and sample preparation artifacts, often leading
to incomplete pictures of the cell membrane surface [11]. Missing or corrupted data points can
hinder both quantitative and qualitative curvature estimation. To address this problem, robust
methods that can handle noisy and incomplete image volume data are needed.

Various strategies have been proposed for estimating curvature from image data. These
include analytical, discrete, and tensor voting (TV) approaches. Analytical methods involve
fitting surfaces or curvature tensors using mathematical models [2, 4, 10]. Discrete methods
estimate the curvature at each vertex or face of a mesh using discretized formulas of the dif-
ferential geometry of surfaces [8, 13]. While these methods have proven successful in certain
scenarios, they are not robust enough to handle the complicated and imperfect nature of 3D
microscopy data. In contrast, TV methods have emerged as a robust approach for analyzing
curvature in the presence of noise and for dealing with the kind of missing or irregular data
found in bioimages [9, 14, 16]. These approaches accumulate local shape information from the
data to better approximate curvature.
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State-of-the art results in terms of accuracy and robustness to noise for curvature estimation
in microscopy image volumes are currently achieved by Augmented Vector Voting (AVV) as
implemented in the PyCurv software [11]. The AVV method has been tested against well-
established contenders on benchmark surfaces and biological data, demonstrating its superior
performance. Nevertheless, we identified some limitations in PyCurv’s AVV method when
dealing with different types of noise added on benchmark surfaces. Estimated normals tend to
be erroneously oriented, leading to incorrect curvature estimation. To overcome this limitation,
we here introduce a novel orientation correcting post-processing step after the estimation of
normals carried out by PyCurv’s AVV method. The orientation correction step corrects the
erroneously refined normals, ensuring a consistent orientation and improving the accuracy of the
curvature estimation results. Our proposed approach is demonstrated to significantly improve
the accuracy and robustness of curvature estimation in noisy data. Ultimately, our novel
orientation correcting step enhances the robustness of PyCurv’s AVV method by ensuring a
consistent performance even in the presence of noise, thus broadening the range of applications
in which the method performs well.

The paper is structured as follows. In Section 2, we provide the relevant technical back-
ground on tensor voting and discuss related works. In Section 3, we describe the details of the
AVYV algorithm as implemented in PyCurv, and introduce our novel orientation correcting step.
We present experimental results in Section 4 and close the paper with concluding remarks in
Section 5.

2 Background on tensor voting

TV methods have recently gained importance in curvature analysis due to their ability to miti-
gate the effects of noise and missing information by relying on the accumulation of neighboring
information [9, 16]. TV encodes geometrical information of each input point as a second-order
symmetric tensor, which can be geometrically represented as an ellipsoid whose shape reflects
the encoded feature, while its size indicates the likelihood of the point belonging to that fea-
ture. The core of TV lies in the communication of information between neighboring points
to refine the initial tensors and thereby enhance the geometrical information encoded at each
input point. Each point receives votes from neighboring points within a predefined neighbor-
hood. The voting process is carried out by specially designed voting fields for each tensor
component [6]. Through this refinement, the encapsulated geometrical information becomes
more precise. Depending on the objectives of the analysis, various approaches can be pursued,
such as dense extrapolation to infer features at new locations over the 3D space [7], feature
extraction by relating the final refined tensors to overall features [14], or identifying outliers or
points of interest, such as corners or discontinuities [9].

Curvature information has been incorporated into TV in several ways. Tang and Medioni [14]
introduced an approach to classify input points as planar, elliptic, parabolic, or hyperbolic and
estimate principal curvatures. Their method is however primarily aimed at extracting the direc-
tion of principal curvatures, not their magnitude. Taubin [15] estimates curvature information
at each vertex of a triangular mesh approximating a surface. This method provides only a
single scale of analysis and doesn’t robustly give the terms x;; and 7j; in the formula that
approximates the matrix that yields the principal directions and curvatures at a centroid ¢;,
given by

M, = > wiriTiTL. (1)
Cjevi’
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Table 1: Comparative analysis of tensor voting curvature estimation methods.
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Here, M., represents the matrix at ¢;, V* is the set of centroids within the geodesic neigh-
borhood of ¢;, Tj; is the normalized projection of the vector c;c; onto the tangent plane of c¢;,
and k;; is the curvature of the circular arc connecting ¢; and ¢;. Page et al. [9] extended these
techniques with the introduction of Normal Tensor Voting, which allowed to consider disconti-
nuities on the analyzed surface and provided multiscale analysis. Other authors such as Tong
and Tang [16] have further improved the ability to incorporate more flexible forms of input
such as unordered point sets. Salfer et al. [11] have made significant progress in the TV frame-
work with PyCurv by introducing a mapping of the initial triangle mesh to a particular graph
that efficiently allows for the computation of geodesic distances and encapsulates discontinuity
information. We summarize these methods in Table 1.

A limiting factor of TV is that it requires well-oriented surfaces to perform optimally, which
can be difficult to achieve in real applications due to noise and segmentation masks with holes.
PyCurv’s proposed workflow partially addresses this problem by relying on filled segmentation
masks. This is however not done as a built-in part of the TV method itself, but rather as a
preprocessing step.

3 Methods

3.1 Augmented vector voting

PyCurv’s AVV method operates on the centroids of a triangular mesh, where the center of
each triangular face in the input mesh is initially aligned with each corresponding face normal.
Mesh extraction involves first applying a fill operator to the initial segmentation mask and then
running a marching cubes algorithm to extract a mesh from the filled segmentation. In the
tensor refinement stage, each triangle centroid is associated with a refined normal, allowing the
subsequent curvature estimation. PyCurv relies on a manually-set parameter to set the size
of the region from which curvature votes will be collected. This allows adaptation to different
feature scales.

The estimation of curvature is facilitated by (1), which is a discretized version of a symmetric
matrix calculated through an integral formula that encapsulates the principal directions and
curvatures at a particular point. The weights w;; in (1) are defined using an exponential decay
function, assigning higher values to centroids closer to ¢;. The eigenvectors of the matrix M.,
yield the estimated principal directions and the eigenvalues allow for calculating the principal
curvatures at ¢; [15].

3.2 Improved accuracy through orientation correction

The accuracy of the surface curvature estimation is highly dependent on the consistent global
orientation of surface normals. While PyCurv’s AVV preprocessing workflow aims to close holes
and restore orientation before applying TV, it does not fix everything: in areas where the initial
normals are almost perpendicular to the true normals, the orientation estimates are generally
poor. This leads to incorrect orientations after normal correction, as depicted in Fig. 1 (center).

Erratic normals do not only occur on simple test surfaces, but also appear on sophisticated
test bodies and real microscopy data, as pictured in Figs. 2 and 3. Hence, the measurement of
curvature data for all these surfaces can be affected.

To address this issue, we have designed an orientation correcting (OC) post-processing step
that corrects normal orientation errors and thus improves the accuracy of curvature estimation.
The OC step considers each refined normal and its surroundings within a geodesic neighborhood
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Figure 1: Our proposed post-processing step accurately corrects erroneous normal orientations.
Left: Triangulated cylinder with 25% of Gaussian noise added in random directions. Some
normals erroneously point outwards. Center: Normals corrected with AVV still exhibit this
inconsistency. Right: Our orientation correction (OC) step yields correct normals.

Figure 2:  Normal estimation on a smooth cow’s mouth surface from https://gitlab.
kitware.com/vtk/vtk-examples. Left: reference surface. Center: Same surface perturbed
by 5% additive random Gaussian noise. Several of the normals estimated with AVV incorrectly
point outward, showing orientation inconsistency. Right: Our orientation correction (OC) step
provides correct normals.

of the same size as the voting neighborhood. We then calculate the Euclidean inner (dot -)
product of each estimated normal N with the average refined neighboring normals N,ws. A
negative dot product indicates a discrepancy in the orientation of N from its neighboring
normals. Its orientation is thus corrected by reversing its sign via the following formula:

N if N Ny > 0,
N if N+ Nayg < 0.

Ncorrected =

Our OC step offers a simple yet principled solution for global orientation errors in surface
normals and thus for improved curvature estimation. While not computationally inexpensive, it
remains significantly lighter than the actual voting process. This is a reasonable trade-off given
the significant improvement in accuracy it provides. The underlying idea is remarkably simple
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Figure 3: Normal estimation on a human HeLa cell from the PyCurv repository https:
//github.com/kalemaria/pycurv/tree/master/experimental_data_sets/vesicle. Left:
applying PyCurv off-the-shelf results in several wrongly oriented normals. Right: our ori-
entation correcting step appropriately corrects erroneous normals.

to implement, yet remains flexible enough to adjust the size of the reference neighborhood to
the features of interest. The OC step is also very robust: as long as a local set of normals has
a correct orientation, the OC step is unlikely to fail (Fig. 1).

4 Results

To evaluate the benefit of our OC step towards reducing errors in normal and principal curvature
estimation, we establish an experimental setup that takes the following scenarios into account.

a) Noise conditions. We perturb the triangular meshes by adding noise either in the direc-
tion of the normal vector to each triangular face or randomly. We increasingly apply Gaussian
noise based on a specified percentage of the average edge length of the triangles constituting
the surfaces, by moving each triangle along either a predetermined or a random direction.

b) Mesh resolution. Triangular meshes are controlled by a resolution parameter, which de-
termines their level of detail. Higher mesh resolutions are expected to improve the performance
of TV, as more neighborhood information is available. Here, we generate different triangu-
lations, including irregular and minimal ones, allowing us to explore a wide range of surface
variations and configurations.

c) Reference surfaces: Since true normals are not accessible in noisy surfaces, we use a
reference smooth surface as ground truth. The normal of each centroid in the triangle mesh is
then compared to the normal of its nearest point on the ground truth smooth surface.
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To assess performance, we use the relative error measure given by
AE = (Einitial - Ecomrected)/Einitial; (2)

where €jpitia1 denotes the mean error in normals before applying TV, and €corrected after correc-
tion. A value of 1 indicates that the error in normal estimation has been entirely corrected.

Although we are ultimately interested in curvature, considering its relation to the correctness
of the normals estimation is useful as curvature captures the rate of change of the normals and
is thus highly sensitive to noise. To measure both the initial and corrected errors in normal
estimation, we compare them against their reference ground truth. For principal curvatures we
use the absolute error measure

Ak = |kt — Rel,

where k; is the true and k. the estimated curvature. Smaller values indicate more accurate
estimations. For normal directions, given by unit vectors, in [11] the error measure

Av=1—|v - vel,

is considered, where v; is the true and v, the estimated vector. It returns O if the vectors are
parallel and 1 if they are perpendicular. This measure cannot distinguish the orientation of the
vectors.

To assess the orientation of the normals, we introduce a new measure that calculates the
angular error between vectors in radians as

Aa = arccos(vg - V).

Based on this, we define two relative error measures: the Vector Error Reduction Ayector and
the Angular Vector Error Reduction Aangle, defined respectively as

Avector - (Avinitial - A’Ucorrected)/Avinitial7 (3)
Aangle == (Aainitial - AO‘corrected)/AOZinitiaL (4)

The measure Aapgle is considered superior to Ayector because Aapgle takes into account the sign
of the inner (dot) product between the estimated and the ground truth vectors. When noise is
added in random directions, some refined normals may indeed point outward, resulting in incon-
sistent global orientation. A,pgle accounts for this issue, providing a more accurate measure of
result quality. We choose to also report Ayecior s it is based on the error measure Av originally
used in [11] to assess PyCurv’s performance. A good correction of the normals according to
Avector does not however necessarily lead to a good curvature estimation. Misoriented normals
were not captured in the original assessment and no robust consistency between small errors
in normals and small errors in curvatures was originally observed upon the addition of random
noise.

4.1 Experiment 1: performance of the orientation correcting step

The benchmark surfaces used in our experiments were constructed using the VITK Python
library [12] and vizualised with the PyCurv Python package and Paraview [1]. They consisted
of various geometric shapes, e.g. cylinders, planes, spheres, and spheres with holes. Each
benchmark surface was defined by an increasing resolution parameter determining the detail
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Figure 4: Evolution of the error Ax of the principal curvatures x1 and ko, with increasing mesh
resolution on a triangulated sphere. Without correction (left column) the estimated curvature
errors diverge with increasing noise level, even for increased resolution. With our orientation
correcting OC step (right column), both curvature errors become very small.

level in its discretization and was further triangulated. To introduce noise variations into the
surfaces, we increasingly applied Gaussian noise based on a specified percentage of the average
edge length of the triangles constituting the surfaces. We did this by moving each triangle along
either a predetermined or a random direction.

To measure the accuracy of estimated normals, we used a reference smooth surface as ground
truth and compared the normal vectors of each centroid in the triangle mesh of the noisy surface
to the normal vector of the nearest point on the smooth surface.

Our OC step is experimentally observed to correct orientation errors and improve the accu-
racy of curvature estimation, particularly for cases where the AVV method previously failed as
seen in Figs. 4 and 5. Both error reduction measures Ayector ald Agngle offer the same insights
since the OC step aims at correcting the missorientation errors of the normals.
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Figure 5: Evolution of the error reduction measures Ayecior and Agygle With increasing mesh
resolution on a triangulated sphere. Without correction (left column), Ayector approaches the
best value of 1, but Aangle decrease for high noise levels. With our orientation correcting OC
step (right column), both relative error measures approach 1 as intended.

4.2 Experiment 2: significance of the orientation correcting step

In our second experiment, we examined the influence of noise, if the mesh resolution is increased,
and with this the edge length of the mesh is reduced. In practice it is desirable to have finer
meshes that capture more details and therefore allow for a more precise curvature estimation.
However, we have observed that the number or misoriented normals increases with higher
resolutions, thus augmenting the errors. Figure 6 shows our measurements for finer and finer
tessellations of a plane reference surface. The finer the triangulations, the more misoriented
normals appear.

5 Conclusion
We proposed a novel post-processing step to correct the normal orientations on triangulated

surfaces prior to curvature estimation. To measure performance, we introduced the Vector Error
Reduction and the Angular Vector Error Reduction measures. Our experiments showed that
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Figure 6: Impact of mesh resolution on normal estimation error. Measurements were taken on
a plane of fixed size that has been uniformly tessellated with different resolutions. Our results
show that the smaller the edge length, the higher the impact of noise to generate incorrect
orientation of the normals. For a number of 800 triangles, more than 5% of the normals have
the wrong orientiation when we impose a moderate noise level of 20% noise. For a higher
number of 1250 triangles, the number of erroneous orientations rises to more than 8%.

without correction, the widely-used AVV is highly sensitive to noise. With our correction step,
AVYV becomes robust even in high noise contexts. Higher mesh resolutions are also observed to
lead to better results with orientation correction, as expected. Our proposed normals orientation
correction results in a clear improvement of principal curvatures estimation with the AVV
method, by up to a factor of 10.
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