
EPiC Series in Computing

Volume 70, 2020, Pages 182–191

Proceedings of the 12th International Conference
on Bioinformatics and Computational Biology

Exploring Deep Neural Network Architectures: A Case

Study on Improving Antimicrobial Peptide Recognition

Manpriya Dua1, Daniel Barbará1, and Amarda Shehu1,2,3,4

1 Department of Computer Science, George Mason University, Fairfax, VA
2 Center for Advancing Human-Machine Partnerships, George Mason University, Fairfax, VA

3 Department of Bioengineering, George Mason University, Fairfax, VA
4 School of Systems Biology, George Mason University, Manassas, VA

amarda@gmu.edu

Abstract

With antibiotic resistance on the rise, health organizations are urging for the design of
new drug templates. Naturally-occurring antimicrobial peptides (AMPs) promise to serve
as such templates, as they show lower likelihood for bacteria to form resistance. This has
motivated wet and dry laboratories to seek novel AMPs. The sequence diversity of these
peptides, however, renders systematic wet-lab screening studies either infeasible or too
narrow in scope. Dry laboratories have focused instead on machine learning approaches.
In this paper, we explore various deep neural network architectures aimed at improving
antimicrobial peptide recognition. Our enquiry results in several architectures with com-
parable or better performance than existing, state-of-the-art discriminative models.

1 Introduction

Bacterial resistance to one of more antibiotics has become a serious health concern [17, 24].
A recent study estimates that three million common surgical procedures can potentially be-
come life-threatening due to such resistance [2]. Many health organizations are calling for the
development of novel antibacterial drugs [23].

Naturally-occurring antimicrobial peptides (AMPs), natural components of innate immu-
nity, are popular targets for developing new antibacterial drugs, as they have shown a lower
likelihood for bacteria to form resistance compared to conventional drugs [12]. However, in doses
required to inhibit bacterial growth, many AMPs are toxic to the host [14]. These findings have
motivated wet and dry laboratories to expand their search for novel, laboratory-designed AMPs.

A significant challenge to these efforts is our lack of understanding on what determines an-
timicrobial activity, or, at a minimum, an expedient, and yet general model via which we can
predict such activity. Many wet-laboratory efforts have focused on understanding the physico-
chemical properties that govern antimicrobial activity. However, these efforts face outstanding
challenges due to the high diversity of AMPs on sequence, structure, and mechanism of ac-
tion. For instance, AMPs comprise diverse sequence families, such as, cathelicidins, defensins,
cecropins, and others; they have diverse secondary and tertiary structure, and they kill their

Q. Ding, O. Eulenstein and H. Al-Mubaid (eds.), BICOB 2020 (EPiC Series in Computing, vol. 70),
pp. 182–191



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

targets through various mechanisms, such as, cell membrane damage, DNA interference, or sig-
naling for adaptive immune responses [22]. Given such diversity, current wet-laboratory studies
that rely on systematic screening are invariably narrow in scope [6]; we note that some focused
studies have had success in revealing novel, naturally-occurring AMPs or designing synthetic
AMPs by optimizing known ones [1, 3, 8].

Dry-laboratory approaches, on the other hand, have primarily focused on training ma-
chine learning models to recognize antimicrobial activity in given peptide sequences. These
approaches have been aided by increasing deposition of experimentally-known AMPs in public
databases and have resulted in discriminative models of increasing accuracy [10,11,18,20,25].

Motivated by the most recent research on discriminative models based on deep neural net-
works [18] and the overall increasing popularity of deep learning in bioinformatics, in this paper
we carry out a systematic study on deep neural network architectures for the problem of antimi-
crobial activity recognition. We investigate choices with regards to the low-level representation
layer, the number of layers, and the choice on dense versus convolution versus recurrent layer(s).
These choices result in several architectures whose performance we contextualize in the body of
machine learning methods for antimicrobial activity recognition. Our evaluation yields several
interesting observations. For instance, we demonstrate that the recurrent layers do not aid
performance and instead a simpler neural network without such layers performs comparably to
the one proposed in [18]. We also show that convolution layers are useful and utilizing several
layers aids performance. In addition, we demonstrate that the choice of the low-level represen-
tation matters, particularly when not very deep architectures can be afforded in the presence
of constraints regarding the size of the labeled data.

The rest of this paper is organized as follows. A brief summary of related work on dis-
criminative models for AMP recognition is provided in Section 1.1. The deep neural network
architectures used for AMP recognition and the role of each layer in these architectures are
described in detail in Section 2. Evaluation of these architectures is then related in Section 3.
The paper concludes in Section 4.

1.1 Related Work

Published discriminative models largely focus on a binary classification setting and include
artificial neural networks (ANN) [16], discriminant analysis (DA) [15], fuzzy k -nearest neigh-
bor [25], hidden Markov models [5], logistic regression [13,20], random forests (RF) [19], support
vector machines (SVM) [10, 11], and deep neural networks (DNNs) [18]. Popular features are
based on sequence composition, order [11,25], physico-chemical properties, such as charge, hy-
drophobicity, and more [13, 15, 16]. Complex features that encode distal interactions are built
via evolutionary algorithms [20] or DNNs [18].

Some models are provided as web servers, including iAMPpred [11], iAMP-2L [25], An-
tiBP2 [9], CAMP [15], AMPer [4], AMP Scanner [18], and others. In particular, AMP Scanner
is designed to support high-throughput screening experiments for wet-laboratory researchers
to conduct systematic virtual screenings of peptide libraries to identify promising peptides for
further characterization and optimization.

Comparative surveys report that state-of-the-art methods (and servers), including CAMP
and AntiBP2, miss many true positives [1, 19]. Others, such as the Antimicrobial Peptide
Database (APD) AMP predictor [21], only accept individual query sequences, which limit appli-
cations for high-throughput recognition experiments by wet-laboratory researchers. The DNN
proposed in [18] improves upon these methods and is considered one of the top performers.

The DNN model is trained over naturally-occurring AMP sequences (positive training

183



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

dataset) and carefully-constructed, non-AMP sequences (negative training dataset). In [18],
the positive and negative classes are balanced for the model training. It is worth noting that
the construction of the negative data can be particularly challenging in bioinformatics applica-
tions. We direct the reader to the work in [18] for details on the process followed to construct
the negative training dataset.

The DNN model contains convolutional and recurrent layers, followed by a single-node sig-
moid unit that outputs the probability of a peptide sequence to possess antimicrobial activity.
The convolutional layer allows capturing position-invariant patterns along the amino-acid se-
quence of a peptide. The recurrent layer is a long short term memory (LSTM) layer that allows
recognizing and forgetting gap-separated patterns. Further details on the model’s architecture,
training, and its evaluation can be found in [18].

2 Methods

We treat the DNN model [18] described in Section 1.1 as the baseline architecture over which
we remove or add layers and instigate other changes. In what follows, we proceed systemati-
cally. We first analyze the significance (and contribution) of each of the layers prior to further
modifying promising resulting architectures via convolutional and/or recurrent layers. We do
so in the context of several choices regarding the low-level features input to the model in the
embedding layer.

2.1 Investigating the Low-level Representation

Let us recall that there are 20 classic amino acids found in nature, represented by 20 letters of
the English alphabet. Lengths of known AMPs vary from a few to over a few 100 amino acids.
In [18], due to uneven lengths, all AMP sequences are first padded (to a maximum length) with
”X”, which encodes the undetermined amino acid. Each thus-encoded constitutive amino acid
is represented with a vector of chosen fixed length. This is done automatically by using Keras’s
Embedding Layer. This layer plays an important role in the classification model; without it, the
amino acids which are represented using letters from the English alphabet need to be converted
to either integers or to other numerical representations so that they can be processed.

We explored several alternative ways of representing the training sequences. We utilize a
short AMP sequence ”KIIFLIAI” to illustrate these representations below.

a) Integer Representation: Each amino acid is represented by a corresponding integer in the
range [0,20]. The AMP sequence ”KIIFLIAI” is then represented as ”[9 8 8 10 8 1 8]” in integer
representation. Further, the representation is padded with zeros (representing the undetermined
amino acid) until maximum length. Making only this choice (removing the embedding layer)
in the DNN proposed in [18] results in a model to which we refer as DNN-Integer.

b) One-Hot-Encoded Representation: Each amino acid is represented as a vector of length
21 (due to 21 different amino acids including the undetermined amino acid ’X’), instead of an
integer as above. All positions in the vector are 0 except for a 1 in the integer position that
represents this amino acid. The AMP sequence ”KIIFLIAI” is then represented as ”[[0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0] [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]].” Further, the representation is padded with the vector
”[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]” representing X until maximum length. Making this

184



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

choice instead of utilizing the Embedding Layer as in [18] results in a model to which we refer
as DNN-One-Hot.

c) Binary Representation: Each amino acid is represented with a vector of length 5.
Each vector represents its corresponding integer value’s binary representation. The AMP se-
quence”KIIFLIAI” is represented as ”[[0 1 0 0 1] [0 1 0 0 0] [0 1 0 0 0] [0 0 1 0 1] [0 1 0 1
0] [0 1 0 0 0] [0 0 0 0 1] [0 1 0 0 0]]”. Further, the representation is padded with [0 0 0 0 0],
representing X until maximum length. Making this choice instead of utilizing the Embedding
Layer as in [18] results in a model to which we refer as DNN-Binary.

K-mer Count Representation In contrast to the above representations, which represent each
single amino acid, we now turn to utilizing counts of k-mers present in known AMP sequences
from the training set. We consider all k-mer sub-sequences that are present in the training set
at least n times, where the value of n is chosen based on experimental results. Each sequence
is represented by the number of times the chosen k-mers appear in it, and each position in the
sequence representation provides a count of the corresponding k-mer. We also experiment with
a few different values of k for the k-mer count representation. We refer to the resulting DNN
models as DNN-k-mer, with the value of k indicated. These models are much simpler, as they
do not have to deal with entire sequences; they are much faster to train and have fewer layers
for processing the input. Therefore, we utilize dense layers in the DNN–mer models rather
than the rest of the DNN architecture (a convolutional and LSTM layer). We experiment with
varying the number of layers, and the number of nodes in each layer. We use ReLU activation
for the input and middle layers and Sigmoid activation for the output layer.

Byte Pair Encoding with AMPScanner We utilize a byte pair encoding (BPE) representation.
In BPE, the most frequent peptide sub-sequences of length 2 (most frequent 2-mers) are replaced
by new symbols, and these symbols are stored in memory for reference. Once the first set of
replacements is done, a new set of most frequent 2-mers is chosen, and they are again replaced
with new symbols. This process is repeated until a certain number of new symbols has been
introduced. The idea is that most frequent sub-sequences would now be represented with
shorter sub-sequences involving symbols; instead of peptide sequences, we have sequences that
also contain symbols (meta amino amino acids). This new representation is fed to the Keras’
Embedding Layer. We refer to the resulting DNN models as DNN-BPE.

2.2 Investigating the Layers

2.2.1 Convolutional Layer

This layer should play the most important role in identification of AMPs, since it focuses
on smaller sub-sequences of neighboring amino acids and uses these sub-sequences for feature
extraction. We conduct the following anatomical analysis. We first remove the convolutional
layer from the baseline DNN [18] and refer to this resulting model as DNN-Conv0. We observe
the implication of this decision in the performance of the model. Alternatively, we retain the
convolutional layer of the baseline model and add another layer, as well as vary the number of
filters and kernel size (filter length) of the convolutional layers. We refer these resulting models
as DNN-Conv2.

2.2.2 Max-Pooling Layer

We recall that the role of this layer is to condense the features explored by the convolutional
layer by pooling them and assigning the condensed value as the maximum in a given pool. We

185



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

observe the effects of eliminating the max-pooling layer, while keeping the rest of the model
architecture as is. We refer to this resulting model as DNN-MaxPool0.

2.2.3 LSTM Layer

The LSTM layer is a recurrent layer. Recurrent layers are used to identify dependencies among
sequences. So, a recurrent layer would identify how previously looked at sequences affect the
next sequences. We make two overall decisions, removing the LSTM layer or replacing it with
another layer. Removing it results in a model to which we refer as DNN-LSTM0. Alternatively,
we replace the LSTM layer with a Gated Recurrent Unit (GRU), a SimpleRNN layer, and a
bidirectional LSTM layer; the BiLSTM layer helps in identifying dependencies among sequential
data in both directions. We refer to these resulting models as DNN-GRU, DNN-SimpleRNN,
and DNN-BiLSTM, respectively.

2.3 Discriminative Deep Model with Attention Mechanism

Finally, we investigate an attention mechanism by adding it to the best performing model from
the models described above. Our implementation is based on the model described in Deep-
HINT [7]. First, we perform one-hot encoding on the input sequences. These one-hot encoded
sequences are passed through two 1-D convolution layers (placed one after the other) followed by
max-pooling layers, respectively. The obtained feature representation is further sent to two sep-
arate units, the first being a single neuron combining the output received from the max-pooling
layer, and the second being an attention mechanism. The attention mechanism computes an
importance score indicating the amount of attention paid to sequence features at each position
based on the input feature vectors received from the max-pooling layer. Each feature vector
obtained from the convolution and max pooled filters is normalized by the computed impor-
tance scores as in DeepHINT [7]. The outputs from these two units are concatenated and used
for prediction of sequences containing AMP properties.

2.4 Implementation Details

For the purpose of this case study, we obtain data from APD3 (Anti-microbial Peptide
Database). The dataset is also freely available to the research community at http://www.

ampscanner.com. The AMPs, 1778 in all, are active against Gram-positive and/or Gram-
negative bacteria. As in [18], we assign 712 AMPs for training, 354 for tuning/evaluation, and
712 for testing, respectively.

Our implementations all the DNN models described above are in Python using Keras. For
k-mer models, we use k ∈ [1, 2, 3, 4, 5]; based on experimentation, we limit to a total of 3 dense
layers for these models. We choose the number of epochs, number of filters and their sizes for
the convolution layers, and the number of recurrent units based on experimentation results with
training and validation accuracy and loss plots; we utilize dropout in layers to avoid over-fitting.

All models are run on a MacBook Pro with 2.7 GHz Dual-Core Intel Core i5 base processor
and 16GB of RAM. The baseline DNN takes 342 seconds to train and evaluate. Removing
the embedding layer and using other encodings (integer, one-hot, or binary) takes 143 − 173
seconds to train and evaluate. Removing the convolution and the max-pooling layer takes
135 seconds to train and evaluate. Removing the LSTM layer takes 210 seconds to train and
evaluate. Replacing the LSTM layer with GRU takes 296 seconds; replacing the LSTM layer
with SimpleRNN takes 166 seconds, and replacing the LSTM layer with the bidirectional LSTM
layer takes 311 seconds to train and evaluate. Introducing a second convolution and max pooling

186

http://www.ampscanner.com
http://www.ampscanner.com


Antimicrobial Peptide Recognition Dua, Barbará and Shehu

Table 1: Comparison of models with varying sequence representations.

Models Max Accur Accur Prec Rec F1 AUROC
DNN 0.924 0.917 0.927 0.926 0.926 0.972
DNN-Integer 0.700 0.682 0.767 0.654 0.699 0.760
DNN-Binary 0.878 0.869 0.881 0.892 0.886 0.940
DNN-One-Hot 0.926 0.917 0.930 0.923 0.926 0.972
DNN-1-mer 0.921 0.907 0.912 0.926 0.919 0.964
DNN-2-mer 0.907 0.897 0.907 0.913 0.910 0.956
DNN-3-mer 0.897 0.883 0.903 0.890 0.896 0.942
DNN-4-mer 0.872 0.862 0.887 0.871 0.879 0.940
DNN-5-mer 0.854 0.843 0.915 0.821 0.866 0.910
DNN-BPE 0.878 0.873 0.892 0.876 0.888 0.942

layer takes 148 seconds to train and evaluate. The model with the attention mechanism takes
46 seconds to train and evaluate. The k-mer models with k ∈ {1, 2, 3, 4, 5} take 21, 13, 90, 501,
and 876 seconds, respectively. The BPE model takes 717 seconds to train and evaluate.

3 Results

We first compare the performance of the DNN variants with different sequence representations.
We do so over the testing dataset. Table 1 lists averages of the accuracy, precision, recall, F1,
and AUROC over 5 runs of each model. The maximum accuracy (over the 5 runs) is also shown.
The top three AUROC values and the three top maxiumum accuracy values are highlighted in
bold font.

The top three values under each metric in Table 1 are highlighted in bold font. For the most
part, they belong to the same three models, DNN, DNN-One-Hot, and DNN-1-mer (with the ex-
ception being DNN-5-mer which reaches the third highest average precision). In particular, the
DNN-One-Hot model performs comparably to DNN when considering all metrics. A decrease
in accuracy is observed when using integer and binary encoding. This decrease is due to the
uneven representation of different amino acids. Table 1 also shows that the DNN-k-mer models
with k > 1 do not outperform DNN and DNN-One-Hot; DNN-1-mer is the only DNN-k-mer
model reaching comparable performance to DNN and DNN-One-Hot. These results indicate
that higher-level features based on compositional features are not particularly informative, pos-
sibly because of the scarcity of longer motifs on short AMPs. It is worth noting that, since
DNN-1-mer outperforms DNN-2-mer, it is not surprising that DNN-BPE is also outperformed;
the BPE representation is similar to the 2-mer one, in the sense that it looks at sub-sequences
of length 2 and condenses them into one symbol.

Based on the results shown in Table 1, the rest of the models we investigate retain the
embedding layer as in the baseline DNN in [18]. Table 2 relates the impact of the choices with
regard to the recurrent layer. Recall that in the DNN-RNN0, DNN-SimpleRNN, DNN-GRU,
and DNN-BiLSTM models we investigate, the embedding layer, the convolutionational layer,
and the max pooling layer are kept as in the baseline DNN. The only modification is with
regards to the recurrent layer, which is removed entirely or replaced with variants.

Analysis of the results in Table 2, where the top three values under each metric are high-
lighted in bold font, reveals that the recurrent layer is not essential to achieve a very high
performance, comparable or higher than the baseline DNN model. In almost all metrics, the

187



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

Table 2: Comparison of models with changes on the recurrent layer.

Models Max Accur Accur Prec Rec F1 AUROC
DNN 0.924 0.917 0.927 0.926 0.926 0.972
DNN-RNN0 0.933 0.922 0.945 0.919 0.931 0.970
DNN-SimpleRNN 0.920 0.907 0.928 0.909 0.918 0.964
DNN-GRU 0.927 0.920 0.948 0.911 0.929 0.974
DNN-BiLSTM 0.919 0.899 0.928 0.927 0.927 0.972

Table 3: Comparison of models with changes on the convolutional and max pooling layer(s).

Models Max Accur Accur Prec Rec F1 AUROC
DNN 0.924 0.917 0.927 0.926 0.926 0.972
DNN-Conv0-MaxPool0 0.882 0.873 0.912 0.859 0.884 0.943
DNN-Conv0-MaxPool1 0.895 0.868 0.898 0.870 0.880 0.941
DNN-Conv1-MaxPool0 0.918 0.883 0.909 0.899 0.900 0.958
DNN-Conv2 0.938 0.926 0.934 0.938 0.936 0.972
DNN-Conv2-Att 0.921 0.911 0.962 0.914 0.937 0.81

DNN with no RNN layer outperforms the other variants. The DNN-GRU model achieves a
good performance, as well, but underperforms on many metrics compared to the DNN-RNN0.
These results highlight two observations. First, assumptions that complexity affords higher
performance need to be carefully evaluated. In this case, for instance, a recurrent layer is not
necessary. Second, the reason for the recurrent layer not contributing to a superior performance
may be related to the fact that sequence diversity among AMPs is quite high; that is, knowing
something about one AMP may not help much to make a prediction on another. This further
illustrates the challenge of the learning task in this bioinformatics problem.

Based on the results shown in Table 2, the rest of the models we investigate retain the
embedding layer as in the baseline DNN but remove the LSTM layer. Table 3 lists the per-
formance of several variants with no, one, or two convolution layers (and no, one, or two max
pooling layer). Analysis of the results in Table 3, where the top three values (above 0.9) under
each metric are highlighted in bold font, allows reaching several conclusions. The convolution
layer plays an important role in the model, as removing this layer brings down performance.
This suggests that sub-sequences and neighboring amino acids indeed play a role in determining
the antimicrobial activities of the whole sequence. The max-pooling layer helps in condensing
the data exploded by the convolution layer. As observed, it does not have much effect on
the model performance by itself, but it does plays a role in combination with the convolution
layer. On experimenting by replacing the LSTM layer with SimpleRNN, GRU, or BiLSTM,
we see that there is no significant change in the results. However, when using SimpleRNN,
the model trains much faster and in fewer epochs. Most importantly, the analysis reveals a
winning model that outperforms the baseline DNN model. Adding a second convolutional layer
to the network yields the best performance; adding more convolutional layers, however, does
not improve performance (data not shown). The overall architecture of the best-performing
model, DNN-Conv2, is shown in Figure 1. Adding an attention layer to the best-performing
model DNN-Conv2, to which we refer as DNN-Conv2-Att in Table 3, lowers the performance.

188



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

Figure 1: Best Performing Deep Neural Network Architecture For AMP Recognition.

4 Conclusion

This paper has presented a case study on model architectures for classification of AMP Se-
quences. Prompted by a state-of-the-art deep, discriminative model recently developed in our
laboratory [18] that outperforms other machine learning approaches on this problem, we have
presented here an improvement by altering the model (removing the LSTM layer and adding
additional convolution and max-pooling layers), and have suggested other alternate simpler and
faster models. The evaluation of several models suggests that recurrent layers play no role in
the identification of AMP sequences, and that the removal of this layer from the model actually
improves the model performance. The improved performance with adding a convolution layer
suggests that there are patterns that help AMP recognition that emerge even from the already
convolved features. It is worth noting that these models are fast and can be used to virtually
screen peptide sequences. As already understood, however, these deep models do not provide
any insight as to what exactly governs antimicrobial activity. They do not readily provide rules
that wet-laboratory researchers may employ to intelligently design novel AMPs. Attention
layers may provide some guidance in this direction. Our preliminary investigation, however,
shows that adding an attention layer lowers the performance. While it is possible that this may
be due to the size of the training dataset, we intend to investigate this direction further and
experiment with variant implementations of attention layers.

5 Acknowledgements

We thank members of the Shehu laboratory for useful feedback on this work.

189



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

References

[1] Barney M. Bishop, Melanie L. Juba, Megan C. Devine, Stephanie M. Barksdale, Carlos Alberto
Rodriguez, Myung C. Chung, Paul S. Russo, Kent A. Vliet, Joel M. Schnur, and Monique L. van
Hoek. Bioprospecting the american alligator (Alligator mississippiensis) host defense peptidome.
PLoS ONE, 10(2):e0117394, 02 2015.

[2] S. Boseley. Overuse of antibiotics risks return to dark ages of life-threatening surgery, 2018.

[3] M. C. Chung, S. N. Dean, C. N. Propst, B. M. Bishop, and M. L. van Hoek. Komodo dragon-
inspired synthetic peptide drgn-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ
Biofilms Microbiomes, 3(9), 2017.

[4] C. Fjell, R. Hancock, and A. Cherkasov. AMPer: a database and an automated discovery tool for
antimicrobial peptides. Bioinformatics, 23(9):1148–1155, 2007.

[5] C. Fjell, H. Jenssen, K. Hilpert, W. A. Cheung, N. Pante, R. E. Hancock, and A Cherkasov.
Identification of novel antibacterial peptides by chemoinformatics and machine learning. J. Med.
Chem., 52(7):2006–2015, 2009.

[6] Christopher D Fjell, Jan A Hiss, Robert EW Hancock, and Gisbert Schneider. Designing antimi-
crobial peptides: form follows function. Nature reviews Drug discovery, 11(1):37–51, 2012.

[7] Hailin Hu, An Xiao, Sai Zhang, Yangyang Li, Xuanling Shi, Tao Jiang, Linqi Zhang, Lei Zhang,
and Jianyang Zeng. DeepHINT: understanding HIV-1 integration via deep learning with attention.
Bioinformatics, 35(10):1660–1667, 10 2018.

[8] Melanie L Juba, Paul S Russo, Megan Devine, Stephanie Barksdale, Carlos Rodriguez, Joel M
Schnur, Monique L van Hoek, and Barney M Bishop. Discovery of novel antimicrobial peptides
from Varanus komodoensis (komodo dragon) by large-scale analyses and de-novo-assisted sequenc-
ing using electron-transfer dissociation mass spectrometry. J Proteome Res, 16(4):1470–1482, 2015.

[9] S. Lata, N. K. Mishra, and G. P. Raghava. AntiBP2: improved version of antibacterial peptide
prediction. BMC Bioinformatics, 11(Suppl 1):S1–S19, 2010.

[10] Ernest Y Lee, Benjamin M Fulan, Gerard CL Wong, and Andrew L Ferguson. Mapping membrane
activity in undiscovered peptide sequence space using machine learning. Proceedings of the National
Academy of Sciences, 113(48):13588–13593, 2016.

[11] Prabina Kumar Meher, Tanmaya Kumar Sahu, Varsha Saini, and Atmakuri Ramakrishna Rao.
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional,
physico-chemical and structural features into Chou’s general PseAAC. Scientific Reports, 7(42362),
2017.

[12] R. Nuti, N. S. Goud, A. P. Saraswati, R. Alvala, and M. Alvala. Antimicrobial peptides: A
promising therapeutic strategy in tackling antimicrobial resistance. Curr Med Chem, 24(38):4303–
4314, 2017.

[13] Elena G. Randou, Daniel Veltri, and Amarda Shehu. Binary response models for recognition of
antimicrobial peptides. In Proceedings of the International Conference on Bioinformatics, Com-
putational Biology and Biomedical Informatics, page 76. ACM, 2013.

[14] Jǐrina Slaninová, Veronika Mlsová, Hilda Kroupová, Lukáš Alán, Tereza Tumová, Lenka Monin-
cová, Lenka Borovičková, Vladimı́r Fuč́ık, and Václav Čeřovskỳ. Toxicity study of antimicrobial
peptides from wild bee venom and their analogs toward mammalian normal and cancer cells.
Peptides, 33(1):18–26, 2012.

[15] S. Thomas, S. Karnik, R. S. Barai, V. K. Jayaraman, and S. I. Thomas. CAMP: a useful resource
for research on antimicrobial peptides. Nucl. Acids Res., 38(Suppl 1):D774–D780, 2009.

[16] Marc Torrent, David Andreu, Victòria M Nogués, and Ester Boix. Connecting peptide physic-
ochemical and antimicrobial properties by a rational prediction model. PLoS One, 6(2):e16968,
2011.

[17] U.S. Department of Health and Human Services. Antibiotic resistance threats in the united states,
2013.

[18] D. Veltri, U. Kamath, and A. Shehu. Deep learning improves antimicrobial peptide recognition.

190



Antimicrobial Peptide Recognition Dua, Barbará and Shehu

Bioinformatics, 34(16):2740–2747, 2018.

[19] Daniel Veltri. A Computatioanl and Statistical Framework for Screening Novel Antimicrobial
Peptides. PhD dissertation, George Mason University, 2015.

[20] Daniel Veltri, Uday Kamath, and Amarda Shehu. Improving recognition of antimicrobial pep-
tides and target selectivity through machine learning and genetic programming. Transactions on
Computational Biology and Bioinformatics, 14(2):300–313, 2017.

[21] Guangshun Wang, Xia Li, and Zhe Wang. APD3: the antimicrobial peptide database as a tool
for research and education. Nucl Acids Res, 44:D1087–D1093, 2016.

[22] William C Wimley and Kalina Hristova. Antimicrobial peptides: successes, challenges and unan-
swered questions. The Journal of membrane biology, 239(1-2):27–34, 2011.

[23] World Health Organization. Antimicrobial resistance: global report on surveillance, 2014.

[24] World Health Organization. Antibacterial agents in clinical development – an analysis of the
antibacterial clinical development pipeline, including tuberculosis, 2017.

[25] Xuan Xiao, Pu Wang, Wei-Zhong Lin, Jian-Hua Jia, and Kuo-Chen Chou. iAMP-2L: A two-level
multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical
biochemistry, 2013.

191


	Introduction
	Related Work

	Methods
	Investigating the Low-level Representation
	Investigating the Layers
	Convolutional Layer
	Max-Pooling Layer
	LSTM Layer

	Discriminative Deep Model with Attention Mechanism
	Implementation Details

	Results
	Conclusion
	Acknowledgements

