EPiC Series in Computing EPiC

Volume 73, 2020, Pages 249-259 eI
LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming, m
Artificial Intelligence and Reasoning (‘\

NACRE - A Nogood And Clause Reasoning Engine *

Gael Glorian!, Jean-Marie Lagniez?, and Christophe Lecoutre?

! LaBRI — CNRS UMR 5800, Université de Bordeaux, Talence, Nouvelle-Aquitaine, France
gael.glorian@labri.fr
2 Huawei Technologies Ltd, Boulogne-Billancourt, Tle-de-France, France
jean.marie.lagniez@huawei.com
3 CRIL - CNRS UMR 8188, Université d’Artois, Lens, Hauts-de-France, France
lecoutre@cril.fr

Abstract

NACRE, for Nogood And Clause Reasoning Engine, is a constraint solver written in
C++. It is based on a modular architecture designed to work with generic constraints while
implementing several state-of-the-art search methods and heuristics. Interestingly, its data
structures have been carefully designed to play around nogoods and clauses, making it suit-
able for implementing learning strategies. NACRE was submitted to the CSP MiniTrack
of the 2018 and 2019 XCSP3 [8] competitions where it took the first place. This paper
gives a general description of NACRE as a framework. We present its kernel, the available
search algorithms, and the default settings (notably, used for XCSP3 competitions), which
makes NACRE efficient in practice when used as a black-box solver.

1 Introduction

Many research efforts have been devoted to the design of general tools and algorithms for solv-
ing CSP (Constraint Satisfaction Problem) instances [33]. The current mainstream approaches
rely on complete methods that embed filtering procedures, search heuristics and learning mech-
anisms. Implementing a new technique into a CSP solver usually requires a strong knowledge
of its whole structure. Moreover, to be fully accepted by the community, a comparison with
the state-of-the-art is necessary, with careful re-implementation.

During the last two decades, the impressive progress in the related problem SAT (Satisfia-
bility Testing), where variables are Boolean, has been achieved using nogood recording (called
clause learning when nogoods are managed & la SAT) under a restart policy enhanced by a
very efficient lazy data structure [27]. The value of clause learning has risen with the avail-
ability of large instances (encoding practical applications). Learning in SAT is an example of
a successful technique derived from cross-fertilization between CSP and SAT: nogood record-
ing [10,36] and conflict-directed back jumping [31] were originally introduced for CSP and were
later imported into SAT solvers [4,37]. Progress in SAT has stimulated a renewed interest of
the CSP community in nogood recording [9,19,22,32]. While some CSP solvers embed a clause

*This work has been supported by the project CPER Data from the region “Hauts-de-France”.

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 249-259

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

learning component, some others require to use an external SAT solver or are built above a
SAT solver. In some cases, the whole problem is encoded into CNF [38,42] or incrementally
translated [12,29]: the SAT solver often takes priority over the CSP solver for guiding search.

NACRE has been designed to be a hybrid solver, solving problem instances with either
dedicated methods or SAT-inspired ones. Utilizing dedicated data structures, it can work
efficiently with clauses (or nogoods); actually, the core of NACRE was conceived with this
general objective in mind. Furthermore, NACRE has been conceived as a framework: it is
designed to be upgradable, letting the user try new ideas on top of filtering or solving methods
in a straightforward way. Moreover, it is possible to easily implement new reasoning methods
concerning clauses and to specify minimization techniques to shorten them. Although NACRE
has been conceived as a framework, its performances have not been left aside, as shown by the
first place obtained in the CSP MiniTrack of the 2018 and 2019 XCSP3 competitions [8]. This
track is for open-source mini-solvers' and aims at discovering new ideas and solvers.

2 Preliminaries

A Constraint Network (CN) [20] P is composed of a finite set of variables X and a finite set of
constraints C. Each variable has a (current) domain dom(z), which is the finite set of values
that can be assigned to z; the initial domain of a variable x is denoted by dom™(x). Each
constraint ¢ involves an ordered set of variables scp(c), called the scope of ¢. A constraint ¢ is
semantically defined by a relation rel(c), which is the set of tuples allowed by (variables of) c.
A tuple 7 can be perceived as the instantiation of a subset of variables of X’; we note 7[x] the
value of variable x in 7. A solution of a CN P is an instantiation of X such that all constraints
c € C are satisfied. A constraint ¢ € C is satisfied by an instantiation 7 if and only if 7 covers
(i.e., instantiates) all the variables in the scope of ¢ and 7 corresponds to a tuple accepted by
c. A CN is also usually referred to as a CSP instance.

To find solutions efficiently, it is important to filter the search space, typically by enforcing
some local properties (called consistencies). Generalized Arc Consistency (GAC) [26] is a very
classical one. For a constraint ¢, it guarantees that each pair (z,a) with = € scp(c) and
a € dom(x), admits a support on ¢, i.e., a tuple 7 € Ilcgcp(cydom(z) such that 7[z] = a and
7 € rel(c). Constraint propagation is the process of enforcing a local consistency such as GAC,
step by step, by soliciting all constraints to filter variable domains in turn until a fixed point
is reached. A literal on a variable x corresponds to either an assignment of the form z < a or
a refutation of the form x < a, with a € dom™(z). The literals z < a and = < a are said
to be positive and negative, respectively. In the following, we also denote literals with Greek
letters (A, 9, ...). A decision 0 is checked (in our algorithms) to be positive or negative by simply
writing pos(d) and neg(9), respectively.

In this paper, we focus on backtrack search where decisions are taken in sequence to find
solutions, and we assume that decisions always correspond to literals, which is a very classical
approach in constraint programming. For example, MAC (Maintaining Arc Consistency) [34]
builds a search tree by systematically maintaining GAC after such (positive and negative)
decisions. For the sake of precision, decisions refer to literals (unary constraints) added to
the CN by the search algorithm when extending the current branch of the search tree, whereas
deductions refer to inferences performed by the filtering process (e.g., the algorithm that enforces
GAC). Deductions are also assumed to be literals (which is always the case with GAC).

INACRE source is available at https://github.com/crillab/nacre_mini.

250

https://github.com/crillab/nacre_mini

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

3 Inside NACRE

We first succinctly introduce the data structures employed in NACRE before presenting the
main components of the solver and the way nogood recording is conducted.

3.1 Data Structures

In NACRE, variables and values are represented through propositional variables: every pair
(x,a) with © € X and a € dom(z) is paired to an integer representing the propositional variable
xq (direct encoding [39], where each CSP variable is represented by a sequence of propositional
variables). Therefore, the variables are stored as virtual objects, meaning that each variable
does not directly have its own domain but only knows an index where its domain starts (in a
big contiguous table) as well as its initial domain size and its current domain bounds.

varProps| 2 [4 L 0 [1 [2 ! 2 [4 |
x I (0 I z I

DOMVALUES| 0 \ 1 : 0 \ 1 \ 2 : 0 \ 1]
0 > 5 7

Figure 1: Data Structures for Variables/Values in NACRE.

There are two tables of this form (three in the case of clause learning). The first one,
called VARPROPS, stores the propositional variables and can be seen as the dense part of a full
sparse set [1]. The propositional variables (referred to as PV) are objects that contain useful
information such as the value of the PV into the original CSP variable, and also: (i) its current
state (0 meaning that the value has been assigned to the CSP variable, 1 meaning that the
value has been removed, and 2 when neither assigned nor removed), (ii) its local? position in
the table DOMVALUES described below, and (iii) a few Boolean flags to record if this is the last
assigned value (by the solver), if it was used during the process of conflict analysis, etc. The
second table, called DOMVALUES, is similar to a full reversible sparse set, i.e., it stores for each
variable a two-part table separated by a limit which is the current size of the variable domain.
The values on the left of this limit are still active into the variable domain, whereas the ones
on the right have been removed. It allows us to remove and restore values easily and efficiently
since it only requires two basic operations (swapping two integers and decrementing a limit) to
either remove a value or assign a variable. This lightweight structure is almost backtrack-free
as we just need to store the local position of the limit at each decision level.

Figure 1 shows an example on three variables z, y and z with dom(y) = {0,1,2} and
dom(z) = dom(z) = {2,4} as defined initially (initial state). The upper table is VARPROPS, in
which we can clearly see the values of the domain (we do not show the other PV information in
the figure, for clarity). The lower table is DOMVALUES containing the local positions. We can
observe that they are initially sorted in an increasing manner. Above these two tables, in light
gray, we can see the integers associated to the propositional variables (which are essentially the
indices of the table VARPROPS).

2We call local a position that has been normalized according to the current variable domain starting index.

251

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

3.2 Solver Components

Search Tree Exploration. NACRE provides various methods to solve CSP instances, given
under XCSP3 format. Being a framework designed to handle clauses and nogoods, several state-
of-the-art procedures are implemented. The first one is a standard MAC [34,35] approach, used
with the method option -complete. It maintains arc-consistency while running a backtrack
search based on binary branching. Binary branching means that at each search node, a left
branch labeled with a positive decision x = a is developed first, and a right branch labeled with
a negative decision x # a is developed next. To do this efficiently, NACRE uses time-stamps for
both the constraints and the variables. Recall that a time-stamp is a value denoting the time
at which a certain event occurred; time-stamps allow the progress of algorithms to be tracked
over time. Technically, with time-stamps, a set is not required to represent the propagation
queue, which renders propagation less expensive to deal with.

Algorithm 1: propagate(z: Variable): Boolean
1 Q« {z}
2 while Q # 0 do
y « pickVariable(Q);
forall ¢ € C | y € scp(c) A stamp|c] < stamply] do
touched < filter(c) ;
if touched = WIPE_OUT then return true; // Detected conflict
Q@ <+ @ U touched;
updateStamp(c);

o N o ok W

9 return false // No detected conflict

Algorithm 1 shows how propagation is conducted after the solver has decided on a variable x.
Until a fixed point is reached, it picks (line 3) a variable y from @ (the propagation queue only
contains z initially) by using Function pickVariable() that selects (and removes) a variable from
Q. Then, we iterate over the constraints involving this variable (line 4), and the (time-)stamp
of the current variable is compared with the (time-)stamp of the constraint. The rationale
(discussed below) is that it allows us to determine whether it is useful to call the filtering
algorithm (propagator), Function filter() at line 5, attached to the constraint ¢. This function
returns the set of variables, touched, whose domains have been reduced by the propagator in
order to add them to the propagation queue (line 7) or the special value WIPE_OUT when a
conflict occurs. Concerning stamping, note that the stamp of a constraint is updated at line
8, whereas the stamp of a variable is updated when it is added to @ (lines 1 and 7), meaning
that its domain has just been modified (or touched). This stamping system avoids unnecessary
calls to constraint propagators, which could be very expensive. Indeed, when a constraint c is
asked to filter, all variables in scp(c) are GAC regarding ¢ (that is ensured by Function filter()
at line 5) and stamplc] is updated in such a way that stamp[c] > stamp|z] for all € sep(c).
It is clear that it is unnecessary to consider ¢ again before any variable of its scope is touched.
When a variable z is touched, then stamp[z] is updated, and = is added to the propagation
queue. Therefore, if a variable = of sep(c) is touched after ¢ is revised then stamp[z] > stamp|c|
and consequently the condition (line 4) is satisfied when z is picked from the queue and the
constraint is considered again to be revised.

252

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

Search Heuristics. In NACRE, we have a small pool of variable ordering and value ordering
heuristics for tuning search. The variable ordering heuristic dom [6,17] (option -dom) was
the first popular dynamic heuristic. It uses the current size of the variable domains to select
the next variable to instantiate; the smaller, the more preferred. A second variable ordering
heuristic is dom/deg [5] (option -domdeg), a dynamic heuristic that combines both the domain
size and the degree of the variables. The degree of a variable is the number of constraints where
the variable is involved. This heuristic selects the variable with the smallest ratio of its current
domain size to its degree. A third variable ordering heuristic is the robust adaptive heuristic
dom/wdeg [7,40] (option -domwdeg, used by default) that aims at choosing in priority the
variables involved in the most falsified constraints. Technically, in each constraint object, a
counter (initialized to 1) is incremented whenever the constraint is at fault (i.e., fails while
filtering) during the search.

Once a variable is selected, a value must be chosen from its domain. Different value ordering
heuristics are available in NACRE. In addition to the classical value heuristics (min-value, max-
value, ...), a weak version of the SAT-based heuristic polarity has been implemented [30].
This heuristic, called saving option (-saving), tries to assign the selected variable to the last
value assigned to it. If the choice is not valid anymore, meaning that the value has already
been deleted, then the underlying value heuristic is solicited. Two main options are available,
each one having its opposite. On the one hand, with min-value (option -valMin), we choose
the minimal value in the domain of the variable; it is also possible to select the maz-value
inside NACRE (option -valMax). Choosing the minimal or maximal value, depending on the
problem, can greatly improve the performance of the solver. On the other hand, the heuristic
first-value (option -valFirst), called lexico sometimes, is a second way of selecting values,
based on the implementation of the domains. As we use structures similar to sparse sets, we can
select the first PV inside the DOMVALUES set. We can also select the last one before the limit
(option -valLast). It is also possible to fully randomize value selection (option -valRand).

Restart Policies. NACRE has some built-in restart policies that allow us to test nogood or
clause learning under different settings. Because restart policies can have a strong impact on
search efficiency, we have implemented the most popular policies, from geometric progression
to Luby sequence [25]. The first restart policy available is the no restarting policy (option
-noRst), sometimes useful to be used as a baseline. Then comes the Luby-based sequences:
first terms are of the form (1,1,2,1,1,2,4,1,...). There are 3 available Luby-based sequences,
Luby (#rst) x N where N can take the values 10, 50 and 100 (options are respectively -1luby10,
-luby50 and -1uby100) and #rst is the number of runs already done in order to get the correct
term from the sequence. This is useful for trying more or less aggressive restarts policies. Finally,
geometric sequences are available for a more constant progression of the cutoff value. Four of
them are implemented inside NACRE. The default one has a 3% progression, others are 10%
(option -10perc), 50% (option -50perc), 100% (option -double). It allows the user to choose
from a wide variety of policies, even possibly changing it during search with a few lines of code.

3.3 Nogood Recording

The benefit of recording nogoods [36] is to avoid some form of thrashing [16], i.e., exploring
the same unsatisfiable subtrees several times. There are two classical methods to identify and
store nogoods: during the search or at restarts. Nogood from restart extracts information by
analyzing the current search tree when a restart is triggered. Two well-known and effective
methods have been implemented into our framework, the negative last-decision nogoods [23]

253

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

(nld-nogoods) and the increasing-nogoods [24]. Nld-nogoods (option -nld) are extracted at
each restarts from the last branch of the search tree. Let us assume that the sequence of labels
all along the rightmost branch of the current search tree being developed is ¥ = (d1,...,m),
where each decision of ¥ is either a positive or a negative decision. It is known that for any
i such that 1 < ¢ < m and neg(d;), the set A = {6; : 1 < j < i Apos(d;)} U{=d;} is a
reduced nld-nogood. A reduced nld-nogood {d;,d;} can be written s - d; = —d; in directed
form. Increasing-nogoods (method option -incng) are a compressed form of all the reduced
nld-nogoods that can be extracted at each restart, without losing any effectiveness. Indeed, it
is rather easy to deduce that there are some similarities between nld-nogoods: the left part of
the implication is shared between several nogoods. Then, it is possible to rewrite the set of
nld-nogoods as a constraint and use a dedicated propagator that ensures GAC.

Another way to learn nogoods is during search when a conflict occurs. The concepts of
nogoods and clauses are closely related. The former is mostly used in the CSP context and
the latter in the SAT one. NACRE implements a generic clause reasoning engine using lazy
explanations (option -ca). We consider the g-nogood learning procedure [18], and the lazy
explanations, proposed in [13,14] as a starting point. A way of generating a nontrivial nogood
at each conflict consists in deeply analyzing the sequence of propagation steps by constructing
an implication graph a la SAT and identifying a reason of the failure [41]. An implication graph
is a directed acyclic graph (DAG) that records the relationships existing between literals, as can
be observed during the solving process. Each vertex represents a literal A (with its associated
level), and its incoming arcs in the DAG represent the reasons that force it. When a conflict
occurs, each cut in the implication graph that leads to the conflict can explain it. This set
of literals, used as a conflict explanation, can be blocked in the future by deriving a clause
from it. Generally, we are only interested in Unique Implication Points (UIPs) [37] that are
vertices at the current decision level dominating the conflict. Importantly, they can be used to
safely perform non-chronological backtracking (a form of back jumps) up to the decision level
that is the maximum value among all decision levels associated with the literals of the conflict
explanation.

In practice, the explicit construction of the implication graph can be avoided. Indeed,
conflict clauses can be derived from the current formula if we simply save independently the
explanation expl(\) of each deduction A. More precisely, assuming that all such explanations
are stored, and starting from a conflicting set A of literals, the conflict analysis procedure
iteratively selects a literal A € A implied at the most recent decision level (i.e., the current
largest decision level) and replaces A by expl(A) in A. This process is stopped when only one
literal from the current level remains in A. Consequently, the literals remaining in A, after the
procedure is complete, forms a UIP. Because A represents an explanation for the conflict, the
clause \/ ., —\ is a logical consequence of the problem (at least one literal of A must be false).
We can observe that upon backtracking this clause remains unit (with literal Ayy,;) until the
highest decision level of the other literals in A \ {Aynit} is reached.

On one hand, SAT formalism is very simple (each time a literal is deduced, its explanation
can be computed by considering the clause that triggers it) and very well suited to nogood
extraction by an analysis of the implication graph. On the other hand, CSP formalism is
more sophisticated (e.g., dealing with global constraints) and makes more difficult the precise
identification of the reason of a simple deduction: building the implication graph is no more
straightforward. Moreover, even if we may consider constructing such graphs, computing the
explanation of each deduction can drastically slow down the search algorithm if no proper care
is taken. In NACRE, a generic non-intrusive method that allows us to compute explanations
has been implemented.

254

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

Explanations are generated on demand in three situations. Firstly, if a literal A is propagated
from a clause A, then the explanation is given by the negation of literals of A\ {A}. Secondly,
a literal can be propagated by the domain constraints: atMostOne and atLeastOne. The
atLeastOne constraint is used as explanation when only one value a is remaining is the domain
of z, in this case we have expl(z = a) = {x # b : b € dom™(z) \ {a}}. The atMostOne
constraint is used as explanation when a value b is deleted from x when z is assigned to a,
in this case we have expl(z # b) = {& = a}. Finally, a literal A from z can be propagated
while running the filtering algorithm ¢. associated with a constraint ¢ that is not a clause.
In this case, it is possible to explain why A has been propagated by considering the deleted
values for the variables of scp(c) \ {}. To avoid systematic computation of explanations at
each propagation, NACRE uses a stamp system that associates an integer with each value.
When a value a from z is deleted its stamp is updated in such a way that stamp(x, a) is greater
than all stamp(a’,a’) such that o is deleted from 2. In order to be backtrack free, we use
an integer that is incremented at each deletion. Thus, when an explanation is required for a
value a from z, it is enough to keep in memory which constraint has been used to perform
the propagation. Indeed, it is enough to consider the value a’ of 2’ € sep(c) \ {x} such that
stamp(x,a) > stamp(x’,a’). Once the conflict analysis process is over, a new clause is added
to the nogood base and a non-chronological backtrack is performed. Of course, for managing
the nogood base, we adopt the classical two-watched-literals strategy [28].

Algorithm 2 is an variation of Algorithm 1 that handles clause propagation too. We choose
to fully propagate the constraints (line 3 to 10) before the clauses (line 12 to 18). Indeed,
playing with clauses and nogoods can lure an adaptive heuristic like dom/wdeg [15]. Triggering
in priority conflicts from the CSP core avoids this kind of behavior. These two propagation
processes are done until a fixed point is reached (when clause propagation loop — bep— becomes
useless). The constraint propagation loop is similar to Algorithm 1 with one slight difference
at line 5. The picked variable is added into a new queue Q%47 It allows the loop at line 12 to
iterate over all the variables that were touched during GAC enforcement.

Clause Database Reduction. The procedure that ensures unit propagation on nogoods
(clauses) highly depends on the size of the base. To maintain manageable the base of nogoods,
and perform unit propagation at a reasonable cost, it is common to reduce the base by deleting
clauses considered to be irrelevant to the next search steps. Several measures have been proposed
for this purpose [2,3,11]. Generally, SAT solvers use one of the following strategies: activity
that considers a learned clause as irrelevant if its activity or its involvement in recent conflict
analysis is marginal [11]; or literal block distance (LBD) that uses the number of different levels
involved in a given learned clause to quantify the quality of learned clauses [3]; clauses with
smaller LBD are considered more relevant.

Even if these measures are well adapted for SAT, there are not well suited in our case: a
hybrid solving method requires a hybrid clause quality measure. Indeed, it is often the case
that clauses contain a large number of literals. But contrary to SAT, it is possible to identify
literals that are linked by a common CSP variable. In this case, clauses that are related to
few CSP variables are more powerful regarding unit propagation. To take this information into
account, we propose to use a new measure that considers the number of CSP variables involved
in the clause through its associated propositional variables. When two clauses have the same
number of CSP variables, then their activity is used to decide between them. An important
point regarding the reduction of the base concerns its frequency. In NACRE, we chose to set
the initial size limit of the base to 4,000 nogoods (pragmatic choice, made from experiments).
When the limit is reached, half of the learned clauses are removed using our custom measure.

255

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

Algorithm 2: propagate?%d(z: Variable): Constraint
1 QT 0, Q « {a};

2 repeat

3 while @ # 0 do
4 y < pickVariable(Q);
5 QSAT Y QSAT U {y}7
6 forall c € C | y € scp(c) A stamp[c] < stamp[y] do
7 touched < filter(c);
8 if touched = WIPE_OUT then return c; // conflict constraint
9 @ < Q U touched;
10 updateStamp(c);
11 continue « false;
12 while Q547 #£ () do
13 v ¢ pickVariable(Q47);
14 (c,touched) < bep(v) ;
15 if ¢ # null then return c; // conflict clause
16 if touched # () then
17 continue < true;
18 @ < @ U touched;

19 until -continue;
20 return null ; // no detected conflict

After each reduction, the size limit is increased by 500.

4 NACRE at XCSP3 Competitions

NACRE was submitted to the CSP MiniTrack of the XCSP3 competition [21]. This track is
designed for sequential open-source software and allows constraint solver developers to enter
the competition without having to implement all constraints from the so-called XCSP3-core.
Solvers are evaluated on a restricted set of constraints: intension, extension, allDifferent,
sum and element. Solvers were run on a cluster of Xeon@2.67GHz with 32GiB of memory.
Sequential solvers were allocated 15500 MiB of memory and a time limit of 2400 seconds.

The 2018 (resp. 2019) CSP MiniTrack was a selection of 176 (resp. 200) instances. NACRE
competed in its hybrid form with the following options: -ca -1uby100 and -cm®. It enables
our conflict analysis method and uses the Luby sequence as restart policy. In 2019, we also
submitted the standard MAC version (options: —-complete -1100 -cm) to the competition in
order to compare them.

Table 1° shows that, in 2018 (resp. 2019), NACRE solved 49% (68%) of the 176 (200)
instances, which represents 76% (78%) of the Virtual Best Solver (VBS). It means that 76%
(78%) of the instances that can be solved by any competing solvers are solved by NACRE. We
can also see that NACRE performs well on both SAT and UNSAT instances. The impact of clause

3The -cm option stands for verbose mode 0: only the result and the solution, if one is found, are displayed.
4PicatSAT was not an official competitor but is given as a comparison with the main competition track.
5Generated from the raw data of the official competition website: http://www.xcsp.org/competition.

256

http://www.xcsp.org/competition

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

Table 1: CSP MiniTrack — Results in 2018 (Top 5) and 2019.

Rank Solver (Version) #solved(%) #SAT/#UNS % VBS SumCPU MedCPU AvgCPU
Virtual Best Solver (2018) 113 (64) 53/60 100 11899.26 0.62 105.30

1 NACRE (1.0.4 - Hybrid) 86 (49) 43/43 76 9948.56 0.40 115.68
2 miniBTD_12 (180727.12) 79 (45) 36/43 70 9534.55 088 120.69
3 miniBTD (180727_3) 75 (43) 32/43 66 13679.82 1.17 182.40
4 cosoco (1.12) 72 (41) 42/30 64 14074.67 2.12 195.48
5 minimacht (180727) 69 (39) 37/32 61 13299.29 485 19274
Virtual Best Solver (2019) 172 (86) 109/63 100 18636.55 4.37 108.35

- PicatSAT (Main track reference) * 148 (74) 97/51 86 41856.68 105.79 282.82
1 NACRE (1.0.5 - Hybrid) 135 (68) 91/44 78 22691.90 8.80 168.09
2 miniBTD (19.06.16) 133 (67) 89/44 77 16899.04 7.75 127.06
3 cosoco (2.0) 127 (64) 85/42 74 25518.00 311 200.93
4 NACRE (1.0.5 - MAC) 116 (58) 81/35 67 20797.49 8.38 179.29

learning is stronger on the 2019 results (17% more solved instances).

5

Conclusion

In this paper, we have presented NACRE, a nogood and clause reasoning engine. Our main goal
is to provide the community with an expansible tool, useful in particular for easily experimenting
with nogoods and clauses. We paid attention to practical performances, and we demonstrated
that in the 2018 and 2019 XCSP3 competitions. For the next major version, we project to
handle all constraints from XCSP3-core.

References

1]
2]
3]

(4]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. On freezing and
reactivating learnt clauses. In SAT, pages 188-200. Springer, 2011.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In
1JCAI pages 399—-404, 2009.

Roberto J. Bayardo and Robert Schrag. Using CSP look-back techniques to solve real-world SAT
instances. In AAAI/TAAI pages 203-208, 1997.

Christian Bessiere and Jean-Charles Régin. MAC and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In CP, pages 61-75. Springer, 1996.

James R. Bitner and Edward M. Reingold. Backtrack programming techniques. Commun. ACM,
18(11):651-656, 1975.

Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting systematic
search by weighting constraints. In FCAI, pages 146-150. IOS Press, 2004.

Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. XCSP3: an
integrated format for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398,
2016.

Karim Boutaleb, Philippe Jégou, and Cyril Terrioux. (no)good recording and robdds for solving
structured (V)CSPs. In ICTAI pages 297-304, 2006.

257

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

[10] Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning, and cutset
decomposition. Artif. Intell., 41(3):273-312, 1990.

[11] Niklas Eén and Niklas Sorensson. An extensible sat-solver. In SAT, pages 502-518. Springer, 2003.

[12] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In CP, pages 352-366.
Springer, 2009.

[13] Ian P. Gent, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Neil C. A. Moore, Peter Nightingale,

and Karen E. Petrie. Learning when to use lazy learning in constraint solving. In ECAI pages
873-878. IOS Press, 2010.

[14] Tan P. Gent, Ian Miguel, and Neil C. A. Moore. Lazy explanations for constraint propagators. In
PADL, pages 217-233. Springer, 2010.

[15] Gael Glorian, Frédéric Boussemart, Jean-Marie Lagniez, Christophe Lecoutre, and Bertrand
Mazure. Combining nogoods in restart-based search. In CP, pages 129-138. Springer, 2017.

[16] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. JAR, 24(1/2):67-100, 2000.

[17] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intell., 14(3):263-313, 1980.

[18] George Katsirelos and Fahiem Bacchus. Unrestricted nogood recording in CSP search. In CP,
pages 873-877. Springer, 2003.

[19] George Katsirelos and Fahiem Bacchus. Generalized nogoods in CSPs. In AAAI pages 390-396,
2005.

[20] Christophe Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.

[21] Christophe Lecoutre and Olivier Roussel. Proceedings of the 2018 XCSP3 competition. CoRR,
abs/1901.01830, 2019.

[22] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Nogood recording from
restarts. In IJCAI pages 131-136, 2007.

[23] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Recording and mini-
mizing nogoods from restarts. JSAT, 1(3-4):147-167, 2007.

[24] Jimmy H. M. Lee, Christian Schulte, and Zichen Zhu. Increasing nogoods in restart-based search.
In AAAI pages 3426-3433. AAAI Press, 2016.

[25] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Inf. Process. Lett., 47(4):173-180, 1993.

[26] Alan K. Mackworth. Consistency in networks of relations. Artif. Intell., 8(1):99-118, 1977.

[27] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pages 530-535, 2001.

[28] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pages 530-535. ACM, 2001.

[29] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357-391, 20009.

[30] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfia-
bility solvers. In SAT, pages 294-299. Springer, 2007.

[31] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intel-
ligence, 9:268-299, 1993.

[32] Guillaume Richaud, Hadrien Cambazard, Barry O’Sullivan, and Narendra Jussien. Automata for
nogood recording in constraint satisfaction problems. In SAT/CP@QCP, page 113, 2006.

[33] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

[34] Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In PPCP, pages 10-20. Springer, 1994.

258

NACRE - A Nogood And Clause Reasoning Engine G. Glorian, J.-M. Lagniez and C. Lecoutre

(35]
(36]
37]
(38]

[39]
[40]

[41]

[42]

Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In ECAI pages 125—129, 1994.

Thomas Schiex and Gerard Verfaillie. Nogood recording for static and dynamic constraint satis-
faction problems. International Journal of Artificial Intelligence Tools, 3(2):187-207, 1994.

Joao P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506-521, 1999.

Takehide Soh, Mutsunori Banbara, and Naoyuki Tamura. Proposal and evaluation of hybrid
encoding of CSP to SAT integrating order and log encodings. IJAIT, 26(1):1-29, 2017.

Toby Walsh. SAT v CSP. In Proceedings of CP’00, pages 441-456, 2000.

Hugues Wattez, Christophe Lecoutre, Anastasia Paparrizou, and Sébastien Tabary. Refining con-
straint weighting. In Proceedings of ICTAI’19, pages 71-77, 2019.

Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD, pages 279-285. IEEE Computer Society,
2001.

Neng-Fa Zhou and Hakan Kjellerstrand. The Picat-SAT compiler. In Marco Gavanelli and John H.
Reppy, editors, PADL, pages 48—62. Springer, 2016.

259

	Introduction
	Preliminaries
	Inside NACRE
	Data Structures
	Solver Components
	Nogood Recording

	NACRE at XCSP3 Competitions
	Conclusion

