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Abstract

Tensor decomposition techniques have gained significant attention in cancer research
due to their ability to unravel complex and high-dimensional data structures. In this study,
we comprehensively review the research trends from 2013 to 2023. Several themes are dis-
cussed, including the problems and challenges regarding cancer datasets, specifically image
data and omics data. We also explore proposed tensor decomposition algorithms to tackle
these challenges and their applications in different types of cancer, as well as the limita-
tions and shortcomings of this field, which call for further research and development. Our
objective is to investigate the application of tensor decomposition methods in cancer re-
search. We first introduce the concept of tensors as multidimensional arrays and highlight
their relevance in modeling cancer data. Subsequently, we discuss various tensor decom-
position algorithms, such as Tucker decomposition and Canonical Polyadic decomposition,
along with their advantages and limitations. This review aims to assist researchers inter-
ested in tensor decomposition techniques, which offer a valuable tool for analyzing complex
and heterogeneous cancer data, enabling the discovery of hidden patterns and providing
biological insights.

1 Introduction

Cancer, a pervasive and complex group of diseases, has emerged as one of the greatest chal-
lenges to global health in recent times. It affects people of all ages, races, and socioeconomic
backgrounds, causing significant physical, emotional, and financial burdens on individuals and
societies worldwide. The uncontrolled growth and spread of abnormal cells in the body, which
define cancer, can manifest in various forms, including breast cancer, lung cancer, colon can-
cer, and many others [1]. Understanding cancer and finding effective treatments for it is of
paramount importance due to several critical issues associated with the disease. Firstly, cancer
is one of the leading causes of death globally, accounting for millions of deaths each year. It
not only impacts the lives of individuals directly affected by the disease but also affects their
families and communities.
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Cancer datasets, including imaging and omics data, are valuable resources that provide in-
sights into the characteristics of tumors, their behavior, and potential treatment options. In this
article, we will be focusing on imaging data and omics data. The process of generating imaging
data is commonly used to capture detailed images of tumors and surrounding tissues [2]. The
following imaging techniques are used to generate imaging data: computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon
emission computed tomography (SPECT). The challenges that arise regarding the analysis of
imaging data include the large variability among the images and the complexity of extracting
relevant information from them [3].

Omics data refers to large-scale datasets that provide a comprehensive view of various bi-
ological molecules and their interactions within a biological system. Omics data encompasses
several fields, including genomics, transcriptomics, proteomics, and metabolomics, each focus-
ing on a specific aspect of biology [4]. It also provides valuable insights into the molecular
underpinnings of biological systems, including cancer. By studying and analyzing these large-
scale datasets, researchers can gain a deeper understanding of the complexities of cancer biology.
This knowledge can help in developing more targeted and personalized approaches for cancer
diagnosis, treatment, and prevention [5] [4]. The challenges for omics data shows that integrat-
ing different variables and data types makes the data extremely complex [4]. Another challenge
associated with omics data is that the clinical variables may be affected due to the complexity
of what it resembles [6].

By analyzing omics data from cancer patients and comparing it to data from healthy indi-
viduals, researchers can identify specific genetic variations, gene expression signatures, protein
modifications, or metabolic profiles that are indicative of cancer. These molecular alterations
can serve as potential biomarkers for early detection, prognosis, and predicting treatment re-
sponse in cancer patients. Through the analysis of omics data, researchers can uncover key
molecular signatures that contribute to the development and progression of cancer, providing
valuable insights for precision medicine and targeted therapeutic interventions [7]. In multi-view
cancer studies that includes data, the stress of important information of tensor data without
damaging the internal structure due to outlier damage is an important research topic. Corren-
tropy would help because of its extent with dealing with tensor data. It is also a measure of
the similarity in information theoretic learning (ITL) [8].

Tensor decomposition refers to mathematical techniques used to break down multidimen-
sional data structures, known as tensors, into simpler components. A tensor can be thought of
as a generalization of a matrix, extending its dimensions beyond two [9]. Common fields that
tensor decomposition would be used are Canonical Polyadic (CP) decomposition or PARAFAC,
and Tucker decomposition [9] [10]. CP decomposition represents a tensor as a sum of rank-1
tensors and it decomposes a tensor into a set of component matrices or vectors [11]. A tensor
is divided into a core tensor and factor matrices along each mode using Tucker decomposi-
tion. This decomposition provides more flexibility in identifying intricate connections within
the data.

Recently, tensor decompositions have found applications in various areas of cancer research.
Specifically, they have been utilized to analyze gene expression data and identify distinct pat-
terns or subtypes of cancer. Through decomposing the high-dimensional gene expression tensor,
researchers can reveal hidden structures and relationships within the data. This deeper under-
standing of tumor heterogeneity enables the development of personalized treatment strategies,
leading to improved outcomes for cancer patients [12]. Tensor decompositions have also been
utilized in medical imaging to extract meaningful features from multi-modal imaging data, en-
abling improved tumor detection, classification, and tracking. Overall, tensor decomposition
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techniques offer valuable tools for analyzing complex cancer data sets, including imaging data
and multi-omics data.

This paper provides a comprehensive review of research conducted from 2013 to 2023, focus-
ing on the latest advancements in cancer studies utilizing tensor decompositions. The integra-
tion of imaging data with other multi-omics information has propelled the widespread adoption
of tensor decomposition algorithms in cancer research. These algorithms have proven to be
highly valuable in tackling the challenges posed by diverse data sources and have contributed
to the identification of biomarkers, highlighting their crucial role in the field.

2 Comprehensive Review

The steps in this comprehensive review was to define the goals of the survey. These goals are
described as follows:

e Identifying the problems and challenges regarding the cancer data sets such as image data
and omics data.

e Identifying tensor decomposition algorithms employed to tackle these challenges and their
applications in different cancer studies.

In this comprehensive review, we first searched and found the literature for publications using
different search engines and databases of publications. The search query we used was (”tensor”
AND ”decomposition”) AND (”cancer” AND ”study”) AND (”spatial” AND ”imaging”). This
search query was used on many databases including IEEE Xplore, SpringerLink, ACM Digital
Library. From these databases, we studied each publication and used that information to the
main question that were mentioned in this comprehensive review. Figure 1 illustrates the
number of publications utilizing tensor decomposition for cancer studies during the specified
time frame.

The collection of papers examined in-depth the various challenges associated with cancer
study datasets and proposed innovative solutions by leveraging different tensor decomposition
methods. These papers delved into the complex nature of cancer data, shedding light on
the hurdles researchers face when working with large-scale, high-dimensional datasets that
encompass diverse variables and intricate relationships.

One significant challenge that these papers addressed was the issue of data sparsity. To
tackle this challenge, researchers explored tensor decomposition techniques that effectively
handle missing data, enabling them to impute or predict the missing values accurately. By
leveraging advanced tensor decomposition methods, such as Tucker decomposition or CANDE-
COMP/PARAFAC (CP) decomposition, the papers offered promising approaches to enhance
data completeness and reliability [13].

In this comprehensive review paper, we delve into recent and innovative approaches that
make significant contributions to the advancement of cancer research. These approaches not
only aid in diagnosis and treatment but also have the potential to greatly improve patient out-
comes. By exploring cutting-edge methods and techniques, this paper sheds light on promising
avenues for tackling the challenges in cancer study datasets and highlights their potential impact
on the field of oncology.
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Figure 1: Number of papers published from 2013 to 2023

3 Cancer Study Data Types

Cancer research relies on various types of data to gain insights into the disease and develop
better diagnostic and treatment approaches. Two important types of data used in cancer studies
are image data and omics data.

3.1 Image Data

Image data in cancer studies refers to visual representations of tissues, cells, or organs obtained
through medical imaging techniques such as X-rays, computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET), and histopathology slides.
This type of data plays a critical role in cancer research as it allows researchers to observe
and analyze the structural and functional characteristics of tumors and surrounding tissues
[1]. Image data, such as radiology images or digital pathology images, plays a crucial role in
cancer diagnosis and treatment. Clinicians rely on these images to detect and diagnose cancer,
as they provide valuable information about the presence, location, size, and characteristics of
tumors [12]. Under imaging, the topic of multilayer decomposition is important because it
leverages a specific imaging layer in addition to a specific tensor structure. This method offers
the advantage of simultaneously combining multimodality information and efficiently capturing
the varied spatial aspects of signals without relying on a population structure [3]. Cancer
images often exhibit high variability in terms of image quality, acquisition parameters, and
imaging modalities. This variability poses challenges in standardizing the images and ensuring
consistency across different datasets. To overcome these challenges and enhance the reliability
of the analysis, preprocessing and normalization techniques are crucial [6] [14].

Tensor decompositions can help address several challenges in cancer image analysis. Here
are some specific challenges that tensor decompositions can help overcome:

Heterogeneity: Tensor decompositions enable the extraction of latent features from multi-
dimensional cancer image data, facilitating the identification of underlying patterns and sub-
types. By decomposing the tensor into lower-rank components, tensor decomposition techniques
can capture shared information across heterogeneous images and facilitate the discovery of com-
mon characteristics [6].

Variability: Tensor decomposition algorithms can effectively handle the variability present
in cancer images by extracting robust and discriminative features. These algorithms have the
ability to capture essential information while minimizing the influence of noise, artifacts, and
imaging variations. Moreover, tensor decomposition methods can be utilized for denoising and
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artifact removal in cancer images, thereby improving their overall quality and consistency [6].

Integration of multi-modal data: Cancer studies frequently require the integration of infor-
mation from various imaging modalities, including MRI, CT, and PET. Tensor decompositions
offer a powerful framework for effectively fusing multi-modal data by modeling the joint relation-
ships among different modalities. By decomposing the multi-modal tensor, tensor decomposi-
tion techniques can unveil shared and complementary information, facilitating a comprehensive
analysis of multi-modal cancer images [15].

Tensor decomposition methods play a valuable role in the segmentation and annotation
of cancer images. By decomposing the tensor into low-rank components, these methods can
effectively separate different tissue types, tumors, or anatomical structures, thereby aiding in
automated or semi-automated segmentation tasks. Furthermore, tensor decomposition tech-
niques can be synergistically combined with other image analysis algorithms to enhance the
accuracy and efficiency of the segmentation process [16].

Data reduction and efficiency: Cancer image datasets can be large and computationally
demanding. Tensor decomposition algorithms can reduce the dimensionality of the data by
capturing the most relevant information in a compact representation. This data reduction can
lead to more efficient storage, retrieval, and analysis, enabling faster processing of large-scale
cancer image datasets [12].

Interpretability and feature extraction: Tensor decompositions can extract interpretable
features from cancer images, aiding in the understanding of underlying biological processes
and disease characteristics. By decomposing the tensor into lower-rank components, tensor
decomposition techniques can identify meaningful patterns and biomarkers in cancer images,
providing insights into disease progression, treatment response, and prognosis [17].

By leveraging tensor decompositions, researchers can effectively address these challenges in
cancer image analysis, leading to improved understanding, diagnosis, and treatment of cancer.

3.2 Omics Data

Omics data refers to large-scale molecular datasets that encompass various aspects of cellular
activity and composition. These datasets are generated using high-throughput methods and
provide comprehensive information. In the context of cancer research, omics data, including ge-
nomics, transcriptomics, and proteomics, play a crucial role in identifying molecular biomarkers
associated with cancer development, progression, and treatment response. However, the chal-
lenge lies in merging disparate omics data types into a unified data structure and analyzing
them collectively, posing additional difficulties [18]. Managing and analyzing such large-scale
datasets requires the utilization of advanced computational and statistical methods to extract
meaningful information. One of the significant challenges is integrating multiple omics datasets.
In tensor decomposition, it has been found as a useful data analysis tool which provides an ef-
ficient way to integrate epigenomic data [9] [15]. In omics data, artificial intelligence (AI) plays
a big role in the detection and monitoring of tumors. These Al tools can be used to decrease
oversights and can be used as a detector against errors [14]. The integration of different types of
omics data is crucial for obtaining a comprehensive understanding of cancer biology. However,
this integration task is complex due to inherent biases, measurement errors, and differing scales
inherent in these heterogeneous datasets [19].

Tensor decompositions can contribute to addressing various challenges in omics data anal-
ysis. Here are some specific challenges that tensor decompositions can help overcome in the
context of omics data:

High dimensionality: Omics data, such as genomics, transcriptomics, and proteomics, are
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characterized by high-dimensional feature spaces. Tensor decompositions offer a powerful ap-
proach for dimensionality reduction by capturing the inherent low-rank structure in the data.
By decomposing the omics tensor, tensor decomposition methods can effectively extract mean-
ingful and concise representations of the data, facilitating downstream analysis [19].

Data integration: Integrating multiple omics datasets is crucial for a comprehensive analy-
sis and understanding of complex biological systems. Tensor decompositions provide a natural
framework for integrating heterogeneous omics data types. By decomposing the multi-omics
tensor, tensor decomposition techniques can reveal shared and specific patterns across differ-
ent data sources, enabling the identification of cross-modal relationships and uncovering novel
insights [20].

Missing data imputation: Omics datasets often suffer from missing values due to experimen-
tal limitations or technical factors. Tensor decomposition methods can handle missing data by
exploiting the latent structure in the tensor. By decomposing the tensor, tensor decomposition
techniques can predict missing values based on the observed patterns, enabling the imputation
of missing omics data and facilitating a more complete and reliable analysis [19].

Feature selection and extraction: Tensor decompositions can aid in feature selection and
extraction from omics data. By decomposing the tensor into lower-rank components, tensor
decomposition techniques can identify the most informative features or patterns associated
with specific biological processes or phenotypes. This enables dimensionality reduction and the
identification of relevant biomarkers, facilitating efficient and interpretable analysis of omics
data [2].

Network analysis and pathway identification: Omics data often involve interactions and rela-
tionships between different biological entities, such as genes, proteins, and metabolites. Tensor
decompositions can uncover network structures and pathways by capturing higher-order rela-
tionships in the data. By decomposing the tensor, tensor decomposition methods can identify
co-regulated or co-occurring features, facilitating the identification of functional modules, path-
way analysis, and biological interpretation.

Temporal and spatial analysis: Omics data collected over time or across spatial locations
require methods that can capture temporal or spatial patterns [21]. Tensor decompositions
can model the spatiotemporal structure in omics data by considering multiple dimensions si-
multaneously. By decomposing the tensor, tensor decomposition techniques can extract latent
temporal or spatial factors, enabling the analysis of dynamic or spatially varying processes in
omics data.

By leveraging tensor decompositions, researchers can address these challenges in omics data
analysis, leading to a deeper understanding of biological systems, identification of biomarkers,
and the discovery of novel insights in various omics domains.

4 Tensor Decomposition Methods

In this section of this paper, we will go over the approaches and methodologies that are used
in the reviewed literature on cancer study using different tensor decomposition methods.

4.1 Canonical Polyadic (CP)

PARAFAC is a commonly employed tensor decomposition technique extensively utilized for
cancer studies in image and multi-omics datasets. It serves as a method to break down mul-
tidimensional arrays, enabling focused analysis on specific aspects of interest and delivering a
clear depiction of the obtained results. In the first equation (1), which represents a PARAFAC
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Data Type

Nature of Data

Data Generation

Data Integration

Dimensionality

Missing Data Handling

Feature Extraction

Network Analysis

Temporal and Spatial Analysis

Data Reduction

Interpretability

Visual representations of tissues, cells, or
organs obtained through medical imaging
techniques such as X-rays, CT, MR, PET,
and histopathology slides.

Visual images capturing structural and
functional characteristics of tumors and
surrounding tissues.

Image acquisition through medical
imaging devices.

Integration of images from various

modalities (MR, CT, PET) may be required.

High-dimensional data due to image
resolution and multiple modalities.

Techniques for preprocessing and
normalization to address image variability.

Tensor decomposition aids in feature
extraction and robust pattern recognition.

Limited capability for network analysis
without additional processing.

Limited capability to analyze temporal or
spatial aspects without specialized
methods.

Data reduction is possible through feature
extraction techniques.

Interpretability of visual data relies on
clinical expertise.

Large-scale molecular datasets
encompassing genomics, transcriptomics,
proteomics, etc.

Molecular data representing genetic,
transcriptional, and protein-level
information.

High-throughput methods for data
generation.

Integration of different omics data types
(genomics, transcriptomics, proteomics) is
crucial.

High-dimensional data due to the
complexity of molecular information.

Missing data imputation methods due to
experimental limitations or errors.

Tensor decomposition helps in
dimensionality reduction and feature
selection.

Tensor decomposition can uncover
network structures and pathways.

Tensor decomposition can capture
spatiotemporal patterns in multi-
dimensional data.

Data reduction via dimensionality
reduction approaches.

Tensor decomposition can extract
interpretable features and biomarkers.

Figure 2: Contrasting Imaging and Omics Datasets in Cancer Research

model, the variables we used hold different meanings/interpretations [17]. The f represents the
number of components and it is used to define loading matrices A, B, and C of the dimensions
I*F , J*F, and K*F, and this will use elements a;f, bjf, c¢xs and the modeling error e;jy.

Tijk = Z aifbjrcry + eijk

(1)

The article, [20] proposes a novel approach for predicting the progression of Alzheimer’s dis-

ease using MRI (Magnetic Resonance Imaging) data. The method leverages tensor multi-task
learning, which is a machine learning technique that jointly learns multiple related tasks to
improve performance.The authors focus on capturing both spatial and temporal characteristics
of the MRI data. They employ a tensor-based representation to model the multi-dimensional
structure of the data and incorporate spatio-temporal similarity measurements. This approach
enables the identification of patterns and changes in the MRI data over time, which are impor-
tant indicators of Alzheimer’s disease progression [16].

The objective of CP decomposition is to determine the factor matrices and their corre-
sponding weights that can provide the closest approximation to the original tensor. This is
usually accomplished by minimizing the sum of squared deviations between the original ten-

¢

sor and its estimated approximation [22]. According to reference [20], the figure 3 shows that
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Figure 3: A graphical illustration of a PARAFAC model.

the PARAFAC decomposition process reveals that the morphological changing patterns among
biomarkers, which indicate similarity, can be represented as multiple rank-one tensors [16].
Each rank-one tensor is obtained by taking the outer product of three latent components. The
dimensions associated with the first biomarker, second biomarker, and patient samples are
utilized to define each latent factor. Consequently, this approach provides an interpretable
method for characterizing the latent factors responsible for the variability in the data [16]. In
figure 3, A tensor is used to represent CP decomposition, which captures the resemblance in
the morphological changing trend among biomarkers [16]. This uses the performed method of
CP decomposition and extracts the set of rank-one latent factors from the original data. An-
other example of PARAFAC that is used is in reference [1]. This article talks about correlation
tensor decomposition aiming to capture the correlations or relationships between voxels in a
high-dimensional tensor. This technique can be useful for tasks such as denoising, dimension-
ality reduction, feature extraction, and data visualization [1].

4.2 TUCKER Decomposition

Tucker decomposition, also known as higher-order singular value decomposition (HOSVD), is
a tensor factorization method that aims to decompose a tensor into a core tensor and factor
matrices along each mode. It is an extension of the matrix singular value decomposition (SVD)
to higher-dimensional data [20]. Due to its versatility and the manner in which it treats the
PARAFAC model as a specific case, the Tucker model is commonly employed for decomposition,
compression, and interpretation in various applications. According to reference [2], the study
considered the data as a multi-way array, and that their approach is arranged in a 4-way tensors,
and a Tucker decomposition with constraints that find the set of basis matrices and features for
data [9]. Another way that the Tucker decomposition method is used, according to reference
[22], is that it is used to fuse image information and gene information to gather features that
can express a relationship between two modalities. This study focused on the treatment of non-
small cell lung cancer. The researchers extracted 2D images from 3D data and preserved the
spatial correlation of the original texture and edge information. This approach expanded the
sample size of the image data to facilitate subsequent prediction [23]. According to reference
[7], the researchers utilize an epigenomic tensor, a multidimensional representation of epigenetic
data, to analyze complex biological datasets. This tensor captures information about DNA
methylation patterns, histone modifications, and gene expression levels. The epigenomic tensor
analysis incorporates epigenomic data, which focuses on the study of chemical modifications to
DNA and histones that regulate gene expression. Epigenomic data is an important component
of omics data and provides valuable insights into the functional elements of the genome [7].
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4.3 Hierarchical Tensor Decomposition

A variation of the Tucker decomposition that focuses primarily on hierarchical tensor structures
is called the Hierarchical Tucker Decomposition (HTD). Despite offering a flexible framework
for high-dimensional data analysis, the Tucker decomposition may not be effective when dealing
with large-scale tensors or tensors with hierarchical relationships. The HTD algorithm aims
to capture the hierarchical structure within a tensor by representing it in a hierarchical form,
where tensors at different levels of hierarchy correspond to different levels of detail or resolution.
It allows for a more compact representation of hierarchical data, reducing the computational
complexity and memory requirements compared to traditional Tucker decomposition [24]. In
HTD, a tensor is represented as a tree-like structure, where each node corresponds to a tensor at
a specific hierarchical level. The leaf nodes of the tree represent the original data tensor, while
the internal nodes represent intermediate tensors obtained through hierarchical transformations.
The root node corresponds to the highest level of hierarchy, representing the overall tensor [25].
In reference [24], the researchers showed how they could exploit tensor parallelism using HT
tensors. They also wanted to show the potential of GPU tensor cores and utilize primitives
to provide high performance [24].Hierarchical Tucker Decomposition (HTD) provides numerous
benefits for analyzing hierarchical tensor structures. Firstly, HTD reduces computational com-
plexity compared to traditional Tucker decomposition, enabling efficient analysis of large-scale
tensors. By leveraging hierarchical dependencies, the algorithm generates a more compact
representation, minimizing memory requirements and enhancing scalability [26]. HTD effec-
tively captures both global and local dependencies within hierarchical data, facilitating feature
extraction and analysis in diverse domains such as image and video processing, genomics, neu-
roscience, and social network analysis. Nevertheless, HTD encounters certain challenges [27].
Constructing an accurate hierarchical tree that accurately reflects underlying dependencies can
be difficult, particularly when the hierarchical structure lacks clear definition or exhibits varia-
tion across different data instances. Scalability poses a concern for extremely large-scale tensors,
as computational and memory demands escalate with tensor size and hierarchical depth. In-
terpreting the obtained hierarchical factors can be intricate, especially with deep hierarchies
or when hierarchical levels entail diverse interpretations. Ongoing research and developments
strive to address these challenges by exploring adaptive hierarchical structures and incorporat-
ing sparsity, thus augmenting the capabilities of hierarchical tensor decomposition methods [13]
[28].

Figure 4 illustrates the number of published papers from 2013 to 2023 that used above
mentioned methodologies.The choice between using CP decompositions and Tucker models in
cancer studies depends on several factors, including the specific research goals, the nature of the
data, and the research context. While CP decompositions and Tucker models are both tensor
decomposition techniques, they have different strengths and weaknesses that make them suitable
for different types of analyses. CP decomposition is commonly preferred in cancer studies for
several reasons such as interpretability, simplicity, computational efficiency, and overfitting
prevention. However, it is important to note that the choice between CP decompositions and
Tucker models ultimately depends on the specific research objectives and the characteristics
of the dataset. In certain scenarios, Tucker models may be more appropriate, such as when
there is a need to model complex interactions or when the data exhibit significant dependencies
across different modes.
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Figure 4: Number of published papers (2013-2023) for each methodology

5 Future Research Directions

The potential of tensor decompositions in advancing cancer studies through multi-dimensional
data analysis is highlighted in this research. By addressing challenges and exploring novel
applications, tensor-based approaches can improve cancer diagnosis, personalized treatment
strategies, and our understanding of cancer biology.

One key research direction is the integration of multi-omics data, such as genomics, tran-
scriptomics, epigenomics, and proteomics, using tensor decompositions. This holistic approach
can uncover comprehensive molecular signatures associated with cancer subtypes, treatment
response, and patient outcomes. Another direction involves incorporating spatial and temporal
dimensions into tensor decompositions to analyze tumor evolution, genomic alterations, and
dynamic changes in molecular profiles. Understanding the spatiotemporal dynamics of tumor
growth, metastasis, and therapeutic resistance is crucial. Tensor decompositions can also be
adapted for single-cell analysis, allowing for the identification of rare cell populations, charac-
terizing cell-state transitions, and deciphering cellular networks within the tumor microenvi-
ronment. This approach provides insights into tumor heterogeneity and cellular dynamics. In
addition to molecular data, integrating clinical variables alongside molecular data using tensor
decompositions facilitates the identification of prognostic factors, personalized treatment strate-
gies, and the development of predictive models for treatment response and survival outcomes.
Although tensor decompositions offer data compression and feature extraction, interpreting the
extracted latent factors can be challenging.

Future research should focus on developing interpretable tensor decomposition methods that
provide meaningful insights and visualizations, aiding in the understanding of complex molec-
ular interactions, biological processes, and clinical implications. Addressing missing values in
tensors, especially in large-scale omics datasets, is important for accurate analysis. Develop-
ing tensor-based methods for missing value imputation can enhance data quality and enable
analysis of complete datasets. Furthermore, bridging the gap between Tucker3 decomposition
and chemometrics in cancer research can unlock new avenues for understanding the molecular
underpinnings of cancer, identifying biomarkers, and developing predictive models. Applying
Tucker3 decomposition in chemometrics for cancer studies can enhance our understanding of
cancer biology at a molecular level, leading to improved patient outcomes and personalized
medicine approaches.
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6 Conclusion

Tensor decompositions have emerged as a valuable tool in the field of cancer study, offering pow-
erful techniques for analyzing complex and high-dimensional datasets. By representing multi-
dimensional data as tensors, these methods enable researchers to extract meaningful patterns,
identify relevant biomarkers, and gain deeper insights into the underlying mechanisms of cancer
development, progression, and treatment.The integration of tensor decomposition techniques
with other analytical approaches promises to revolutionize cancer research and pave the way for
improved diagnostics, treatments, and outcomes for patients worldwide. This paper provides
an extensive overview of research conducted between 2013 and 2023, specifically examining
the recent progress made in cancer studies through the application of tensor decompositions.
By incorporating imaging data and other multi-omics information, tensor decomposition algo-
rithms have emerged as highly influential tools in cancer research. The complexities stemming
from diverse data sources have highlighted the importance of these algorithms in identifying
biomarkers, emphasizing the challenges, limitations, and potential advancements in this field.
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