
Program Verification as Satisfiability Modulo

Theories

Nikolaj Bjørner1, Ken McMillan1 and Andrey Rybalchenko2

1 Microsoft Research
2 Technische Universität München

Abstract

A key driver of SMT over the past decade has been an interchange format, SMT-LIB,
and a growing set of benchmarks sharing this common format. SMT-LIB captures very
well an interface that is suitable for many tasks that reduce to solving first-order formulas
modulo theories. Here we propose to extend these benefits into the domain of symbolic
software model checking. We make a case that SMT-LIB can be used, and to a limited
extent adapted, for exchanging symbolic software model checking benchmarks. We believe
this layer facilitates dividing innovations in modeling, developing program logics and front-
ends, from developing algorithms for solving constraints over recursive predicates.

1 SMT and checking properties of recursive predicates

Progress in modern SMT solvers has been driven by a large set of applications in diverse
areas. Applications reduce problems to common first-order formats, SMT-LIB [5] and now also
the THF [13] format in TPTP, for exchanging benchmarks. They benefit from the progress in
automated deduction in SMT solvers and utilize the smorgasbord of theories that are supported
with efficient and dedicated solvers. Common to SMT solvers is their support for simply typed
first-order classical logic augmented with theories. They solve satisfiability of formulas over
the supported language. When SMT solvers are used to discharge verification conditions from
program verifiers, it is important to be able to check validity, or dually unsatisfiability. When
SMT solvers are used in dynamic symbolic simulation, the more interesting question is to
determine satisfiability and find a satisfying assignment to formulas. A key driver of progress
in these applications has been the ability to exchange problems using standardized and well-
defined logics, theories and syntax, especially as embodied in the SMT-LIB standard.

Here we propose to extend these benefits into the domain of symbolic software model check-
ing. This problem reduces to the problem of inference of the intermediate specifications re-
quired by various proof systems. These specifications can be, for example, loop invariants,
procedure summaries, environment assumptions or dependent types. As observed in [6], the
inference problem in turn reduces to the problem of satisfiability of a certain class of first-order
constraints containing unknown relations. These constraints can be produced by existing ver-
ification condition generators, which already typically target the SMT-LIB standard. We will
argue that, with very slight extensions, SMT-LIB can be adapted to be a standard interchange
medium for software model checking and related problems. The advantage of such an approach
is a clean separation of concerns: the interpretation of programming language is left to verifi-
cation condition generators, while model checking is handled by purely logic-based tools. This
separation could have several benefits. It relieves the algorithm implementer from the need
to deal with the complexity of programming languages, it allows implementations to be easily
re-targeted to different languages, and it allows algorithms to be compared directly, without
concern for the ambiguity of how programming languages are modeled. At the very least it can
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be instrumental for comparing algorithms for checking recursive predicates whether they come
from software model checking or not.

In this paper, we propose extensions to SMT-LIB to allow it to be used as an interchange
format for software model checking benchmarks. We are not alone in suggesting ways of lever-
aging SMT-LIB for verifying reactive systems and software. The VMT 1 effort, see also the
proceedings for this workshop (SMT 2012), proposes extending SMT-LIB with notation for
transitions. Our suggestion is to utilize Horn clauses as a low-level, but uniform, exchange for-
mat. Transition systems and, more generally, push-down systems can be translated into Horn
clauses. Of course, Horn clauses can be translated into transition systems by using a theory
that can express stacks. The Numerical Transition Systems Library also aims to identify an
interchange format for transition systems. We aim to provide a basis for comparing various
tools that work on various incarnations of recursive predicates, such as [14, 2, 3, 8, 1].

2 Program verification Tool work-flow

A proof system gives us rules for decomposing the proof of a complex goal into proofs of simpler
sub-goals. These rules are typically non-deterministic, requiring us to instantiate some auxiliary
construct. Consider, for example, the proof rule for sequential compositions in Hoare logic:

{P} s1 {Q} s2 {R}
{P} s1; s2 {R}

Here, the intermediate assertion Q is the auxiliary construct that must be instantiated in order
to decompose the proof. The decomposition yields two sub-goals above the line, one involving
s1 and the other involving s2. The difficulty in this step is to infer the predicate Q.

In software model checking we are concerned with the problem of automatically inferring
these auxiliary proof constructs. Here we would like to argue that this inference problem can
be handled in a generic way. That is, we are interested in methods that are to some extent
independent of the proof system, and require only that the proof sub-goals can be expressed in
a suitable logical form.

In program proving, the translation of proof sub-goals into logic is commonly referred to as
verification condition (VC) generation. For example, suppose in the above example that our
program has one variable x. The VC’s can be written in this form:

∀x, x′. (P (x) ∧ [s1](x, x′) ⇒ Q(x′))

∀x, x′. (Q(x) ∧ [s2](x, x′) ⇒ R(x′))

where [si] is some relation representing the operational semantics of program statement si. If
these two formulas are shown to be valid, then our proof sub-goals are discharged, and we know
that {P} s1; s2 {R} holds. Notice though, that these VC’s contain one unknown relation Q
that must be inferred. In a typical VC checking application, the user would provide the relation
Q in logical form, and the task of the verification tool is to check that the two individual proof
sub-goals are valid. On the other hand, the inference problem is to simultaneously solve the
VC’s for a value of Q that makes both true. Both of these problems are satisfiability problems.
In the former case, we separately check satisfiability of the negation of each condition, with a
fixed value for Q, while in the latter, we check satisfiability of both constraints together, with
an uninterpreted symbol standing in for Q.

1https://sites.google.com/site/torino2011ic0901/programme/talks
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We will observe that the VC’s for a wide variety of proof systems have a particular form.
That is, they are of the form ∀X. (B ⇒ H), where X is some set of first-order variables, H is
an application of some (possibly unknown) relation, and B is a formula in which the unknown
relations occur only positively (that is, under an even number of negations) and not under
quantifiers. For example, the two VC’s above are of this form. We will refer to such formulas
as generalized Horn formulas. We will say that H is the head of the generalized Horn formula,
B is the body, and the arity of a generalized Horn formula is the number of occurrences of an
unknown relation in the body.

Quite a variety of proof systems produce VC’s as generalized Horn formulas. For example,
within procedures, Hoare logic produces sub-goals of the form {P} s {Q}, which as we have
seen yield generalized Horn formulas of arity one as VC’s.

Now let’s consider procedure calls, in the way they are handled by the verification condition
generator for the Boogie programming language [4]. A parameter-less procedure π in Boogie
has the following form:

procedure π:
requires P (X);
ensures Q(Xold , X);
σ

Here, formula P is a required precondition to enter the procedure, formula Q is the guaranteed
post-condition and statement σ is the body of the procedure. The precondition is over the
program variables X, while the post-condition refers to the program variables X and their
entry procedure entry values Xold .

To generate verification conditions, Boogie replaces each call to π with the following code:

assert P (X);
Xold := X;
havoc X;
assume Q(Xold , X);

The havoc statement causes the variables X to take a non-deterministic value. Thus, the
transformed call to π behaves as any code satisfying the specification of π. Now suppose the π
is called in the following context:

assert R(X);
call π;
assert S(X);

After replacing the call to π, the verification conditions we obtain from the weakest precondition
calculus are:

∀X. R(X) ⇒ P (X)

∀Xold , X. (R(Xold) ∧Q(Xold , X) ⇒ S(X))

Note that these formulas are also in generalized Horn formula form and that the second VC
has arity two. That is, there are two unknown relations in the body of the second VC.

A very simple modular proof system for concurrent programs is given in [7]. We are given
a collection of N parallel process of the form:

process πi:
while * do

ρi
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Each process πi has a set of local variables Xi. The processes share a set Y of global variables.
We wish to prove in a modular way that, given some initial condition φinit(X1, . . . , XN , Y ),
some error condition φerror (X1, . . . , XN , Y ) is never true. The relations to be inferred for
each process i are Ri(Xi, Y ), which is the invariant of the loop, and Ei(Y, Y

′), which is the
environment constraint. The verification conditions for process πi are:

∀X1, . . . , XN , Y. φinit(X1, . . . , XN , Y ) ⇒ Ri(Xi, Y )

∀Xi, Y,X
′
i, Y

′. Ri(Xi, Y ) ∧ [ρi](Xi, Y,X
′
i, Y

′) ⇒ Ri(X
′
i, Y

′)

∀Xi, Y, Y
′. Ri(Xi, Y ) ∧ Ei(Y, Y

′) ⇒ Ri(Xi, Y
′)

∀Xi, Y,X
′
i, Y

′. Ri(Xi, Y ) ∧ [ρi](Xi, Y,X
′
i, Y

′) ⇒ Ej(Y, Y
′) for j ∈ {1, . . . , N} \ {i}

These conditions state respectively that the initial condition implies the loop invariant, the loop
body preserves the loop invariant, environment transitions preserve the loop invariant, and the
loop body (executed atomically) is an allowed environment transition for other processes. The
global correctness condition is:

∀X1, . . . , XN , Y. R1(X1, Y ) ∧ · · · ∧RN (XN , Y ) ∧ φerror (X1, . . . , XN , Y ) ⇒ False

Note again that all these proof sub-goals are generalized Horn formulas.
Another example is type checking of dependently typed functional programs. Consider the

Liquid Types system [12]. In this system, a refinement type has the form {ν : β | P (ν,X)},
where β is a base type and P is a relation over the value ν and program variables X. For
example, {ν : int | ν > x} is the type of integers greater than variable x. A type binding
y : {ν : β | P (ν,X)} is translated to the logical constraint [[P (y,X)]], where [[·]] is a conservative
embedding of program terms into the logic. The typing rules of Liquid Types produce type
checking sub-goals of the form Γ ` {ν : β | P1(ν,X)} ≺ {ν : β | P2(ν,X)} where ≺ is the sub-
type relation and Γ is an environment consisting of type bindings and constraints on variables
deriving from program guards. Logical verification conditions in the form of generalized Horn
formulas are produced by the following rule:

[[Γ]] ∧ [[P1(ν,X)]]⇒ [[P2(ν,X)]]
Γ ` {ν : β | P1(ν,X)} ≺ {ν : β | P2(ν,X)}

Existence of a relational interpretation satisfying these conditions is a sufficient condition for
type safety of the program (though not a necessary condition, since the typing rules are con-
servative).

3 SMT as a Logical Layer

In the previous section we described how program verification tools produce verification con-
ditions that can be viewed as a conjunction of Horn clauses. Program correctness reduces to
finding a solution to the recursive predicates defined by the Horn clauses. We will here elaborate
on what this problem means in terms of logical formulas.

3.1 From Recursive Predicates to SMT

In its basic form, the problem posed by solving verification conditions is to determine whether
there are solutions to recursive predicates, such that a conjunction of universally quantified Horn
formulas is true. In other words, the query is whether a conjunction of formulas is satisfiable.
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This characterization side-steps the semantics of auxiliary functions, background theories and
assertions, other than theories that are indigenous to SMT such as arithmetic. We claim that
the appropriate semantics is to determine that for every interpretation of a given background
theory there is a solution to the recursive predicates. Using logical notation, we check the truth
values of formulas of the form:

∀~R, ~f . Background [~R, ~f ] ⇒
∃~P .

∧
∀ ~X .

(
P1(X1) ∧ . . . ∧ PN (XN ) ∧ φ[~R, ~f, ~X] ⇒ P (X)

)
(1)

This format is not directly supported by SMT-LIB. It includes universal quantification over
relations and functions. The quantifier alternation is also inconvenient if we wish to refer to
recursive predicates as free variables (recall that ∃P.ϕ[P ] is satisfiable if and only if ϕ[P ] is
satisfiable, so it is typically more convenient to define P as an uninterpreted predicate). We
can change the alternation of quantifiers by exchanging the two outer alternations:

∃~P . ∀~R, ~f . Background [~R, ~f ] ⇒∧
∀ ~X .

(
P1(X1, ~R, ~f) ∧ . . . ∧ PN (XN , ~R, ~f) ∧ φ[~R, ~f, ~X] ⇒ P (X, ~R, ~f)

)
(2)

The universal quantification over relations and functions is still present. Furthermore, P has
additional arguments. Can we use SMT-LIB for higher-order problems? The theory of exten-
sional arrays in SMT-LIB includes the function select. It corresponds to function application.
This suggests the following approach: treat functions and relations as arrays, then use SMT
solvers to check satisfiability of the resulting formula with arrays. The catch is that the model
theory for this first-order reformulation does not correspond to the original second-order for-
mulation. In the following, we will avoid these transformations and side-step having to deal
with what are potentially adequate (higher-order or Henkin) theories for arrays. Instead we
will augment SMT-LIB slightly.

3.2 From SMT to Solutions of Recursive Predicates

Many applications of SMT solvers are only interested in checking validity of formulas. So, given
a formula ϕ, they assert ¬ϕ and check if the SMT solver produces the answer unsat. Similar,
in program verification, we are interested in checking a property. The most basic answer we
would expect from a verification tool for programs is whether the property ϕ can be established.
Dually, we can ask whether the property ¬ϕ is unreachable.

More informative answers are possible. One may want a certificate for unreachability or a
certificate for reachability. A certificate for reachability is in a nutshell a proof of unsatisfiability.
The proof can be presented as a trace. A certificate for unreachability is in a nutshell a model
for the recursive predicates. So what is a model? Saturation based theorem provers may be able
to produce a set of saturated clauses that do not include the empty clause and such that any
clause that can be deduced from the saturated set is subsumed. Checking that a set of first-order
clauses is saturated is relatively straight-forward. Unfortunately, we are not aware of reasonable
notions of saturation modulo theories. A different way to represent models is to produce a
formula for each recursive predicate. The free variables in the produced formulas correspond
to the arguments of the recursive predicate. So in a sense the formulas correspond to macro
expansions of the recursive predicates. Checking such a solution requires theorem proving: Plug
in the macro expansion for each of recursive predicates and check that the resulting formula
is valid. The proof obligations are ground when the background is empty. Existing tools for
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generating interpolants and lifting PDR to theories 2 do produce such certificates that can be
checked by SMT solvers for ground formulas. We speculate that finer-graned certificates are of
potential useful: macros together with proof hints that are used for checking that the macros
are indeed solutions.

3.3 Bloat in Translation?

What is the cost of resorting to a logical encoding of programs and their control-flow graphs?
We alluded to that a control flow graph (CFG) corresponds directly to a set of Horn clauses.
Each node in the CFG is a predicate. Horn clauses encode Hoare triples between locations. In
our experience, the main source of bloat is how variable scoping is handled: all local variables
in scope have to be either directly arguments of the recursive predicates, or indirectly by using
records or arrays that summarize variables. Current tools for solving predicates work with
variables enumerated directly. Using records would require additions to SMT-LIB from its
current form. In particular, it would be useful to have a way to update a record. One could
also consider using arrays instead of records, but general purpose decision procedures for the
theory of extensional arrays are not really well tuned for this special purpose usage.

3.4 Loss in Translation?

A dual concern is whether this layer opens up for loss in translation. We argue not, as rules can
be in one-to-one correspondence with CFG/abstract syntax tree representations of programs.

3.5 Dealing with Heap

There are many possible ways to model and reason about heaps. Front-end tools may choose
a model of their choice and encode the model in background axioms. Back-end solvers are
also left open to detect heap operations and provide different abstractions, such as separation
logics. Hence, it is also an area where solvers can compete on applying different abstractions.
In summary, the approach (with encoding CFGs to SMT constraints) does not by itself require
fixing one particular model of heaps.

4 Recursive predicates in Z3

ARMC [11] and HSF [6] encode recursive predicates as Horn formulas in Prolog syntax. In
a similar style, µZ [10, 9] uses an extension of the SMT-LIB format for representing recursive
predicates. Recursive predicates are treated differently from non-recursive predicates. Recursive
predicates are defined in rules and checked in queries. Non-recursive predicates and functions
may be used in rules and queries; they can be further constrained by background assertions.

4.1 Recursive predicates

Z3 has four syntactic constructs for handling recursive predicates. We summarize these below.

(rule rule ) declares a rule, where rule is an SMT-LIB expression expected to be of the
form:

2In the case of PDR, we give a few small examples of such certificates on http://rise4fun.com/Z3Py/

tutorial/fixedpoints
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rule ::= (forall (bound ) rule ) | (=> body rule ) | (R args )

The relation R in the head is expected to be declared as a recursive relation. The supported
format for body is as a quantifier-free formula such that the recursive predicates (such as
R ) occur positively.

While the internal engine in µZ uses Horn clauses, rules are not required to be Horn
clauses. Nested disjunctions in bodies are eliminated using a Tseitsin style transformation
that produces a set of Horn clauses.

(query query ) where query ::= (exists (bound ) query ) | body.

(declare-rel R (S 1 . . . S n)) declares a recursive relation R. It takes n arguments of sort
S 1 . . . Sn respectively.

(declare-var v S ) Rules and queries may reference variables declared using declare-var.
When used in rules, the variables are universally quantified, when used in queries, the
variables are existentially quantified. The declare-var construct is purely syntactic
sugar. It makes writing rules more convenient because it saves the overhead of binding
the same variables in different rules.

A query is satisfiable if there are instances of the existential variables and a derivation
of recursive rules that derives the query. Otherwise a query is unsatisfiable. This definition
corresponds to checking queries with Prolog and Datalog. It is dual to how the semantics
corresponds to SMT: when there is no instantiation of variables that satisfy a query it means
that there is an interpretation of the recursive predicates that satisfy each rule, but satisfies
the negation of the query. On the other hand, if a query has a solution, then the trace that
corresponds to deriving the query is a proof: The trace provides quantifier instantiations of the
Horn clauses and ∀~x . ¬query such that the resulting set of ground Horn clauses is unsatisfiable.

Equation (3) summarizes this characterization. The formula in (3) is closed and the goal is
to check if it is equivalent to true. The set rules contains the recursive Horn clauses defined
by rule and query is a formula corresponding to a query, ~x are declared as variables and ~P
are declared as recursive predicates:

∃~P .

( ∧
r∈rules

∀~x . r(~x)

)
∧ ∀~x . ¬query (3)

Example 1. Suppose we are given a recursive program sum

let rec sum n = if n <= 0 then 0 else n + sum (n-1)

and we wish to establish that sum n >= n for every n. The input-output specification of sum is
a relation with one argument for the input and one argument for the output. We can specify
sum using a set of Horn rules and the assertion as a query:

(declare-rel sum (Int Int))

(declare-var n Int)

(declare-var m Int)

(rule (=> (<= n 0) (sum n 0)))

(rule (=> (and (> n 0) (sum (- n 1) m)) (sum n (+ m n))))

(query (and (sum n m) (< m n)))
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An interpretation for sum that satisfies the Horn clauses and the query is:

(define-fun sum ((A Int) (B Int)) Bool (and (>= B 0) (<= (+ (* (- 1) B) A) 0)))

4.2 Background

While currently unsupported in µZ, the format admits free functions and non-recursive predi-
cates. It inter-operates with assertions over non-recursive predicates and functions.

Example 2. One can assert that a free function f is injective with partial converse g using an
axiom:

(declare-fun f (Int) Int)

(declare-fun g (Int) Int)

(assert (forall ((x Int)) (= (g (f x)) x)))

Then f can be used in rules. For example,

(declare-rel R (Int Int))

(declare-var x Int)

(declare-var y Int)

(rule (R 0 1))

(rule (=> (R x y) (R (f x) (f y))))

(query (and (R x y) (= x y)))

The query is unsatisfiable with the justification

(define-fun R ((A Int) (B Int)) Bool (not (= A B)))

Free functions and non-recursive predicates are treated logically different from recursive
predicates. Their meaning is succinctly captured by extending (3) by taking background as-

sertions and auxiliary predicates and functions into account. Let ~R, ~f be the non-recursive
predicates and functions, and asrts be the current assertions. Correspondence (4), derived
from (1), characterizes the semantics in the context of auxiliary predicates, functions and as-
sertions:

∀~R, ~f . asrts ⇒ ∃~P .

( ∧
r∈rules

∀~x . r(~x)

)
∧ ∀~x . ¬query (4)

5 Summary

We made a case that SMT-LIB is a superb basis for exchanging benchmarks among symbolic
software model checkers. As a side-effect we also introduced an approach to specify recursive
relations modulo background assertions in the context of SMT-LIB. The format can be used in
its own right. The proposed use of SMT-LIB uses a modest extension for describing rules and
declaring recursive predicates.
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[10] Kryštof Hoder, Nikolaj Bjørner, and Leonardo Mendonça de Moura. µZ- an efficient engine for
fixed points with constraints. In CAV, pages 457–462, 2011.

[11] Andreas Podelski and Andrey Rybalchenko. ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In PADL, pages 245–259, 2007.

[12] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In PLDI, pages 159–
169, 2008.

[13] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Peter Baumgartner. The TPTP Typed First-
Order Form with Arithmetic. In LPAR, pages 406–419, 2012.
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