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Abstract

A mathematical model of cerebral blood flow in the form of a dynamical system is
considered. The cerebral blood flow autoregulation modeling problem is treated as an
output regulation control problem. The cerebral autoregulation mechanism is described in
terms of an output feedback control law based on measurements of the arterial-arteriolar
blood flow rate values and intracranial pressure estimates made by an asymptotic state
observer. Simulation results confirm good performance of the suggested cerebral blood
flow autoregulation model in the form of a dynamic output feedback.

1 Introduction and problem statement

During the last decades a wide literature appeared addressing the cerebral blood circulation
and autoregulation mathematical modeling (see, e.g [11, 9, 8, 7, 10, 3, 2, 5]). Understanding
mathematics behind cerebral autoregulation could help us prevent various brain disorders, e.g.
intracranial hemorrhages in preterm infants [7]. Using a proper mathematical model of cerebral
blood flow circulation and autoregulation one could try to reproduce the autoregulation per-
formance of a healthy human, for instance, by means of medicaments which dilate or constrict
blood vessels according to a mathematically conceived time profile.

One of possible ways to model cerebral blood flow processes is based on using lumped
parameter models which result in ordinary differential equations as a cerebral hemodynamics
description [11, 8, 3, 5]. Such kind of cerebral blood flow models are relatively simple, but
still can reproduce basic clinical results [11, 8] at least at a qualitative level. In this paper we
continue to develop the approach to cerebral autoregulation modeling proposed in [5] and based
on using tools of the nonlinear mathematical control theory. Consider a cerebral hemodynamics
model originally suggested in [11] and written as the following dynamical system [5]:

V̇a =
1

1 + kEPicCa

(
−kEPicCa

(
Pc − Pic

Rf
− Pic − Pvs

Ro
+ Ii

)
+ (Pa − Pic)Ċa

)
,

Ṗic =
kEPic

1 + kEPicCa

(
Pc − Pic

Rf
− Pic − Pvs

Ro
+ Ii + (Pa − Pic)Ċa

)
,

(1)
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where Va is the arterial-arteriolar blood volume; Pic stands for the intracranial pressure; Ca is
the arterial-arteriolar compliance; Pa denotes the systemic arterial pressure; Pc is the capillary
pressure; the constant values Pvs, Rf , Ro, Ii, kE stand for the venous sinus pressure, the
cerebrospinal fluid production and reabsorption hydraulic resistances, the rate of possible mock
cerebrospinal fluid injection in surgery and the craniospinal compartment elastance coefficient,
respectively; Pa > Pc > Pic > Pvs. The capillary pressure Pc and the arterial-arteriolar
compliance Ca quantities in the right-hand side of the system (1) can be represented as functions
of the system state variables Va and Pic as follows [5]:

Pc = Pc(Va, Pic) =
RfRpvPaV

2
a + k′R(Rpv +Rf )Pic

k′R(Rpv +Rf ) +RfRpvV 2
a

,

Ca = Ca(Va, Pic) =
Va

Pa − Pic
,

where k′R is a coefficient of the arterial-arteriolar hydraulic resistance Ra inverse proportionality
to the square of the Va variable. The arterial blood pressure dynamics are supposed to be in
a steady state, i.e. Ṗa ≡ 0. Thus, in (1) the arterial pressure Pa has a constant value which
is possibly different from the basal one of a healthy human and, for instance, resulted from
an acute pressure increase or drop. Additionally, for a proper range of the systemic arterial
pressure values Pa ∈ [Pamin, Pamax], the system state variables Va(t) and Pic(t) are required to
remain positive for all t ≥ 0 and stay within reasonable bounds

Va(t) ∈ [Vamin, Vamax], Pic(t) ∈ [Picmin, Picmax], t ≥ 0.

The cerebral blood flow autoregulation mechanism is described in terms of the arterial-
arteriolar compliance Ca time behavior. Vasodilation or vasoconstriction of the arterioles are
modeled through positive or negative values of the compliance rate Ċa, respectively. In the
current work, we take the arterial-arteriolar compliance rate Ċa as a control input u, i.e. Ċa = u.

The arterial-arteriolar blood flow rate q is considered as a system output and is written as
the following function of the system state variables Va and Pic [5]:

q = q(Va, Pic) =
(Rpv +Rf )(Pa − Pic)V

2
a

k′R(Rpv +Rf ) +RfRpvV 2
a

. (2)

It is supposed that only the arterial-arteriolar blood flow rate q is available for direct measure-
ments.

Then, the cerebral blood flow autoregulation modeling problem can be formulated as an
asymptotic output regulation control problem for the nonlinear dynamical system (1) using
information on the output measurements only, i.e. one has to find an output feedback control
law u = u(t, q) such that

|q(t)− qn| → 0 as t → +∞ (3)

for all medically reasonable initial values Va(0) = Va0 ∈ [Vamin, Vamax], Pic(0) = Pic0 ∈
[Picmin, Picmax] of the system state variables. Here, qn denotes a basal value of the cerebral
blood flow required for tissue metabolism.

2 State observer design

Let us first solve the problem of the system (1) state variables Va and Pic estimation based on
the arterial-arteriolar blood flow rate q measurements, to be utilized later in a state feedback
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design suggested in [5]. To that end, rewrite the dynamical system (1) in terms of the q and
Pic variables as below

q̇ = f1(q, Pic) + g1(q, Pic)u,

Ṗic = f2(q, Pic) + g2(q, Pic)u,

y = q,

(4)

where q is the measured output,

f1(q, Pic) = PickEq(3PicRf − 3PaRf − 3PaRpv + 3PicRpv

+ 2RfRpvq)(PvsRf − PicRpv − PicRf + PvsRpv + IiRoRf + IiRoRpv

+RoRpvq))/(Ro(Rf +Rpv)2(Pa − Pic)(Pa − Pic

+ PickE((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)−RfRpvq))

1/2),

f2(q, Pic) = PickE(PvsRf − PicRpv − PicRf + PvsRpv + IiRoRf + IiRoRpv

+RoRpvq))/(Ro(Rf +Rpv)((PickE((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))
1/2)/(Pa − Pic) + 1),

g1(q, Pic) = ((2(Rf +Rpv)(Pa − Pic)((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))
1/2)/(k′R(Rf +Rpv) + (R′

fRpvkRq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))− (2RfRpv(Rf +Rpv)(Pa − Pic)((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa

− Pic)−RfRpvq))
3/2)/(k′R(Rf +Rpv) + (RfRpvk

′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa

− Pic)−RfRpvq))
2)(Pa − Pic))/((PickE((k

′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))
1/2)/(Pa − Pic) + 1)− (PickEk

′
Rq(Rf +Rpv)

2(Pa − Pic))/((k
′
R(Rf

+Rpv) + (RfRpvk
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))((PickE((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))
1/2)/(Pa − Pic) + 1)((Rf +Rpv)(Pa − Pic)−RfRpvq),

g2(q, Pic) = PickE(Pa − Pic))/((PickE((k
′
Rq(Rf +Rpv))/((Rf +Rpv)(Pa − Pic)

−RfRpvq))
1/2)/(Pa − Pic) + 1.

Notice that the change of variables q = q(Va, Pic), Pic = Pic defined by the relationship (2)
can be seen as a diffeomorphism from

Ω = {(Va, Pic)
T ∈ R2 : Vamin ≤ Va ≤ Vamax, Picmin ≤ Pic ≤ Picmax} (5)

to a proper subset of {(q, Pic)
T ∈ R2 : qmin ≤ q ≤ qmax, Picmin ≤ Pic ≤ Picmax} since its

reverse is given by

Va =

√
k′R(Rpv +Rf )q

(Rpv +Rf )(Pa − Pic)−RpvRfq
, Pic = Pic. (6)

In view of (2) the denominator in (6) is always nonzero.

To construct a state observer for the dynamical system (4) let us linearize it around a
nominal point q = qn, Pic = Picr in the state space. Here Picr ∈ [Picmin, Picmax] is a reference
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Figure 1: Determinant of the observability matrix W as a function of Pa and Picr.

value of the intracranial pressure under basal conditions. The linearized dynamical system (4)
takes the form

ẋ = Ax+Bu+ Fr,

y = Cx,
(7)

A =


∂F1

∂q

∂F1

∂Pic

∂F2

∂q

∂F2

∂Pic


∣∣∣∣∣∣∣∣∣ q=qn,
Pic=Picr,

u=0

, B =


∂F1

∂u

∂F2

∂u


∣∣∣∣∣∣∣∣∣ q=qn,
Pic=Picr,

u=0

, C = (1, 0),

where x = (q − qn, Pic − Picr)
T, F1(q, Pic) = f1(q, Pic) + g1(q, Pic)u, F2(q, Pic) = f2(q, Pic) +

g2(q, Pic)u, Fr = (f1(qn, Picr), f2(qn, Picr))
T.

To proceed with a linear state observer design for the system (7) one first needs to check [1]
that the observability matrix

W =

(
C
CA

)
(8)

has the rank of two. It can be shown, see Fig. 1, that for the basal model parameter and
pressure boundary values [11] qn = 12.5 ml · s−1, Rpv = 1.24 mmHg · s ·ml−1, Rf = 2.38× 103

mmHg · s ·ml−1, Ro = 526.3 mmHg · s ·ml−1, Pvs = 6.0 mmHg, kE = 0.11 ml−1, k′R = 0.11×
104 mmHg · s ·ml, Ii = 0 ml · s−1, Pamin = 60 mmHg, Pamax = 160 mmHg, Picmin = 5 mmHg,
Picmax = 15 mmHg the observability matrix (8) is nonsingular.

Then, a state observer for the linear dynamical system (7) can be constructed as [1]

˙̂x = Ax̂+Bu+ Fr + L(Cx̂− Cx), (9)
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where L = (l1, l2)
T is a vector of the gain coefficients chosen to provide global asymptotic

stability of the zero equilibrium of the estimation error e = x̂− x dynamics

ė = (A+ LC)e. (10)

To find the observer gain vector L such that the matrix A + LC is Hurwitz let us rewrite
the system (7) in the variables ζ = Wx as follows

ζ̇ = Ãz + B̃u+WFr,

y = Cζ,
(11)

where

Ã = WAW−1 =

(
0 1
α1 α2

)
B̃ = WB =

(
CB
CAB

)
, (α1, α2) = CA2W−1. (12)

The state observer for the dynamical system (11) is readily written as below

˙̂
ζ = Ãζ̂ + B̃u+WFr + L̃(Cζ̂ − Cζ), L̃ = (l̃1, l̃2)

T,

with the state estimation error e = ζ̂ − ζ dynamics having the form

ė = (Ã+ L̃C)e,

Ã+ L̃C =

(
l̃1 1

l̃2 + α1 α2

)
. (13)

The characteristic polynomial of the matrix (13) is given by

λ2 + (−α2 − l̃1)λ+ (l̃1α2 − l̃2 − α1) = 0.

Hence, for any given pair of negative real polynomial roots λ1 < 0, λ2 < 0 the gain coefficients
l̃1 and l̃2 can be found from relations

α2 + l̃1 = λ1 + λ2, l̃1α2 − l̃2 − α1 = λ1λ2

to make (13) Hurwitz.

Finally, in view of the equalities (12) and CW = C one gets

Ã+ L̃C = W (A+W−1L̃C)W−1.

Thus, the matrix A + LC of the estimation error e = x̂ − x dynamics (10) with L = W−1L̃

is Hurwitz and the dynamical system (9) with the gain vector L = W−1L̃ behaves as a global
asymptotical observer for the linearized cerebral hemodynamics (7). Then, integrating the
observer (9) from arbitrary initial conditions one gets an asymptotically converging estimate
x̂(t) for the state x(t) of the linear system (7), which in its turn yields the intracranial pressure
Pic(t) estimation as P̂ic(t) for all t ≥ 0.
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3 Cerebral autoregulation output feedback design

By using the change of the state variables z = (z1, z2)
T = Φ(Va, Pic) given by

z1 = φ1(Va, Pic) = kEVa − lnPic,

z2 = φ2(Va, Pic) =
−kERpv

Rpv +Rf
q +

kE
Ro

Pic − kE

(
Pvs

Ro
+ Ii

)
(14)

it is shown in [5, 4] that the nonlinear cerebral hemodynamics (1) are diffeomorphic to

ż1 = z2, ż2 = f̃(z1, z2) + g̃(z1, z2)u

on the whole set Ω given by (5) for almost all values of Pa ∈ [60, 160]. Here

f̃(z) =
[
f(Va, Pic)

]
(Va,Pic)T=Φ−1(z)

, g̃(z) =
[
g(Va, Pic)

]
(Va,Pic)T=Φ−1(z)

,

f(Va, Pic) = Pick
2
E(Pa − Pic)(R

2
fk

′
R
2
+ 2RfRpvk

′
R
2
+R2

pvk
′
R
2
+ 2R2

fRpvV
2
a k

′
R

+ 2RfR
2
pvV

2
a k

′
R + 3RoRfRpvV

2
a k

′
R + 3RoR

2
pvV

2
a k

′
R +R2

fR
2
pvV

4
a

+RoRfR
2
pvV

4
a )(PaRoRpvV

2
a − PicRoRpvV

2
a − PicRfRpvV

2
a + PvsRfRpvV

2
a

− PicRfk
′
R − PicRpvk

′
R + PvsRfk

′
R + PvsRpvk

′
R + IiRoRfRpvV

2
a + IiRoRfk

′
R

+ IiRoRpvk
′
R))/(R

2
o(RfRpvV

2
a +Rfk

′
R +Rpvk

′
R)

3(Pa − Pic + PicVakE),

g(Va, Pic) = Pick
2
E(Pa − Pic)

2)/(Ro(Pa − Pic + PicVakE))

+ (PicRpvV
2
a k

2
E(Pa − Pic)

2)/((RfRpvV
2
a +Rfk

′
R +Rpvk

′
R)(Pa − Pic

+ PicVakE))− (2RpvVakEk
′
R(Rf +Rpv)(Pa − Pic)

3)/((RfRpvV
2
a +Rfk′R

+RpvkR)
2(Pa − Pic + PicVakE).

To achieve the regulation z1(t)− z1r → 0 and z2(t) → 0 as t → +∞ one can employ [5] the
state feedback linearization based control

u =k(Va, Pic) =
1

g̃(z1, z2)

(
−f̃(z1, z2)− c1(z1 − z1r)− c2z2

)
=

1

g(Va, Pic)

(
−f(Va, Pic)− c1(z1 − z1r)− c2z2

) (15)

which results in the following regulation error dynamics:

˙︷ ︸︸ ︷
z1 − z1r = z2,

ż2 = −c1(z1 − z1r)− c2z2.
(16)

Hence, for any positive gain coefficients c1 > 0 and c2 > 0 the equilibrium point z1 = z1r,
z2 = 0 of the system (16) is globally asymptotically stable. Here, in view of (14) one takes
the reference value z1r = kEVar − lnPicr of the z1 variable, with the arterial-arteriolar blood
volume reference value Var being defined by the first equality in (6) with q = qn, Pic = Picr.

Then, using the separation principle [6] let us replace the state variables Va and Pic in the
state feedback (15) by their estimates V̂a and P̂ic obtained from the state observer (9) and
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relations (6). As a result, one gets a cerebral blood flow autoregulation model in the form of
the following dynamic output feedback:

Ċa = k(V̂a, P̂ic) =
1

g(V̂a, P̂ic)

(
−f(V̂a, P̂ic)− c1(kE V̂a − ln P̂ic − kEVar + lnPicr)

−c2

(
−kERpv

Rpv +Rf
q +

kE
Ro

P̂ic − kE

(
Pvs

Ro
+ Ii

)))
, c1 > 0, c2 > 0,

˙̂x = Ax̂+Bk(V̂a, P̂ic) + Fr + LC(x̂− x), x̂ = (q̂ − qn, P̂ic − Picr)
T,

V̂a =

√
k′R(Rpv +Rf )q

(Rpv +Rf )(Pa − P̂ic)−RpvRfq
.

(17)

Notice that due to validity of the separation principle at least locally [6] the output feedback
(17) guarantees the regulation Va(t)− Var → 0 and Pic(t)− Picr → 0 as t → +∞ for initial
values Va(0) and Pic(0) in some neighborhood of the nominal point Va = Var, Pic = Picr in
the state space of the system (1). Finally, in view of the equality q(Var, Picr) = qn the output
regulation (3) is achieved at least locally for initial state values close to the nominal points
Va = Var, Pic = Picr and q = qn, Pic = Picr in the state spaces of the systems (1) and (4),
respectively.

The numerical simulation results of the cerebral blood flow autoregulation design (17) per-
formance under the model parameter values of a healthy adult [11] indicated in Section 2 are
shown in Figs. 2 – 5 for the arterial pressure steady state value Pa(t) ≡ 120 mmHg, control
and observer gain coefficients c1 = 0.0076, c2 = 2.0038 and l1 = −3.001, l2 = −7.196 re-
spectively. The initial values of the system and observer state variables were taken as follows:
Va(0) = 11.6899 ml, Pic(0) = 7.5406 mmHg, q̂(0) = q(0) = 12.0616 ml/s, P̂ic(0) = 7.3898.

Figure 2: Arterial-arteriolar blood flow rate q (solid blue line) and its reference value qn (dashed
line) as time functions.
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Figure 3: Arterial-arteriolar blood volume Va (solid blue line), its estimation V̂a (solid red line)
and its reference value Var (dashed line) as time functions.

Figure 4: Intracranial pressure Pic (solid blue line), its estimation P̂ic (solid red line) and its
reference value Picr (dashed line) as time functions.
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Figure 5: Arterial-arteriolar compliance rate Ċ = u initial time behaviour.

4 Conclusion

In this note, we considered the cerebral blood flow autoregulation modeling problem as an out-
put regulation control problem. The cerebral autoregulation process is treated a dynamic output
feedback using measurements of the arterial-arteriolar blood flow rate values and intracranial
pressure estimates made by an asymptotic state observer. Numerical simulation results demon-
strated good performance of the suggested cerebral blood flow autoregulation model and pro-
vided medically reasonable transients within required regulation times and bounds. Still, it is
worthwhile to notice that future research can be focused on strengthening of the suggested out-
put feedback design to provide the system’s state and, in particular, the intracranial pressure
estimates that are valid not only locally around a nominal linearization point but e.g. globally.
It also should be guaranteed that the state variables remain within required bounds during
transients for the whole range of initial values and gain coefficients like it is done in [5] for the
proposed cerebral autoregulation state feedback design.
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