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The following are a few standard examples of modal operators on residuated lattices.

Proposition 1. We have the following:

(1) The class of images of Boolean algebras with conuclei is precisely the variety of Heyting
algebras.

(2) The class of images of Abelian `-groups with conuclei is precisely the variety of commu-
tative, cancellative residuated lattices.

(3) The class of images of negative cones of `-groups with nuclei is precisely the variety of
integral GMV -algebras.

In all of these cases, there is a categorical equivalence that bares significant resemblance to
certain free objects with respect to forgetful functors. The purpose of this talk is to explore
the connections between these modal image functors and their corresponding forgetful functors.

A conucleus on a residuated lattice A is a map σ : A→ A such that σ is order-preserving,
σ(x) ≤ x, σ(σ(x))=σ(x), σ(1)=1 and σ(x)σ(y) ≤ σ(xy), for all x, y ∈ A. It is known that the
image of a conucleus has a residuated structure.

Proposition 2. If A=〈A,∧,∨, ·, \, /, 1, σ〉 is a residuated lattice with a conucleus σ, then the
algebra Aσ=〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉 is a residuated lattice, where Aσ=σ[A] and for all x, y ∈ Aσ,
x ∧σ y=σ(x ∧ y), x\σy=σ(x\y), and x/σy=σ(x/y).

It will be important to observe that Aσ is a {∨, ·, 1}-subreduct of A. Also, there is a functor
which sends residuated lattices with conuclei to their images and maps between such objects
to their restrictions on these images.

A nucleus on a residuated lattice A is a map γ : A → A such that γ is order-preserving,
x ≤ γ(x), γ(γ(x))=γ(x), and γ(x)γ(y) ≤ γ(xy), for all x, y ∈ A. In the following proposition,
note that Aγ is a {∧, \, /}-subreduct of A. As with the conuclei, there is a nuclear image
functor.

Proposition 3. If A=〈A,∧,∨, ·, \, /, 1, γ〉 is a residuated lattice with a nucleus γ, then the
algebra Aγ=〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉 is a residuated lattice, where Aγ=γ[A] and for all x, y ∈
Aγ , x ∨γ y=γ(x ∨ y) and x ·γ y=γ(x · y).

For a variety V of residuated lattices with modal operators, consider V∗, the full subcategory
of V consisting of those pairs 〈B, ε〉 such that Bε generates B as a residuated lattice.
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Theorem 4. We have the following:

(1) There is a categorical equivalence between BA∗σ and HA.

(2) There is a categorical equivalence between A∗σ and CCanRL.

(3) There is a categorical equivalence between (LG−γ )∗ and IGMV.

In all three of these cases, the free object is constructed by first constructing a free object
with respect to a forgetful functor, and then defining a modal operator that recovers the original
structure. The next lemma states what the subreducts are in these cases, where J CM is the
class of ∨-semilattice-ordered, commutative, cancellative monoids that satisfy x(y∨z) ≈ xy∨xz.

Lemma 5. We have the following:

(1) The class of {∧,∨, 0, 1}-subreducts of Boolean algebras is precisely the class of bounded,
distributive lattices.

(2) The class of {∨, ·, 1}-subreducts of Abelian `-groups is precisely J CM.

(3) The class of {\, /, 1}-subreducts of negative cones of `-groups is precisely the class of cone
algebras.

The figure below shows the relationship between the free objects with respect to the modal
image functor Γ and the forgetful functor G. Given a Heyting algebra A, we wish to construct
Σ(A) such that Γ(Σ(A)) = A and H(Σ(A)) = F (G(A)). A similar figure holds in the other
cases.

BAσ HA

BA DL0,1

Σ

Γ

H G

G

F

The reason that such nice results hold in these cases is that more can be said about these
subreducts. While there is always a free object F (A) with respect to any forgetful functor,
in these examples, any time A is embedded into an algebra B, the subalgebra generated by
A in B is precisely this free object F (A). This explains the use of the term minimal Boolean
extension of a bounded, distributive lattice that is often used; there is only one way to extend
the operations to get a Boolean algebra. The following definitions are the key to this property.

Definition 6. A set T of terms (in the signature τ) is called representative with respect to
a subvariety W ′ of W if for every algebra A in W ′, every element of F (A) can be represented
by t(a1, ..., an), for some term t ∈ T and some a1, ..., an ∈ A, where we are using a to stand for
both the element in A as well as its equivalence class in F (A).
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Obviously, for any subvariety W ′, the set of all terms in the signature τ is the largest
representative set. As a more interesting example, in the situation of commutative groups and
commutative, cancellative monoids, the set {x−1y} is a representative set.

Definition 7. A pair of terms (t1, t2) (in the signature τ and with no common variables) is
called τ ′- reducible if there exists pairs of terms (si1, s

i
2) (in the signature τ ′ and with variables

among the variables in t1 and t2) such that for every algebra A in V and a1, ..., an, b1, ..., bm ∈ A,
t1(a1, ..., an) = t2(b1, ..., bm) iff for every i, si1(a1, ..., an, b1, ..., bm) = si2(a1, ..., an, b1, ..., bm).

Referring back to the commutative group case, the pair (x−1y, z−1w) is monoid-reducible
(by the pair (yz, xw)) since for every commutative group G and a, b, c, d ∈ G, a−1b = c−1d iff
bc = ad.

Lemma 8. If there exists a set of terms T that is representative with respect to a subvariety
W ′ of W and every pair (t1, t2) of terms of T (where if t1 = t2, they are taken to have no
common variables) is τ ′-reducible, then whenever an algebra A in W ′ can be embedded into an
algebra G(B), where B is in V, the subalgebra of B generated by the image of A is (isomorphic
to) the free object F (A).

The set {x−1y} works in the case of Abelian `-groups.

Lemma 9. Let L be a bounded distributive lattice that is a {∧,∨, 0, 1}-subreduct of the Boolean
algebra B. Let L̄ be the Boolean subalgebra of B generated by L. Then, we have the following:

(1) Every element of L̄ can be written in the form

n∧
i=1

(ai ∨ bi′), where n is a natural number

and for i = 1, ..., n, ai, bi ∈ L, and x′ denotes the complement of x.

(2) Let n and m be natural numbers, and let ai, bi, cj , dj ∈ L, for i = 1, ..., n and j = 1, ...,m.

Let I = {1, ..., n} and J = {1, 2}. Then,

n∧
i=1

(ai ∨ bi′) ≤
m∧
j=1

(cj ∨ dj ′) (in B) iff for every

j = 1, ...,m and every f ∈ JI , dj ∧
∧

i∈f−1(1)

ai ≤ cj ∨
∨

i∈f−1(2)

bi (in L).

The situation is a little more complicated in the cone algebras case.

Lemma 10. If a cone algebra C generates a negative cone of an `-group A, then every element
of A has the form a1 · · · an, for some a1, ..., an ∈ C.

Lemma 11. For every pair (n,m) of positive integers, there exist m cone algebra terms
fn,m1 , ..., fn,mm (in n + m variables) such that for every A ∈ LG− and a1, ..., an, b1, ..., bm ∈ A,
a1 · · · an\b1 · · · bm = fn,m1 (a1, ..., an, b1, ..., bm) · · · fn,mm (a1, ..., an, b1, ..., bm).

Lemma 12. Let A ∈ LG−. Then, a1 · · · an ≤ b1 · · · bm iff each fn,mi (a1, ..., an, b1, ..., bm) = 1,
for i = 1, ...,m.

These representability terms play a key role in establishing the aforementioned categorical
equivalences. While these equivalences were already known, this talk will stress the role that
the forgetful functors play. The following theorem can also be obtained using this approach.
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Theorem 13. We have the following:

1. Let W be a subvariety of HA. Then, there is an interval in the subvariety lattice of BAσ
that corresponds to W.

2. Let W be a subvariety of CCanRL. Then, there is an interval in the subvariety lattice of
Aσ that corresponds to W.

3. Let W be a subvariety of IGMV. Then, there is an interval in the subvariety lattice of
LG−γ that corresponds to W.

Now, consider the following recursive definition for the translation T of formulas in the lan-
guage of residuated lattices to formulas in the language of residuated lattices with a conucleus.
Firstly, T (1) = 1, and for a variable x, T (x) = σ(x). For ◦ ∈ {∨, ·}, T (α ◦ β) = T (α) ◦ T (β),
and for ∗ ∈ {∧, \, /}, T (α ∗ β) = σ(T (α) ∗ T (β)). From the definition of the operations in Aσ,
it is fairly easy to see that for any formula φ in the language of residuated lattices, Aσ |= φ
iff 〈A, σ〉 |= T (φ). A similar translation D exists for nuclei on residuated lattices such that
Aγ |= φ iff 〈A, γ〉 |= D(φ).

Proposition 14. We have the following:

1. Let W be a subvariety of HA and V be a subvariety of BAσ. Then, V is in the interval
that corresponds to W if and only if V |= T (φ) exactly when W |= φ.

2. Let W be a subvariety of CCanRL and V be a subvariety of Aσ. Then, V is in the interval
that corresponds to W if and only if V |= T (φ) exactly when W |= φ.

3. Let W be a subvariety of IGMV and V be a subvariety of LG−γ . Then, V is in the interval
that corresponds to W if and only if V |= D(φ) exactly when W |= φ.

While the first of these was already known, the proofs presented here are different from
those originally done, since most of the work is shifted to the reducts. This allows for a deeper
understanding of why there is such similarity in these three cases.
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