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Abstract

At ISSAC 2004 [4] was introduced a transformation of a triangular lexicographic Grobner basis
generating a radical ideal of dimension zero, to a triangular family of polynomials generating the same
ideal, which is no more a Grobner basis but has significantly smaller coefficients in term of bit-size.
We attempt in this article to extend this transformation to triangular sets that do not generate a
radical ideal. We manage to treat the case of n = 2 variables, and in some extent the case of n = 3
variables. It resorts to an extra operation, the squarefree factorization; nevertheless this operation
based on gecd benefits of efficient algorithms. When the number of variables n is greater than 2, more
serious difficulties occur and are discussed for n = 3. An implementation in Maple in the case n = 2
confirms the expected reduction of the bit-size coefficients.

1 Introduction

A reduced lexicographic Grobner basis for the monomial order 7y < x93 < --+ < X, over a
field K is triangular if all of its polynomials have a leading monomial that is a pure power of a
variable, which are all pairwise distinct. It implies that the basis is a regular sequence. When
there are n polynomials 71,75, ...,T, in such a Groébner basis, and they are assumed to be
ordered so that LM(T7) < LM(T3) < --- it can be written as:

dp_
To(x1,@2, .. X1, @) = [ZZZTL +ann-1(x1, ..y — Day "t
dn_
Tnfl(.fr,l, N ,:r,n,l) = 'T’n—ll 4.
g , (1)
Ty(xy) =¥ + -
where --- stands for lower terms for <. It is common to call such a family triangular sets.

Such simple data structures are at the core of the triangular decomposition method (see [8,
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1, 2, 7] among many others) to solve and manipulate polynomial systems. Note that within
the assumptions made, i.e. a finite number of solutions, monic polynomials as those in (1)
naturally appear, or, if not, a mere inversion in the base field K allows to reduce to monic
polynomials. We focus mainly on the case of K = Q or K =T, (see “Motivation” below). The
transformation introduced in [4]

i—1
T,
T, - Ny, T, = N, :=< 8—Z>Timod (Ty,...,Ti_1), (2)
Ty
=1

allows to compute at a cheap cost polynomials with smaller coefficients. More precisely, the
former has coefficients bit-size that grows at most in O(d*") where d = [], deg, (T;), whereas
the latter has coefficients bit-size that grows at most in O(d™). The two ideals (T1,...,T,) and
(N1, ..., Ny,) are equal but the second family is no longer a Grobner basis. Such a transformation
is implemented in Maple in the RegularChains library under the name DahanSchostTransform.

Motivation Despite not Grobner bases, those families of polynomials find applications in
modular methods, where instead of lifting the coefficients of T;, we lift the coefficients of N;
which saves a significant amount of time. The figure below displays the concept of a modular
method for a triangular decomposition. Instead of lifting directly the triangular sets modulo p

denoted t() = (tgi) (x1), téi) (x1,22),..., Q) (1,...,2y)) in the figure below, it is more efficient
to transform them into the polynomial families n(® = (ngz) (1), .. ) (1,...,2y)) modulo p

by the operation (2), and then to lift them to polynomial systems N over Q. This strategy is
put into practice in [3] with precise complexity analysis, and implemented in the RegularChains
library in Maple under the command name EquiprojectableDecomposition.

Input : Squarc Triangularize over Q| OUtPUti Trlangular simple, costless P(Oll)yl'lonllai:;ystenls
system F over Q i 1_ ge o _IT_' _L 7| sets T )7 e .’T(S) transformation NW,... N over Q
ik pear 5 costl defined over Q defined in this article

appear —» costly

%
. Lifting Lifging
Reduction modulo p ifting

s _ . (smaller coefficients
of the coefficients (Newton Hesnbel operator) than those of T (i))

)

Triangularize
Square system modulo p
F modp over F small coefficients
p P

Polynomi;ﬂ systems
n®, ..., n®) over F,
defined in this article

Triangular sets
t@ )
T® mod p = t®

simple, costless

transformation

Figure 1: Prototype of a modular method modulo p to triangularize a polynomial system F having a
finite number of solutions to a family of s triangular sets i NS N (each of them is of the form
T = (Tl(i)(ml)7T2(i)($17$2)7 e 7Tr(zi)(arzl7 ...,Zn))). Instead of lifting directly the coefficients of the
triangular sets t® as shown in the second column, transformation to the family of systems n® is
performed before lifting the smaller coefficients, as shown in the third column (see [3] for details).

As we will see below, some “interpolation” formula appearing in Theorems 1, 2 and Propo-
sitions 1, 3 require that the field K is large enough: it is always enough to suppose that |K]|
verifies, with notations introduced later, that |K| > deg, (71) deg, (T2)[deg, (T3)] = d1dz[d3].

When the polynomial system (1) does not generate a radical ideal, the formula (2) does not
apply since Hz;ll g—fﬁ is no more necessarily invertible modulo (73,...,7;_1). In this paper,
we extend those results to the simplest cases of n = 2 and to some extent n = 3 variables, as
well as discussing the obstacles that prevent to consider a complete generalization to several

variables.
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Previous work We emphasize here that our aim is a simple, algorithmically efficient formula
to transform a system of type (1) to another triangular family of polynomials generating the
same ideal, but with smaller coefficients. We are thus not interested by removing multiplicities,
and the present work is not related to squarefree decomposition algorithms modulo a triangular
set that aim to remove multiplicity like in [5].

Triangular decomposition algorithms indeed are not ideal-theoretic, but set-theoretic ones,
therefore they do not necessarily represent the same ideal as the input system; the set of
solutions is the same (or just almost the same in the case of regular chains). A first obstacle to
represent non-radical ideals by triangular sets is that it is not always possible. But even when
the ideal can be represented, in a broad term, by triangular sets, we are not aware of algorithms
that allow to find these sets. As drawn in the conclusion, the reason of this difficulty can be
explained by the lack of ged algorithm over non-reduced rings of type K|z]/(z?). The results
presented can contribute to understand better what is going on in this situation.

2 Case of two variables

We consider two variables & <, y and two polynomials T (x) € Klz] and Ta(z,y) € K|z, y] \
K|[x]. The fact that {T1,T»} is a reduced Grobner basis of the zero-dimensional ideal that it
generates implies the following elementary facts: T3y is monic in x and 75 is monic in y. Let
dy = deg,(T1) and dy = deg, (T), and write Ty (x,y) = y®+c1(z)y™ 1+ - 4ca,—1(x)y+ca, (2).
Each polynomial ¢; € K[x] verifies deg,(¢;) < dj.

2.1 Review of the radical case

In this paragraph, are briefly recalled the results of [4], valid for a radical ideal only, in the case
of two variables. The radical assumption made there implies the following assumption:

Assumption 1. All the roots of T} are simple: Ty (x) = Hf;l(x — ), with a; # a5 if i # j.
Theorem 1. Under Assumption 1, define p;(y) := Ta(ay,y) and M;(x) := [Jo<j<a (z — aj).
i

1. Ty can be written as a Lagrange interpolation polynomial:

dy
To(z,y) = Z 1pi(y)uiMi(:17), where  u; = Z

i=

(3)

J#ap — '
2. Let Na(z,y) = Ty (x) - Te(x,y) mod (T1) then

N =5 pi(y) M), (4)

i=1
3. The polynomial Ny verifies: (Th, Na) = (T1,T).

Remark 1. 1. Tt should be noted that {7}, Na} is not a Grébner basis.

2. The simplification yielding N2 consists in suppressing the factors u; from the “Lagrange
idempotent” u;M;(x) in Equality (3). This is the reason why coefficients in Ny are usually
smaller than those of T5.
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Ezample 1. Let T1(z) = (z — a)(z — b) (a # b € K). Then Ta(z,y) = Ta(a,y) =2 + T»(b, y) =L holds.
As for No:

r—>

T = {w—a)+@—bH Taay)— +Talb,y)=— }
, _ 2 S 2
1 = DS 10, < D) - o)+ T )@ - 1) mod (1))
and according to Statement 2 of Theorem 1 Ny = T(a,y)(x —a) + T2(b,y)(z — b).

2.2 Preliminary toward a generalization to multiple roots

We remove Assumption 1 and consider in this subsection a polynomial 77 having multiple roots:
Ti(z) =[1i_, (@ — a;)% (where a; # o if i # j and e; € N5g). The following proposition is a
basic, straightforward application of the Chinese Remaindering Theorem.

Proposition 1. Let p;(z,y) = Ta(x,y) mod {(z — a;)%) and M;(x) = Lz)l € K[z]. Note

(x—ay)®

that deg,, (pi(y)) = deg, (Ta2(,y)) = d2. The following assertions are satisfied:
1. There exist u; € K[z] such that: Y, u;M; =1, wu; € K[x].
2. To =Y._, piu; M; mod (T) (or equivalently T, = NF (1) (3o piwiL;) ).
Ezample 2. Given T := (z —1)*(z — 2)3, let p1 = y+x, ps = y+2° To compute T» from the previous
Proposition, we need My = (x — 2)*, M2 = (x — 1)2. The Extended Euclid Algorithm provides the
equality (2 —3z)(z —2)% 4+ (32% — 14z 4+ 17)(z — 1)? = 1, so that with u; = 2— 3z, us = 32> — 14z 4 17,
holds w1 M7 + uaMs = 1.
T = pirurMi + p2uzs M2 mod <T1>
= (2-32)(z—2°%y+x)+ (32° — 14z + 17)(z — 1)*(y + ) mod (T})
= y+32° —232° + 682" — 962° + 652 — 162 mod (T1)
= y+a' — 72> +192° — 202 +8 mod (T})

We can verify that T2 = p1 mod {((z — 1)), To = p2 mod ((z — 2)3).
Proposition 2. Let F(z) =.._, M;(z) € K[z], we have:

T

F(z)-To(z,y) =y pily)Mi(x) mod (Ti(w)).

Proof. By Proposition 1, Ta(z,y) = >.i_; pi(y)u;(x)M;(x) mod (T1(x)) holds. Regarding that
Sy ui(z)M;(z) =1, we have:

=1

Therefore, F - T2 =F (Z::l pzuzMz) = E;ﬂ:l pz(FUzMz) = E;ﬂ:l lez mod <T1> O
Corollary 1. Defining No(x,y) := NFpy(F(x) - Ta(x,y)), holds:  (T1,Tz) = (T, Na).
Proof. The inclusion (T7,T%) D (T4, Na) is clear.

~ Since T7 and F' are relatively prime, by the extended Euclid algorithm there exists u,v €
K|[x] such that uT} + vF = 1. Moreover by definition, there exists A € KJz,y] such that

No = FT5 + ATy. As aresult, Ty = vT1To + vF Ty = uT T + ’U(NQ - ATl) S <T1,N2>. Thus
<T1,T2> C <T1,N2>. O
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Remark 2. As in the case of Assumption 1, {71, N2} is not a Grobner basis. The fact that
F € K|x] is proved in Lemma 2, showing that Ny € K[z, y] thanks to Corollary 1.

In Example 2 the equation Ny = p; M7 + pa My mod (T}) yields Ny = 23y — 522y + 10xy —
Ty + 224 — 823 + 1322 — 82. In that toy example, it cannot be told that Ny is simpler than Tb.
But if the exponents e; of the factors of 17 are sufficiently large it becomes clear that N has
smaller coefficients than those of T as shown below.

Ezample 3. Set Ty = (z — 1)*(z — 2)® and p1 =y + =, p2 = y + 2>, Let us compute T> and No.

Ty =y + 20z° — 254z + 13892° — 42652 + 8030z* — 9480z° + 68492 — 2768z + 480
No = 1:5y - 9:c4y + 361:31/ - 74:c2y + 76xy — 31y + 22° — 142° + 462" — 842> + 81z* — 32z

Remark 3. As under Assumption 1, this is explained by the fact that the factor u; is removed
from T5 in the formula 2. of Proposition 1 to obtain Ns.

2.3 Computation of N, in a special case

According to the previous subsection it is easy to compute N3 if we know the polynomials
M; = (IFTI)% It suffices to compute the polynomial F' of Proposition 2 and NF g, (F - T3) to
obtain Ny. Unfortunately, to get the polynomials M;s, we are not aware of a simpler method
than factorizing 77, process which can be prohibitive especially over Q. What we have in mind
is a simple formula as in 2. of Theorem 1 to compute Ny from T3,7T5. To this end, we first

consider a simpler assumption:

Assumption 2. The roots «; below are pairwise distinct and have same multiplicity e:
T
_ _ e
T)(x) = | |i:1(:17 a;)¢ € K[zl

Lemma 1. Under Assumption 2, let S(x) := sqf(T1(z)) := [[;_, (x — o) be the squarefree part
of Tv and let F, j(z) := >"i_ [M;(x)}?/¢. The following recurrence relation holds:

Feal(I)ZS/(I)a Fe,l+1:Fe,l'Fe,E_§' (;g (1§€§6—1) (5)

In particular, all polynomials Fe ; € K|z].

Proof. By assumption S = [[i_,(z — i), Fer = Y, [[ (2 — a;)". Moreover F!, =
3 i1 > ki — a;)!/x — ax) holds, yielding:

For-Fee = Y ([I@-ap)- [T@-ap))=>" [[@—a)™

i1,d2 jF#i1 J#i2 t1=1ly jAi1
S
Y wma) @) @) (o) = P g FL
11702
which is what we wanted to prove. O

Remark 4. This recurrence relation is used to compute F' = F, . of Proposition 2 from S =
sqf(T1). The latter polynomial is obtained under Assumption 2 simply by taking the e-th root
of Ty, and the former polynomial F requires less than O(Alog(A)log(log(A))) operations in K
to be computed, where A = (e + 1)(d; — e) (see Appendix).
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2.4 General case: need of squarefree factorization

The same multiplicity Assumption 2 is here lifted, and we consider the general case T} =
[T;_, (x — a;)¢ where the roots «; are pairwise distinct. Let

=5,82...8". (6)

be the squarefree decomposition of 7;. Recall that this factorization is straightforward to
obtain by e.g. Yun’s squarefree factorization [6, Algorithm 14.21, p. 385] valid in characteristic
zero. Since in the case of char(K) = p > 0 we have assumed |K| large enough, it is also valid
in this case. The squarefree decomposition (6) can be obtained in O(d; log(d;)? log(log(d1)))
operations in K by [6, Theorem 14.23], which is more efficient than computing a complete
factorization of T} (and far more efficient if char(K) = 0).

Besides, it should be said that the squarefree decomposition has a good behavior under
reduction modulo a prime p. If p is large enough, the squarefree factors over Q correspond
to the one obtained modulo p. This contrasts with the factorization into irreducibles where
Chebotarev’s density theorem [6, § 15.5, page 429] restrict to a given proportion the primes
that yield a good behavior for the reduction modulo p.

Lemma 1 can be applied to each factor Sy, S3,...,S8", for which Assumption 2 holds, in
order to compute respective polynomials F1 1, Foo, ..., Fiyp.

Lemma 2. The polynomial F' of Proposition 2 can be computed from the polynomials S;s and
the polynomials F} ; and by the following formula

F= ZFl F;;T1/S and F € K[z]. (7)
Proof. Writing S’J [, (= — o, ),

ZFHSJ:Z ZW =2 Zm =

j=1 I I=1 N\ Ky j=1

Therefore Equation (7) is satisfied. Additionally, by Lemma 2 F;; € K][z], and therefore
F“ST— = Fj i [14; S0 € K[z]. Thus F € K[z]. O

Computing F' requires (i) to compute the squarefree decomposition of Ty, (ii) for each
squarefree factor S, compute the polynomial F; ; and (iii) use formula of Lemma 2 to obtain
F. The computation of Ny is summarized in Algorithm 1. The complexity estimates on the
right correspond to upper bounds on the number of operations over K, where n the number
of squarefree factors of T;. Details are written in the appendix. The estimates in Steps 7 or 9
dominate the overall cost. Correctness follows from the lemma hereafter:

Lemma 3. Let (51,52, - ,5,) be the squarefree decomposition of Th = [[;_,(z — a;)% €
Klz]. If we apply Lemma 1 successively to Sy,S5,---,S", (instead of Ty) then we obtain
Fiq, Foo,---, F, .y respectively. Regarding the polynomial T, we have:

n

Ny =) (Fj;T mod ($)[[SF mod (T).
5=1 t#]

Proof. This is clear from the definition of No = F'T5 mod (T1) (Cf. Proposition 2, Corollary 1)
and Lemma 2. O
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Algorithm 1: Computation of Ny
Data: Th =[[,_,(z — ;)% € K[z], T> € K[z,]
Result: N, € K|z, y].

1 Compute the squarefree decomposition (S1, Sz, -+ ,S,) of Ty // O(d1 log(dy)? log(log(d1))) ;
2 for1<i<ndo

4 end

5 for 1 <j<ndo

6 Use recursive formula (5) to find F ; // O(ndy log(ndy ) log(log(ndy)));

7 q; «— Fj;p; mod Sg // O(ndydsBlog(ndy)log(log(ndy)));

8 end

9 No«— >0, qpmg // O(ndydzlog(ndy ) log(log(nds)));

10 return N

3 Attempt of generalizations: case of three variables

The treatment of the case of n = 2 variables relies crucially on the fact that T} € K[z] admits a
(univariate) squarefree decomposition. This is more complicated for Th € K[z, y] and we treat
only special cases in this section.

Consider three variables x,y, z ordered as & <je; ¥ <jex 2. We suppose that T = {T}(x),
To(x,y), Ts(x,y, 2)} is lexicographic Grébner basis of the 0-dimensional ideal that it generates.
Thus we have LT(T,) = y,L1(T3) = 2% for integers dy > 0,d3 > 0.

3.1 Review on the case of a radical ideal in three variables

Assumption 3. Let T} = Hf;l(x — ;) (a; € K, if i # i’ then o; # ay) and Ty € K[z,9]
be such that for 1 < i < di Ta(ew,y) = [, (y — Bij) (Bij € K,if j # j'then By; # Biyr) is
satisfied. Then the ideal generated by 77 and T5 is radical.

Theorem 2. 1) Under Assumption 3, we have:

d1 da

y — Biyr T — o
Ts(z,y,2) = Z ZT3(ai7ﬁijaz) H 77 H — (8)
—1 \j—1 L ﬂzg - ﬁzg/ L Qg — oy
g ; J'#] i Fi
2) Define F = %, G= %—% Then the following holds:
dy do
F-G-T5= Z Z%(%ﬁz‘jvz) H (y — Bijr) H(fc —a;) mod (T1,Ty). (9)
i=1 \j=1 I i #i

8) Defining N3 := NFp, 1,y (F G T3), the ideal equality holds: (T1,T>,T3) = (T1, N, N3).

Remark 5. Since F € K[z|, G € K[z,y] we also have N3 € K|x,y].
Moreover, as already noted in the case of two variables in Remarks 1, 3, by comparing 75 and

N in (8) and (9) the terms [, ﬁj%ﬁj, [Tz a+a; have been removed.
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3.2 Toward generalization
We do not assume that 77,75, T3 generate a radical ideal anymore. More precisely:

Assumption 4. Let us write 77 = [[2;(z — )¢ (a; € K, if i # ' then a; # air,e > 0)
in K[z]. Concerning Tp, for 1 <1 < 7y, we assume that T3 mod ((x — ;)¢) is factorized over
Klz,y], and that each factor comes with the same multiplicity: To =

_1_[(?4—913j(17))1Z mod ((z—a;)%), (gi; € K[z], and g; j(x) # gijo(x) mod ((x—a)®)ifj # j').

Remark 6. Under Assumption 4, for any 1 < i < ry, define M; = Ty /(z — ;)¢ € K[z]. By
Proposition 2, there exists u; € K[z] such that Y /', w;M; =1 and

=" (II",0-9u@))wdi wmod (T) (in Klz.y)).

i=1 j=1
We need another hypothesis, which was not necessary in the case of two variables (see

Concluding Remarks “Discussion”).

Assumption 5. On top of Assumption 4, suppose additionally

forall 1 <i<wr;, whenj#j, ged((x—a;) gij(x)—gij(z)) =1 (in K[z]).

Remark 7. This is equivalent to ged(z — i, ¢i5(x) — gijr(x)) = 1, or gi5() # gijr ().

Proposition 3. Under Assumptions 4,5, consider for 1 < z <ry, 1 <j < ro the notations
9ij, M; and u; of Remark 6. Define additionally M;;, u;; € K[z,y] as follows:

T

Mi' =
(y — 9ij)

7 mod ((z — a;)¢), and Zj uijM;j; =1 mod ((x — o)), over K[z,y] (10)

Then, by denoting p;; = T3 mod {(z — )¢, (y — gi;)") € K[x,y, 2], Ts satisfies:

T1 T2
Ts(z,y,2) = Zi:l (ijl pijuijMij> u;M; mod (T, T3), (11)

Equivalently T3 = NF(T17T2> ( 22;1(232:1 pijuijMij)uiMi).

Proof. Conditions related to M; and u; were already proved for the case of two variables in the
previous section. Let us construct the polynomials u;; € K|z, y] satisfying Condition (10).

Denote A = K|z]/{(x — a;)¢). By Assumption 5, for all 1 < i < r;,1 < j' < j < 1o,
polynomials g;;(z) — gij-(x) possess inverses in A,

Y= iy =Y = 9ij T 9i5 — 9y in Aly]
(955 — 9ij)) " (= gi) — (9 — 9ij) "' (y — gij) = 1 in Aly]
from which we get: (y—gi;(x))+ (y—gij- (x)) = (1) in Aly]. Therefore polynomials u;; verifying
Condition (10) exist.

Let us show that Equation (11) holds. For 1 < i < ry, according to the Chinese Remainder-
ing Theorem (CRT) applied to Condition (10) gives: T3 = 372, pijui;M;; mod ((z—a;)¢, Ta).
Similarly, the definition of M;, u; yields again by the CRT: T3 = 22;1(222:1 Pijuij Mij)u; M;
mod (T4, T») which is Equation (11). O
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Ezample 4. Defining T1 = z2(z — 2), Tz = (y — 2%)*(y — 1)2, we have:

{ Ty =4*(y— 1) mod (2?)
Tr=(y—4z+4)*y—1)* mod ((z—2)?)

so that Assumption 5 is fulfilled. Define Ms =22 and M = (z— 2)2, as well as:

Mo = y? p11 = z mod (M2, M12) uin =142y

My = (y—1)° pi2 = z + 1 mod (My, M) wis =3 — 2y

Moo = (y —4x + 4)2 pa1=z+4+x mod <M1,M22> U1 = 2—17(8:17y — 18y — 32z + 75)
Moy = (y —1)° p22 = z + y mod (M1, Mai) uz2 = 5= (—8xy + 18y + 1)

Thus, for 1 <1i <2, Z1gjg2 uij M;; =1 mod (M;) hold. From these data, Proposition 3 gives:
2 2
T3 = Zi:l uiMi(ijlpijuijMij) mod <T1,T2>
= w1 Ma(priuii Miz + prauia Mi1) + ua M (p21ugi Maz + paauzaMa1) mod (71, T2)

Therefore, after taking normal form modulo 71,75 we get:

19 3 3 16923 103 5 » 5 2 3 73132
T5 = -2 — 3y — == L2
3=z — 361:y +108 y+:cy 36:cy+y 31:y+9:cy+36 27:0

We can check that the polynomial T3 satisfies expressly T3 = p;; mod (M;, M) for 1 <i<2,1 <5< 2.

The following proposition follows from Proposition 3. The notations are the same. For
1 <4 <r define G; € K[z,y] such that G; = Y72 | My; mod ((z — o)) in K[z, y].

Proposition 4. By defining F =Y .1, M;, G ="', Giu;M; the following hold:
T1 T2
FeKl], GeKlry, F-GTy=Y (ijlpijMij) M; mod (Ti,Ty).

=1

Proof. The fact that F' € K[z] and G € K|[z,y] is proved in Lemma 6. From Proposition 3:
T3 = Z;; pijuijMi; mod ((z — )¢, Th).
The fact that M;;M,; = 0 mod ((z — «;)*, To) if j # j implies that:
G; - ZZ; Dijuij M (Z;; Mij) (Z;; pijuijMij) mod {(z — a;)®,Ts)

T T2 e
= Zj:l pijuijM Zj:l pijMij (1 — Zt;ﬁj uitMit) HlOd <(I — Ozi) ,T2>

Zjil pijMij HlOd <(I — Oéi)e, T2>

By the Chinese Remaindering Theorem,
1 T1 r2
Zii (G Z pwuw ) = Zi:l ulMl (ijlpijMij) mod <T1, T2>
Therefore by denoting G = > Gu; M.
1 T2
G . T3 = Z’:l uiMi(ijl pijMij) HlOd <T1, T2>

holds. Thanks to Proposition2 F-G-T3=3 ;% (E] 1 Pij M;;) mod (T4, T5). O
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The following Corollary is proved in a similar way as Corollary 1
Corollary 2. Defining N3 := NF (1, 1,y (F - G - T3), the following equality of ideals is satisfied:
(T1,T,T3) = (11, T2, N3) = (T, Na, N3).

Remark 8. 1. The fact that N3 € K|[z,y, 2] is proved in Lemma 6.

2. From the definition of N3, we see that N3 = Z;;l(zgilpijMij)Mi mod (T1,Ts). By
comparing with T3 thanks to Proposition 3, the terms u;; - u; have been removed.

3.3 Computation of N3

In this paragraph, is explained how to compute efficiently the polynomial G of Proposition 4
under Assumption 3. The notations are the same as in Propositions 3,4.

Lemma 4. In Assumption 4 when { =1 we have: G = %—% mod (T1).

Proof. From Remark 6 and the fact that ¢ = 1:

%—I; = Z H(y — gix(z)) = Z M;; =G; mod ((z — a;)%). (12)

J=1 k#j j=1

By the Chinese Remaindering theorem, it follows that:

ZulMl(Z H(y —gir(2))) = ZuiMiGi =G mod (Th). (13)

=1 k#j i=1
Putting these equalities altogether, we obtain the equality stated. [l

Lemma 4 supplies with a straightforward method to compute G and thus, according to the
definition of N3 in Corollary 2, to compute N3 when £ = 1. We focus next on the case ¢ > 1
and the computation of G is addressed in Lemma 7. Recall that from Proposition 4

G=> wMG=) wM,(} [[y—gn(2)) mod (Ty)
i=1 i=1

J=1k#j

Since the term Z:;l u; M; has been treated in the section dealing with the case of two variables,
we only need to address the computation of G;. The Lemma below is “local”, i.e modulo
((x —;)¢), and allows to compute G;. The proof is similar to as the one of Lemma 1. Lemma 7
is a global version to compute G.

Lemma 5. Denote S; = [[;2,(y — gi;(2)), Gix = D72, Iy — gij(z))*k.  Note that
G; = Gig. Starting from S;, G, ¢ can be computed by the following recurrence relation:

Giq = oy’ Gigy1=Gin-Gip — T oy

1<k<l-1)

Remark 9. Under Assumption 4, this Lemma is not of practical use, since we only need the
“global” version of it stated in Lemma 7.

Lemma 6. The polynomial N3 defined in Corollary 2 is in K|z, y, z].
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Proof. By Lemma 2 F € KJz| therefore we focus on proving that G € Klz,y]. According
to the definition of Nj, this is indeed sufficient to prove that N3 € Klx,y,z]. Proposition 4
gives G = > 311 ui M (3072 ) [y (v — gix)") mod (T}). Consider the following isomorphism of
algebras derived from the Chinese Remaindering Theorem:

v @i (K] /(@ —a))ly] —  (Kla]/(T1)[y]
(al, as, - .- ,ah) — Z:;l uiMiai.

Here S; = [['2,(y — gi;(z)) € K[z,y] and Ty = S¢ mod ((z — a;)¢). Let us define S =

Jj=1

©(S1, 852, ,Sy, ). We have:

T2 = Zril uZMZSf = @(Sfa Sév Tt 7S£1) mOd <T1>
= <P(815S27"' 787“1)@ = Sé mod <T1>

By assumption, T; € K[z, y] hence S* € K[z, y] since that Ty € K[z]. Combined with the fact
that S € Klxz,y], it follows that S € K|[z,y]. Hence % € K|z,y], and by the next Lemma 7
H, € K[z,y|. In this way it is proved that G(= Hy in the next lemma) € K[z, y]. O

Lemma 7. Fort = 1,...,0 let H; = ¢(G14+,G24t,...,Gr,t), so that Hp = G. Let S =
T21/€ mod (T1) be as in the proof of Lemma 6. These polynomials verify the recurrence relation:

as S 0Hj,
= — — - >
H1 8y7 and Hk—i—l HlHk % 8y (k = 1)

Proof. Let Gy j = 3752, 1z (y — gir)? (as defined in Lemma 5). First let us handle H;

Hy = Z:; u MGy = Z:;l uzMz%_S;

Since u; M; € K[z], this polynomial does not depend on y:

0 r1 Op(S1,-++ ,Sr oS
le_(z_ uiMiSi):—w( 1(9y )_5_y

Next let us treat the case k > 1:

. . S; 0G,,
Hip1 = 2;1 uilMiGip1 = Z;l uii(GiaGik — Kk ayk)
B Sy 0 Sy, OGy, 1
= ¢(G1,1G1,k % Oy Gik, 3 Gri 1Gry i Koy
Sy, ,8.,) 0
= (G GG Gy ) = BRI Ry G )
This latter equation is equal to Hy Hy — %OH" which is what we wanted to show. O

dy

4 Concluding remarks
Summary of contributions We have extended the definitions of polynomials Ny, and to

some extent N3 of [4] to non-radical ideals that have a triangular set {T1,T%,T3} C K|z,y, Z]
as lexicographic Grébner basis. A comparable decrease of the bit-size of coefficient has been
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observed in a Maple implementation. A major difference though lies in the use of squarefree
decomposition, which, despite enjoying of fast algorithms in order to be computed, induces
some complications that prevent to generalize these formulas in full generality to more than
two variables. A detailed complexity analysis of the bit-size as done in [4] is planed in a later
work, the present work focusing more on feasibility in two or three variables.

Implementation in Maple Algorithm 1 to compute the polynomial Ny from 77 and 75
has been implemented in Maple. The squarefree decomposition algorithm is Yun’s one taken
from [6, Algorithm 14.21, p. 385] (see Section 2.4). The code occupies less than 40 lines. The
table below shows benchmarks in the case where Ty = (z — a)® (z — b)*2 for: (i) some random
values a,b € Z having 15 digits (ii) e; + e2 = 22, and e; is ranging from 1 to 11 (iii) moduli of
T mod ((z — a)°') and T5 mod {(z — b)°2) are chosen randomly of degree 15. It is indeed not
necessary to consider more than two factors since this case was already treated in the previous
work [4] which showed the decrease in the bit-size of coefficients. As we can see, the bit-size

er 1 2 3 4 5 6 7 8 9 10 11
~ | total || 232139 | 242837 | 234372 | 230948 | 222758 | 223658 | 225067 | 216909 | 219667 | 212003 | 191825
= max || 575 612 583 550 544 544 543 512 512 494 471
~ | total || 61865 | 60738 | 60669 | 54793 | 58166 | 56831 | 54069 | 51230 | 49423 | 46876 | 44330
= max || 328 311 300 260 269 255 239 225 211 197 179

Table 1: Line total displays the sum of the number of digits over all the coefficients in T» (upper) or Na

(lower). Line max displays the mazimal number of digits (bit-size) among all the coefficients in 75 or Na.

decrease observed get more important as both degrees e; and es get higher: when e; = 1 and
eo = 21, the ratio between the maximal bit-size of the coefficients of Ny and the one of T5 is
328 179

= ~ 0.57 whereas the ratio becomes 77 ~ 0.38 for e; = ex = 11. However better ratio than

1/3 where not observed even for higher values of e; and es.

Discussion The algorithm to compute Ns treated in Section 2 takes as input the polynomials
T1,T> and by means of efficient gcd-based subroutines output No. For N3, Assumptions 5,4 are
added. To be removed the following obstacles must be overcome:

Ezample 5. Let Ty = 2*(x +1)? € Q[z], Ta = (y — 2%)(y — x) € Q[x,y].
From Ty = y(y — x) mod (2?), we see that ged(2%,0 — x) = ged(2?, —x) # 1. If we set
A = K[x]/(x?), then:

Alyl/(y(y —x)) £ Alyl/(y) @ Alyl/(y — ). (14)

On the other hand, since To = (y + 2z + 1)(y — 2) mod ((z + 1)?), we have ged((z +
1)2, 22 —1—2) = ged((x + 1)%, =32 — 1) = 1. If we write B = K[z]/((x + 1)?), then:

Blyl/{(y + 2z + 1)(y — x)) ~ Blyl/(y + 2x + 1) & Blyl/(y — x). (15)

In this example, Assumption 5 is verified in Equation (15) but not in Equation (14). Actu-
ally, the ring Aly]/(y(y — x)) is primary so we cannot decompose it furthermore. We have no
algorithmic solution for this kind of input.

As for the restriction implied by the “same multiplicity” assumption 4, it can be loosened up
to: denoting 71 = [[; ;" the squarefree decomposition of T1, then 15 = [, (y — gi; (x))% mod
(8¢4), with g;; € K[z] and verifying Assumption 5. Note that Assumption 4 states that i = 1,
and thus ¢ = ¢;. Example 5 above does not fulfill this generalized condition on T%.
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Appendix

We detail here the complexity estimates written in Algorithm 1. Let us recall some notations;
di = deg(T1), d2 = deg,(T»), and ds; = deg(S;) where T1 = [[;_, 5] is the squarefree
decomposition of T3. In particular, the degree equality dy = > j jds; holds.

Following [6, p. 242], we will use multiplication time function denoted M(d). This is an upper
bound on the maximal number of operations in the base field K to perform the multiplication
of two polynomials of degree at most d. Shonhage Strassen’s version of Fast Fourier Transform
provides the estimate M(d) = O(dlog(d) log(log(d))). M(.) is thus super-linear: M(a)+M(b) <
M(a + b). We start by establishing the complexity stated in Remark 4.

Lemma 8. To compute Fe . from S = sqf(T1) using the recurrence relation of Lemma 1, less

than O(Alog(A)log(log(A))) operations over K is required (where A = (e +1)(dy —€)).

Proof. Let .4 := deg(Fe, ). Starting from 0.1 = deg(Fe 1) = deg(S) =r — 1 (where r = dy/e)
the recurrence relation gives ¢ 41 = deg(Fe1) + deg(Fee — 1) = 0e,1 + dep = 7 — 1 + deyp,
yielding de ¢ = (r — 1)¢ = 4dy /e — £.

The addition in the recurrence formula has indeed a negligible cost. For each £ =0,...,e —
1, we need to perform one differentiation of a polynomial of degree ., = fdi/e — ¢; one
multiplication of a polynomial of degree d. ¢ —1 by one of degree r = d; /e; and one multiplication
by two polynomials of respective degree r—1 = dj/e—1 and J. ». The differentiation is negligible,
remains to evaluate the cost of the two multiplications: M(de¢ — 1) + M(d¢,¢) < 2M(de,¢). This
is repeated e times yielding Y5_, 2M(0,.¢) < 2M(X6_, £(di/e — 1)) = 2M(ZLF (b 1)) <
M((e + 1)(d1 — €)) by super-linearity of M(.). The complexity of the lemma follows. O

Theorem 3. (a) Step 1 requires less than O(d log(dy)? log(log(dy))) operations in K.
(b) The cost of the for loop at Steps 2-4 is less than O((n — 1)d1dz log(ndy) log(log(ndy))).
(c) Step 6 requires up to M((j + 1)(jds, — j)) operations in K.
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(d) Step 7 can be performed within dy [M(C}) +4M(B;) + M(jds,) + O(jds,)] operations in
K, where C; = max{ds, — j,d1 — jds,} and B; = d1 — j(ds; + 1).

(e) The cost of the for loop of Steps 5-8 is less than O(ndad; log(ndy ) log(log(ndy))).

(f) Step 9 requires at most O(ndad; log(ndy ) log(log(ndy))) operations in K.

(g9) the total cost, in term of number operations in K, of Algorithm 1 is roughly upper bounded
by O(ndady log(ndy)log(log(ndy))).

Proof. (a) is explained at the beginning of Section 2.4.

Fast Newton’s iteration based Euclid algorithm [6, Theorem 9.6] allows to perform the
division T1/S5! in 4M(deg(Ty) — deg(S?)) + M(deg(S?)) + O(deg(S?)). The loop runs over the
number of squarefree factors n of T1, yielding the following estimate using the notations stated
before the theorem, deduced from the super-linearity of M(.),

S AM(dr — ids,) + M(ids,) + Olids,) < 4M((n — 1)d1) + M(dr) + O(da).

The dominating term of the above function can be bounded by O((n—1)d; log(nd; ) log(log(ndy))).

The second operation performed during the loop of Steps 2-4 is T, mod S¢, which amounts to
execute dy Euclidean divisions, one for each coefficient of T5 € (K[z])[y]. A similar analysis done
for the first operation T3 /S! shows that this requires up to O((n—1)d;dz log(nd;) log(log(ndy)))
operations over K. This shows (b).

The estimate of Step 6 stated in (c) is explained in Lemma 8.

Note that deg(Fj;) = d;; = j(ds;/j —1) = ds; — j and that each coefficient in 2 of
p; € (K[z])[y] has degree at most di — jds,. The multiplication Fj;p; thus costs at most
daM(Cy), C; := max{ds; — j,d1 — jds,}. Since each coefficient in = of F} jp;(x,y) is thereby of
degree in z less than Bj := dy — j(ds, + 1) it follows that the reduction mod Sj of each of these
coefficients can be estimated to cost less than da [4M(dy — j(ds, + 1)) + M(jds,) + O(jds,)].
All in all, we can see that Step 7 can be performed within the number of operations over K
stated in (d).

To estimate the overall cost of the for loop at steps 5-8, it suffices to sum up the complexities
of Steps 6 and 7 above. For Step 6: >, M((j +1)(ds, — 7)) < M(3_7_,(j + 1)(ds; — j)). We
observe that 3", (7 + 1)(ds;, — j) = di + (32, ds;) — (n(n+1)/2), yielding M(d1 + (3=, ds;) —
(n(n+1)/2)).

For Step 7: after summing up over j the three terms M(C}), 4M(B;) and M(jds; ) involved in
the estimate of (d), we obtain M((n—1)d; +C}), AM((n—1)d1—(3_; ds;)) and M(d1) respectively
(here Ci =0 if Cj = dy — jds, for all j, or Cy = ds, —k — (d1 — kdg,) if for some, necessarily
unique k, Cy, = ds, — k). As one can see, the dominating term is M(n(d; — 1) + Ci) < M(nd;).
It is multiplied by da, largely outclassing the cost of Step 6. Therefore, the overall cost of Step 6
and Step 7 is dominated by a term is doM(nd;) yielding the upper bound of (e).

Finally Step 9 consists in multiplying the dy coefficients in x of g, € (K[z])[y] by my.
The degrees at play are respectively kdg, and d; — kdg,, yielding a daM(C)) where Cj =
max{d; — kds,,kds, }. Let T := {1 <k <n | kds, = max;{jds,}}. If Cx = kd}, for some £,
then dy — kds, = Eﬁ&k jd; < kdy, showing that k € Z and Z = {k}.

It remains to sum over j = 1,...,n. As for the multiplication, in the case where Cy =
dy — kdg, for all k, we obtain the upper bound daM((n — 1)dy + C'k), where Cj, = 0 if for all
J, Cj = dy — jds;, and C) = 2kdg, — d; if there is a (unique) k for which Cy = kdj. This is
upper bounded by daM(nd;) and thus by O(ndad; log(nd; ) log(log(nd;))) as stated.

We can see that Step 7 or Step 9 in worst case outclasses other steps, yielding the result (g). O
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