EPiC Series in Computing ERCh
omputing

Volume 40, 2016, Pages 37-51
IWIL-2015. 11th International Work-

shop on the Implementation of Logics E ; is

A Method to Simplify Expressions:

Intuition and Preliminary Experimental Results

Baudouin Le Charlier and Méton Méton Atindehou

Université catholique de Louvain, ICTEAM
B-1348, Louvain-la-Neuve, Belgium
baudouin.lecharlier@uclouvain.be
meton.atindehou@uclouvain.be

Abstract

We present a method to simplify expressions in the context of a formal, axiomatically defined, the-
ory. In this paper, equality axioms are typically used but the method is more generally applicable. The
key idea of the method is to represent large, even infinite, sets of expressions' by means of a special data
structure that allows us to apply axioms to the sets as a whole, not to single individual expressions. We
then propose a bottom-up algorithm to finitely compute theories with a finite number of equivalence
classes of equal terms. In that case, expressions can be simplified (i.e., minimized) in linear time by
“folding” them on the computed representation of the theory. We demonstrate the method for boolean
expressions with a small number of variables. Finally, we propose a “goal oriented” algorithm that
computes only small parts of the underlying theory, in order to simplify a given particular expression.
We show that the algorithm is able to simplify boolean expressions with many more variables but
optimality cannot be certified anymore.

1 Introduction

Algorithms to simplify expressions often start by simplifying sub-expressions. Then they at-
tempt to apply a number of simplification rules to the whole already partly simplified ex-
pression. Very often the simplification rules are restricted to rules that are guaranteed to
produce a simpler (shorter) expression. This ensures that the simplification process is fast.
However, in many situations it is necessary to first compute a more complicated expression
in order to get a satisfactorily simplified one. For example, let us consider the boolean ex-
pression a + ba. Its sub-expressions are already simplified. To complete the simplification
using basic axioms of the boolean calculus, we must write a sequence of equalities such as:
a+ba=1la+ba= (1+b)a=1la = a. At least the expression la + ba is more complicated than
the initial one. And it is the key for the simplification.

In this paper, we propose an approach to simplification where we basically compute all
expressions that are equivalent (i.e., equal with respect to a given theory) to an expression to
be simplified. And we pick the simplest one (or possibly all simplest ones) at the end. The key
idea for making that possible is to apply rules (i.e., axioms) to (large) sets of expressions instead

IWe use the words “term” and “expression” as synonymous.

B.Konev, S.Schulz and L.Simon (eds.), IWIL-2015 (EPiC Series in Computing, vol. 40), pp. 37-51

A Method to Simplify Expressions Le Charlier, Atindehou

of single ones. To do so we introduce a data structure that allows us to compactly represent such
sets of terms and we show how it can be used to compute (representations of) some theories in
such a way that a given expression can be mapped to its equivalence class in linear time. So
simplifiying the expression amounts to pick a simplest expression in the equivalence class. The
approach is not applicable to all theories but it can be adapted to theories that are not finitely
representable to derive a simplification algorithm that gives good results in some interesting
situations.

The rest of this paper is organised as follows. In Section 2, we introduce the data structure
that is used to represent sets of equal terms. This data structure can be related to the congruence
closure method used in [8, 1] but it allows us to represent sets of terms in a much more compact
way. In Section 3, we describe a bottom-up algorithm that computes (a representation of) the
equivalence classes of terms that can be built from a set of equality axioms and a set of initially
given terms. The algorithm (theoretically) terminates if and only if the number of these sets
is finite. But the sets themselves can of course be infinite. We illustrate the functioning of
the algorithm on a simple theory. In Section 4, we use the bottom-up algorithm together with
a set of axioms for the boolean calculus to compute a complete representation of all boolean
expressions using at most three variables. Based on this representation we show that any
boolean expression can be simplified in linear time. It is also possible to use this representation
to write down all minimal boolean expressions using three variables, according to various size
notions. In Section 5, we propose a different but related algorithm to simplify expressions in
the context of larger theories. Minimization cannot be guaranteed anymore. We show that the
algorithm is able to simplify boolean expressions with many variables. In Section 6, we relate
our work to the literature. Finally, Section 7 provides the conclusion and a list of extensions
and improvements that we plan to make in the future.

All program runs presented in this paper are executed on a MacBook Pro 2.4GHz (Intel
Core i5, 4Gb RAM) using Mac OS X 10.6.8. The programs are written in Java, and compiled
and executed using the basic javac and java commands without any option. Timings are
measured using the method System.nanoTime ().

2 Structures and Sets of Structures

To represent terms and sets of terms, we use “objects” that we simply call structures. A
structure is of the form f(i1,42) : ¢ where f is a function symbol, and i1, i2 and i are so-called
set of structures identifiers. It is convenient to use natural numbers as identifiers and it is done
so in the following and in our implementation but, from a “theoretical” standpoint, identifiers
could be chosen from any infinite set I. We call f(i1,i2), the key of the structure. The identifier
1, is the identifier of the set of structures to which the structure belongs. Thus, at a given time,
we consider a finite “collection” of structures that is partitioned in a finite number of sets of
structures. For convenience, we only use binary keys and we “simulate” constant and unary
function symbols by binary ones that are applied to the special identifier 7,,; which is the
identifier of a conventional “dummy” set of structures. This can be related to the Currying
and flattening method of [9] and to the transformation to directed graph of out-degree 2 of [4].
When we display structures, however, we use a simplified notation with constant and unary
symbols.

The meaning of structures and sets of structures is defined as follows. Given n sets of
structures F1,..., E,, those sets denote together the smallest sets of terms T1,...,T, such
that a term f(t1,t2) belongs to T; whenever E; contains the structure f(i1,i2) : ¢ and ¢1, to
belong to T;, and Tj,, respectively.

38

A Method to Simplify Expressions Le Charlier, Atindehou

As a simple example, let us consider the case of three structures partitioned into two sets
of structures:

Er={f(1,2):1l,a:1} By ={b:2}
These two sets of structures denote the sets of terms:
Ty ={a, f(a,b), f(f(a,b),b),..., f(-.. f(a,b)...,b),...} T = {b}

We observe that the set T3 is infinite. The sets of structures F; and FEs constitue what is
computed by our method when it is given the equality a = f(a,) or, maybe more intriguingly,

the two equalities f(f(f(a, b)7 b), b) =aand f(f(f(f(f(a, b)7 b), b)7 b), b) = a.
2.1 Operations over Sets of Structures

There are two main operations over sets of structures: toSet and unify.

The operation toSet takes as input a term f(¢1,t2) and returns the identifier 7 of a set of
structures to which the term belongs.? (More exactly the term belongs to the set of terms T}
denoted by E;.) The operation first recursively computes the identifiers i; and iy corresponding
to t1 and to. Then there are two cases. Either a structure f(i1,i2) : ¢ already exists for some
i. Then the identifier ¢ is returned. Otherwise, a new set identifier ¢ is chosen and a new set
E; = {f(i1,i2) : ¢} is created. Finally, the identifier ¢ is returned.

The operation unify puts two sets of structures together, assuming that the terms denoted
by the two sets are all equal, and taking into account the fact that two terms that have equal cor-
responding subterms are equal as well (function congruence [8, 1]). It uses two sub-operations:
substitute and normalize.

e The operation substitute takes as input two set of structures identifiers ¢ and j. It removes,
from all sets of structures, all structures that involve j (i.e., structures of one of the three
forms f(i1,42) : j or f(4,i2) : ¢/ or f(i1,J) : ¢, for some i1,1i9,4") and it substitutes to them
possibly new structures obtained by replacing j by ¢ in the removed ones. The set E; is
then discarded.

e The operation normalize takes into account the fact that different structures with the same
key can result from the operation substitute. Since these structures denote the same non
empty set of terms, the sets of structures to which they belong must be recursively unified.
Thus, the operation normalize collects all pairs of distinct structures with identical keys
and apply the operation unify to the identifiers of the sets of structures to which they
belong.

e The operation unify simply consists of executing substitute followed by normalize.

It is important to say that both operation toSet and unify can be implemented efficiently
by means of adequate data structures: mainly, a hash table for keys and three doubly linked
lists for the identifiers i1, i2, and ¢ used by the structures. (In fact, there are three such lists
for each set identifier.) However, we do not give the details of the implementation here.

Another important fact to note is that the operation unify always reduces the number of
structures and the number of sets of structures that are “currently living”, while, at the same
time, it increases the set of all terms that are represented by the sets of structures. The more
the sets of structures are reduced the more the sets of represented terms are increased. This is
a key observation to understand the power of our method.

2This way of representing terms can be related to the term banks of [10].

39

A Method to Simplify Expressions Le Charlier, Atindehou

3 Bottom-up Algorithm

We now describe, mainly by showing how it works on examples, a bottom-up algorithm that
alms at computing a set of sets of structures that describes exactly the equivalence classes of
terms that can be built from a set of equality axioms and a set of initially given terms. Thus,
the algorithm, at the same time, builds a representation of all terms that can be constructed
from the initially given terms and the function symbols used by the axioms, and classifies them
into the equivalence classes determined by the axioms. The algorithm terminates if and only
if there are only finitely many such equivalence classes. (Of course, in practice, it may fail to
terminate because of lack of memory or it may take too much time.)

To fix ideas, we present first an example of an execution of the algorithm. Consider the
following simple set of axioms:

X.X =X ; X.y = y.X ; (x.y).z = x.(y.2) ;

This set of axioms states that the binary operation . is idempotent, commutative and associa-
tive. The letters x, y, z are thus universally quantified variables. We simply use the last letters
of the alphabet as variables. Others characters such as a, b, £, 0, !, +, ...stand for constant
and function symbols. Assuming that these axioms are put in a file called Simple.txt, let us
consider the following run of the algorithm.

java BottomUpV3 Simple ’(ab)’

Number of sets of structures : 3

Total number of structures : 11

Intermediate time : 9.32E-4 sec
Number of created sets of structures : 12

Total time : 0.001659 sec
Number of created sets of structures : 12

.(1, 1):1 [size = 3] [key = 433592]
a:1 [size = 1] [key = 65]
Number of structures : 2

.(2, 2):2 [size = 3] [key = 867170]
b:2 [size = 1] [key = 66]
Number of structures : 2

.(3, 2):3 [size = 5] [key = 300630]

40

A Method to Simplify Expressions Le Charlier, Atindehou

.(2, 3):3 [size = 5] [key = 867297]
.(1, 3):3 [size = 5] [key = 433846]
.(3, 3):3 [size = 7] [key = 300757]
.(3, 1):3 [size = 5] [key = 300503]
.(2, 1):3 [size = 3] [key = 867043]
.(1, 2):3 [size = 3] [key = 433719]

Number of structures : 7

Number of sets of structures : 3

Total number of structures : 11

7s

>aaaaaaaaabababababbbbbbbbabababbbbbbbbbbbbbbbbbab
Simplified expression : ab
Simplification time : 1.01E-4 sec

e The first line launches the algorithm with the file of axioms Simple.txt and the initial

term a.b. The program stops after 0.001659 seconds and displays that 12 sets of structures
have been created during the whole execution.

e Then, the command t allows us to display the sets of structures that are obtained as the

final result of the bottom-up algorithm. We see that there are only three different sets of
structures representing the terms that are respectively equals to a, b, and a.b. The first
set contains the two structures .(1,1) : 1 and a : 1 because a term ¢t is equal to a if and
only if it is just a itself or if it is of the form t;.to where both t; and ¢s are equal to a.
The third set contains seven different structures describing all possible forms of the terms
that are equals to a.b. For instance, the structure .(2,3) : 3 stands for all terms ¢;.to such
that t; is equal to b and t5 is equal to a.b.

e Finally, the command s allows us to enter expressions to be simplified. We see that a

rather long expression quickly simplifies to a.b. Note that the operation . is denoted
by simple juxtaposition here. Moreover, we do not use parentheses since we assume that
the operation associates to the left. The simplification is obtained by first applying the
operation toSet to the introduced expression and by afterwards displaying a minimal term
chosen among all those that are represented by the set of structures (whose identifier is)
returned by toSet.

Let us now explain how the bottom-up algorithm works. Basically, it applies all axioms

to all sets of structures by replacing variables by sets identifiers and unifying the sets corre-
sponding to the left-hand and right-hand sides of the axioms. Axiom application uses a variant
(generalization) of the toSet operation that takes as an additional argument a mapping from
axiom variables to set of structures identifiers. To apply all axioms to all sets of structures, we
simply generate all sequences of identifiers whose length is at most the maximum number of
variables in an axiom, and, for each such sequence, we apply all axioms using the correspond-
ing number of variables. Let us show how it works on the previous example. We display all
generated sequences as well as all axiom applications.

java BottomUpV3 Simple ’(a.b)’ 1x

1
[x<1>x<1>: 4 = x<1>: 1] ==>
aa = a [BU: 1[al]
11
[x<1>y<1>: 1 = y<i>x<1>: 1] ==>

aa = aa [BU: 1[a]]

41

A Method to Simplify Expressions

111

[x<1>y<1>z<1>: 1 = x<I>(y<1>z<1>): 1] ==>
aaa = a(aa) [BU: 1[a]ll

2

[x<2>x<2>: 4 = x<2>: 2] ==>
bb = b [BU: 2[bl]

21

[x<2>y<1>: 4 = y<i1>x<2>: 3] ==>
ba = ab [BU: 3[ba]ll

211

[x<2>y<1>2<1>: 4 = x<2>(y<1>z<1>): 3] ==>
baa = b(aa) [BU: 3[ball

212

[x<2>y<1>2<2>: 4 = x<2>(y<1>z<2>): 5] ==>
bab = b(ab) [BU: 4[bab]]

2 2

[x<2>y<2>: 2 = y<2>x<2>: 2] ==>
bb = bb [BU: 2[bl]

222

[x<2>y<2>2<2>: 2 = x<2>(y<2>2<2>): 2] ==>
bbb = b(bb) [BU: 2[b]]

3

[x<3>x<3>: 5 = x<3>: 3] ==>
(ba) (ba) = (ba) [BU: 3[ball

31

[x<3>y<1>: 3 = y<1>x<3>: 5] ==>
(ba)a = a(ba) [BU: 3[ball

311

[x<3>y<1>z<1>: 3 = x<3>(y<1>z<1>): 3] ==>
(ba)aa = (ba)(aa) [BU: 3[ball

312

[x<3>y<1>2<2>: 4 = x<3>(y<1>z<2>): 3] ==>
(ba)ab = (ba)(ab) [BU: 3[ball

313

[x<3>y<1>z<3>: 3 = x<3>(y<1>z<3>): 3] ==>
(ba)a(ba) = (ba)(a(ba)) [BU: 3[ball

32

[x<3>y<2>: 3 = y<2>x<3>: 3] ==>
(ba)b = b(ba) [BU: 3[ball

322

[x<3>y<2>2<2>: 3 = x<3>(y<2>2<2>): 3] ==>
(ba)bb = (ba)(bb) [BU: 3[ball

323

[x<3>y<2>2<3>: 3 = x<3>(y<2>2<3>): 3] ==>
(ba)b(ba) = (ba)(b(ba)) [BU: 3[ball

33

[x<3>y<3>: 3 = y<3>x<3>: 3] ==>

(ba) (ba) = (ba)(ba) [BU: 3[ball

333

[x<3>y<3>2<3>: 3 = =x<3>(y<3>2<3>): 3] ==
(ba) (ba) (ba) = (ba) ((ba)(ba)) [BU: 3[ball

Number of sets of structures : 3

42

Le Charlier, Atindehou

A Method to Simplify Expressions Le Charlier, Atindehou

Total number of structures : 11
Total time : 0.010333 sec
Number of created sets of structures : 12

We see that the first generated sequence simply is 1. The axiom x.x = x is then applied to it.
The axiom is depicted as [x<1>x<1>: 4 = x<1>: 1] to indicate that the set of structures
identifier 1 is substituted to x: the operation toSet is applied to the term x.x where x is
replaced by 1. It creates a new set of structures Fy = {.(1,1) : 4}, which is then unified with
Ey = {a: 1}. After unification the set Fy is discarded and we get Ey = {.(1,1) : 1,a: 1}. The
next line aa = a [BU: 1[a]] provides additional information on the effect of the axiom: the
terms a.a and a are now considered equal and they belong to the set 77 of all terms represented
by E;. A minimal term of T} is a.

The following lines show that the commutativity and associativity axioms are now trivially
satisfied by the terms in T7: no modification is made to the current sets of structure. The next
three lines are similar but afterwards various axioms involving both a and b are applied. Their
application progressively fills the set E3 with the six new structures depicted in the previous
execution trace of the program. We encourage the reader to find out at which axiom application
each final structure is exactly created. Finally, we observe that not all sequences of numbers
involving 1, 2, and 3 have been generated. This is because they are not all necessary due to
the commutativity and associativity of the . operation.

This first example is particularly simple because no new set of structures created by appli-
cation of the axioms remains after considering the three initial sets of structures. The program
stops because the current sets of structures definitely verify the axioms. Applying them again
would not create any new structure. Of course this is not true in general. Here is another run
of the program in the slightly more complicated case of three constants a, b, c. We display a
different kind of information and we show only a small part of the trace.

java BottomUpV3 Simple ’(a.b.c)’ fi

Number of sets of structures : 15
Total number of structures : 50
Number of created sets of structures : 51

Normalize .(5, 4): [6 |--> 15] [size
bac = bacc
because
bac = (b(ac))c [in 5]
and
bacc = (b(ac))c [in 15]
Normalize .(5, 5): [6 |--> 16] [size
bac = bacbac
because
bac = (b(ac)) (b(ac)) [in 5]
and
bacbac = (b(ac))(b(ac)) [in 16]
This sequence is no longer valid : 11 2 5

7] : we have

11] : we have

Number of sets of structures : 9
Total number of structures : 61
Number of created sets of structures : 80

43

A Method to Simplify Expressions Le Charlier, Atindehou

This sequence is no longer valid : 12 2 4

Number of sets of structures : 7

Total number of structures : 52

Total time : 0.009743 sec
Number of created sets of structures : 83

Looking at this trace we can make the following observations.

e This time, the algorithm does not stop after applying the axioms to all initial sets of
structures. It iterates three times. The first iteration creates 10 new sets of structures
to which —roughly speaking— the axioms are applied at the second iteration. The second
iteration reduces the number of sets but it increases the number of structures and even
creates a few new sets. The last iteration finishes the work.

e The trace shows two cases where the operation normalize is needed: at some point of
the execution two structures with the same key exist, namely .(5,4) : 5 and .(5,4) : 15.
Therefore, the sets E5 and Fi5 are unified. An example of a term represented by the
structure is added as a “comment”: (b(ac)).c. Since this term is equal to (ba).c in T5
and to ((ba)c).cin Tis, the unification of the two sets proves —in particular— that (ba) .c
= ((ba)c).c.

e The fact that sets of structures are removed by the operation unify (and thus also by
normalize) complicates the generation of all sequences of set of structures identifiers: an
identifier may “disappear” while we are generating sequences using it. Two examples of
this situation are shown in the trace. In such a case, we must be careful to continue with
the appropriate “next” sequence. But we omit the details here.

A last important remark is the following. When we unify two sets of structures E; and Ej,
we must choose to keep one identifier and to remove the other one. Experiments show that
it is of utmost importance to keep the older one. Consider the previous example. It takes
0.01 seconds to be executed and it creates 83 sets of structures (of which most are discarded
afterwards by the operation unify, of course). If we choose to “put the older set into the more
recent one”, the execution takes 0.25 seconds and it creates 627 sets of structure. (Of course,
the final sets of structures are equivalent.) In less simple situations such as those of the next
section, the wrong choice is simply not usable and the program runs out of memory. We explain
the difference as follows: when a recent set of structures is unified with an old one, it is often
the case that the old set has already been involved in many —if not all- axiom applications using
its identifier; thus, removing the recent set of structures makes it disappear without using it in
any axiom application. With the opposite policy however there is a high probability that all
axioms will be applied later on to the more recent set of structures, which is useless since this
has been implicitly already done by unifying it with the older one.

4 Simplifying Boolean Expressions

In this section, we show how the bottom-up algorithm of the previous section behaves for
simplifying boolean expressions. We use the following set of axioms for the “boolean calculus”.

x 0 =0 ; x = x 3 X+y=y+x;
x+0=x; Xy = yx ; x+y)+tz=x+(y+2) ;
x+1=1; xyz = x(yz) ; x+yz=(&+yk+z);

x !x =0 I(xy) = Ix + 1y ;

44

A Method to Simplify Expressions Le Charlier, Atindehou

Assuming that the file Boole.txt contains exactly this set of axioms, let us consider the fol-
lowing run of our program.

java BottomUpV3 Boole ’(abc)’

Number of sets of structures : 144

Total number of structures : 307
Intermediate time : 0.00691 sec
Number of created sets of structures : 308

Number of sets of structures : 859

Total number of structures : 4642
Intermediate time : 0.207848 sec
Number of created sets of structures : 6804

Number of sets of structures : 783
Total number of structures : 110052
Intermediate time : 1.776162 sec
Number of created sets of structures : 216105

Number of sets of structures : 281

Total number of structures : 134053
Intermediate time : 3.732329 sec
Number of created sets of structures : 338710

Number of sets of structures : 256
Total number of structures : 131333
Total time : 3.73564 sec
Number of created sets of structures : 338728

?s

>abc + abl!c + al'bc + al!blc + labc + !ab!c + !albc + !albl!c
Simplified expression : 1

Simplification time : 5.8E-5 sec

>abc + al!bl!c + labc + !al!bc + l!alblc + 'alblc
Simplified expression : !(ac + b) + bc
Simplification time : 5.1E-5 sec

>1((b+!b) 'b! (c! (cclala+!b))+(!b+a) (! c+c+bca) +b+c+! ((cc+!b) ! (a+!b) (a+! !b)+!b+a+a))+!ccb+
(a'c(c+a!!'b+c)a+(b+la)a! (cb!bb) ((b+c) ! 'b(c+a)+c!b+a) (catc!c)) !b(at+c)+(a!c+c+!b+!acbc)c+
(bat+cc+!c+la+! (c+c)) (V! (c+b+b+a)+c+!b) ! (a(a+!a) ! (la+!! (aa))) (c+(atb+bc+a+!b+catc) la(lc+
lc+a) (tata)+! ! ((tc+ba(lc+b)) 'c)+!1b+b+!c) (b+b) (b+c+c+c+c(b+c)+b+! ((a+a)a+!b)+!c+!b+! (c+a
+la)+ (! (bat+'!alc)+ca+!c+(ac+c) ! (ata)+!bec(a+!c)) ! (tc+!!1b) (at+!at+tb+c+b+!c))+! (! (bb(b+a) (ac+
alba)b(lc+! (1 (cb)bb)) lc(a+!!(bc)))+! (1 ((talc+! ((b+!c)b) (bb+bb+c))b! (b!c) (latc+ba)c(b+a+
(b+c) cb) b+ (b+b+b+b+c+c+a+c+! c+b+(ata) ! c+b) (b+aba(baa+ala!c((c+a) !b+c+b)+(!c+ca(b+c))cb)
Y+1('(a'b((!'bralc)a+a)) (M 'b+b! (b (! (babb)+(ca+c+!b+! (cc))cc) (tc+ta+a) (cla+!c) (b+lalc))+!(
alab)+b+!c)+(! (bla+!!a)+a+c)bab(!c+!a) (a+bb+!b!b) la(c+c!b)+c+! (latac+!b)))+(bc(a+b) (b+c
)'lab(!b+aa)c+!!b+b) ta! ((!c+clat+a+c!a)b) (ca(b+!b)+b)ac(alc+a)))

Simplified expression : b + c

Simplification time : 4.77E-4 sec

We observe the following facts.

45

A Method to Simplify Expressions Le Charlier, Atindehou

e The program stops after less than 4 seconds. Only five “iterations” are needed to get the
final sets of structures.

e We get 256 sets of structures and 131333 structures in the end. This is what should be
expected. Indeed, there are exactly 22° — 256 boolean functions with three arguments.
Hence, the number of equivalence classes of boolean expressions with three letters a, b, ¢
is 256. Moreover, any boolean expression of the form ¢; + t2 must be represented by a
structure +(i1,42) : 4. Since there are 256 possible values for i; and i3, there must exist
256 x 256 = 65536 such structures. Similarly, there must exist 65536 structures of the
form .(i1,72) : ¢ and 256 structures of the form !(i1) : ¢. Finally, there must be 5 structures
corresponding to the five constants a, b, ¢, 0, 1. It gives us a total of 65536+65536+256+5 =
133133 structures.

e Having computed a complete representation of all boolean expressions not containing other
letters than a, b, and ¢, we can use it to simplify any such expression. Three examples
are shown in the trace. The simplified expressions are chosen by minimizing the size of
a tree representation of the expression (or, equivalently, the number of characters of the
expression written in polish notation). The timings show that the simplification is fast.
They are also consistent with our claim that it is done in linear time.

5 Goal Oriented Algorithm

The bottom-up algorithm described in Section 3 is not applicable to “large theories” with many
equivalent classes of equal terms. We now propose a different algorithm, which is not optimal
anymore but which allows us to simplify expressions with more symbols. This algorithm is
“goal oriented” because it is “driven” by an initial expression to be simplified and, afterwards,
by the intermediate simplifications of this initial one. Let us show a first run of this algorithm
(for simplifying a boolean expression).

java GoalOriented
Enter an expression to be simplified :
(b(e+f)+ca+!b+b+b+!b) (ta+d+!a) (dd+c)c!df

Current reduced term : !(d + a)cf [size = 8]

Number of sets of structures : 10
Total number of structures : 156
Number of created sets of structures : 69808
Intermediate time : 2.298233 sec

46

A Method to Simplify Expressions Le Charlier, Atindehou

The algorithm simplifies an expression of size 40 to an expression of size 8 in 2.3 seconds. The
initial expression uses 6 different letters but the simplified one uses only four of them. Since it
uses each letter and the operator ! only once, we can guess that it is minimal.

The algorithm works as follows. It basically proceeds like the bottom-up algorithm by
generating sequences of set of structures identifiers but it performs an axiom application only
when the left hand-side of the axiom returns an identifier of a sub-expression of the current
expression to be simplified. So it only keeps sets of structures that are “relevant” for simplifying
the expression “at hand”. It also maintains the minimal size of all expressions represented by the
set of structures “containing” the current expression to be simplified. As soon as this minimal
size decreases, all sets containing a structure corresponding to an expression of minimal size are
marked. Then the execution of the algorithm resumes only considering identifiers of the marked
sets. Using this strategy, the algorithm really concentrates on the current smallest expressions.
The less interesting (non minimal) sets of structures are not immediately removed. They can
become minimal later. But, of course, it may quickly happen that too much memory is used.
In that case, the structures of the non minimal sets are freed first.

Here is another, more difficult example, with an expression of size 800 using 15 letters. We
only show a small part of the trace.

java GoalOriented
Enter an expression to be simplified :
(ei!b!! (a+!m)+1f+!1ialm+1) (11 (! ((1k(1+c) !d+ta) (etm!h) (!g+!j) (1+b) thj)+k!i+! (fo) j(j+o+l)
(o+!i)+! (h+e!d)+! ((le(k+jj)+et!li+le+d(j+1))nh)e+((!g+h)o+(eto!n+f+!e) 11 ((b+k) (!!g+!n)+
'h) (o+!d!a)+m+(1+!D)k+!1)g!n'!km! ! ((a+b) (eg+f))+ (11! j+! (! jk+!h+!e)) ! (!bb(m+!b)) (!b(!k+m
+b+!f)+la))+! (11! ((f+eg) ! !di+!d)) !g(alj+n) (1b+a+t!d) ! (! (to+(!td+!f) (! I fkla+th))+o)o(e!nbj
+f+£1) (! (ch+!f+g+!k!i)+!!n+b) (e+idate (! (((loi(!th+k)+!!0) (hd+o+1+f)+n!1)! (!d+m+o) (! ((a
h+(!1+!h) (g+n!£))dk) +f+! jd+! (k+a)+(h+!f)fe+i+!b))+ (!ilb(n+i)+(d+i+ad) (g+(a+j) (c+c))) ! (
(!m+!c+atn!h(!c(j+ot+th)+do(i+1) !!g!jldjj(j+e)))je(! (hbd)+!alk+og)))+!ol!!nj(! (ctei(alj
Tk+1i+3)) (111d+11)i+! ((b+hd) j)) (1f+!to(m+!1+!f)+a(o+tgto)+jc!m)+cl!d(!i+he+! (ja)) (e+k)+
1((! (ejnk)+m+£f)i!f!1gm(f+a+m) (!oeme+!k) !1(f (m+d)o+1h))+! (la(f(!d+c!1l)+(!b+ch) (£+m))+((
n+!f) 1b+!!1+e+!c)dlk+n! j+at+! (11+c)+!let(h+l)e!f)+k!f(1k+j+(h+!m) 1))
Current reduced term : (ei!b!!(a + !m) + 1f + !!ialm + D! C(('k(Q + c)!d + la)(e +m
) (1g + 13)(1 + b)thj) + ki + 1(£f0)j(j + o + 1) (o + 1i) + 1(h + eld) + ! ((le(k + jj)
+e+ !i+le+d(j+ 1))nh)e + ((Ig+hlo+ (e+oln+f+ 1e)!l((b+k(l!g+ 'n) + !
h)(o + !dta) +m + (1 + !'b)k + !Dg!ntkm!!((b + a)(eg + £)) + (11!1j + ' (1jk + 'h + le))
1(0(m + '"D))(Ib('k +m + b + 1£) + ta)) + 1(1il((f + eg)!!di + !d))!galj + n)(!b + a +
1)1 (to + (1d + tf)(MIfkla + h)) + o)o(elnbj + £ + f1)(!(ch + !f + g + !k!i) + !In +
b)(e + Date(!(((toi(!!h + k) + !!o)(hd + o + 1 + £) + n!1)!(!d + m + o) (! ((ah + (!1 +
!h)(g + n!f))dk) + £ + !jd + 1(k +a) + (b + !f)fe + i + b)) + (lilb(n + i) + (d + 1
+ad)(g+ (a+ j)(c+cIN!((!m + Ic + a+nth(lc(j + o+ h) +do(d + 1)!!g!jldjj(j + e
)))je(!(hbd) + 'a'k + og))) + 'ol!!nj(!(lc + eialjl!k + 'i + j))1!d + 11)i + ' ((b+h
d)j))CE + tlo(m + 11 + 1f) + a(o + g + o) + jclm) + cl!d(!i + he + !(ja))(e + k) + !((
!(ejnk) + m + £)i!f!lgm(f + a + m) (loeme + !'k)!1(f(m + d)o + 1h)) + !(ta(f(!d + c!1) +
(> + ch)(f +m)) + ((m+ '£)!b + !!1 + e + !lc)dlk +nlj+a+ (11 +c)+!le+ (h+1
delf) + k!f(lk + j + (b + 'm)!1)) [size = 797]
?st no
?run

size 633 idList.size() 318
size = 629 idList.size() = 316

47

A Method to Simplify Expressions Le Charlier, Atindehou

Number of sets of structures : 315
Total number of structures : 6387
Number of created sets of structures : 2970747
Intermediate time : 37.291304 sec

305
305

size = 605 idList.size()
size = 604 idList.size()

size = 346 idList.size() = 185
size = 21 idList.size() = 794
size = 13 idList.size() = 165

Number of sets of structures : 260
Total number of structures : 6731
Number of created sets of structures : 10792179
Intermediate time : 85.492769 sec

Iteration no : 2

?st nice

Current reduced term : 1 + (a + !'m)ilbe [size = 13]
?

q

We see that the execution is not “fully automatic”. The user may enter commands to guide it.
The command st no tells the program not to display each intermediate simplified expression.
The command run tells the program to apply the axioms without asking the user until all
marked sets have been considered. At this time, a new iteration starts because some axioms
that were not applicable at the first iteration may then become applicable. The algorithm may
iterate many times and it may not terminate because, due to the finite amount of memory,
some sets of structures can be removed and afterwards replaced by different ones so that some
axioms remain applicable indefinitely. Hence, the more practical choice is to let the user decide
whether the expression is simplified or not. In this example, the expression looks simple enough.
Thus, we have stopped the program with the command q. Some other commands are available,
notably to monitor memory usage, but we do not give more details here. Notice finally that
the size of the expression has suddenly “jumped” from 346 to 13. Probably because a large
sub-expression was found equal to 0 or to 1.

6 Related Work

The work presented in this paper can be related to the method of G .Nelson and D. C. Oppen
proposed in [8] (see also [1], Chapter 9). They build upon the well-kown algorithm of M. J. Fis-
cher and B. A. Galler [6] (see also [7], pages 353, 360-361, and [12]) to compute congruence
classes of terms, as a tool to determine the satisfiability of a conjunction of literals. Our method,
which has been designed independently, allows us to represent sets of terms in a much compact
way because their method represents sets of equivalent terms by directed acyclic graphs (DAGs)
while our sets of structures can be viewed as cyclic graphs. In particular, their method only
permits them to handle finite sets of terms. Therefore, it is not possible, for example, to use
their method to implement the bottom-up algorithm that we have presented in Section 3. On
the contrary, our method can be used to solve the decision problem described in [8], and, in fact,
more efficiently than they do. To support our claim, we have implemented an algorithm that
“solves” an arbitrary number of equations between uninterpreted ground terms. The algorithm
amounts to apply the operation wunify to the list of pairs i1 = j1,...,4, = j, where the i

48

A Method to Simplify Expressions

Le Charlier, Atindehou

and ji are identifiers of sets of structures representing the terms in the equations. Since the
operation unify does not maintain the initially given terms, we have to use an additional data
structure to map the initial terms to their corresponding sets of structures. This can be done
with a simple array as in [6]. The resulting algorithm is similar to the algorithm presented in [4]
and probably even more efficient since it works on more compact structures. It is easy to show
that in the worst case its execution time is bounded by O(mlogm) where m is the number of
structures needed to represent the initially given terms. However, it seems to behave better in
practice as shown by some experiments on which we report below.

First, we have “randomly” chosen a large term of 100000 symbols (i.e., 100000 symbols
if the term is written in polish notation).Then, we have represented this term as a collection
of structures, using the operation toSet (see Subsection 2.1). This representation uses 36901
structures, each of them belonging to a different set of structures. Using the identifiers of these
sets we have generated a sequence of 36901 pairs of identifiers to which the operation unify
has been applied, one by one. In the first experiment, each identifier is used exactly twice in
the equations and exactly once in the first 18450 equations (except one). The results of this
experiment are depicted in the first table below. Column i provides the number of equations
already “solved” at a given line. Column ¢ provides the amount of time needed to solve these
equations, in seconds. Columns #Set and §Struct respectively indicate the number of sets of
structures and the number of structures existing at that stage. Columns U and N contain
the numbers of set of structures unification already done, and resulting directly from applying
unify to a pair of sets of structures identifiers (U), or indirectly from using normalize (N).
(See again Subsection 2.1.) Column 7 is just U + N. Column ¢/ gives the ratio of the time
(measured in microseconds) by the number of equations already solved. Column d¢/di is a kind
of “derivative” of the time with respect to the number of already solved equations: we divide the
difference between the current time and the previous one, by the number of equations executed
between the current and the previous stage. Column 7'/t gives the number of set reductions by
millisecond and dT'/dt is the “derivative” of T' with respect to ¢, computed similarly to dt/d;i.
Finally, dS/dt is the “derivative” of the number of removed structures (36901 — §Struct) with
respect to the time.

| i | t] #Set | §Struct | U | N | T t/i|dt/di][T/t]dT/dt] dS/dt]

0 0.0 || 36901 | 36901 0 0 0 0 0 0
2500 | 0.042 || 34336 | 36836 || 2500 65| 2565 16.8 | 16.8| 60 60 1
5000 | 0.065 || 31758 | 36758 || 5000 143 | 5143 13.1 93| 78 109 3
7500 | 0.079 || 29166 | 36666 || 7500 235 | 7735 || 10.6 55| 97 186 6
10000 | 0.096 || 26565 | 36565 || 10000 336 | 10336 || 9.6 6.7 || 107 153 5
12500 | 0.117 || 23925 | 36425 || 12500 476 | 12976 | 9.4 8.4 | 110 125 6
15000 | 0.13 | 21301 | 36301 || 15000 600 | 15600 || 8.6 5.1 || 119 202 9
17500 | 0.148 || 18615 | 36115 || 17500 786 | 18286 || 8.4 7.2 | 123 148 10
20000 | 0.162 || 15803 | 35802 | 19999 | 1099 | 21098 || 8.1 5.3 || 130 210 23
22500 | 0.482 5 48 || 21919 | 14977 | 36896 || 21.4 | 128.1 | 76 49 111
25000 | 0.482 2 30 || 21921 | 14978 | 36899 || 19.3 02| 76 5 34
36901 | 0.483 2 30 || 21921 | 14978 | 36899 || 13.1 00| 76 0 0

We can make the following observations: until ¢ = 20000 (i.e. shortly after that set of struc-
tures identifiers have all been used in one call to unify), the algorithm behaves uniformly by
reducing the number of sets while the number of structures remain almost stable. Also, the
time complexity is better than linear. Then, suddenly, between ¢ = 20000 and ¢ = 22500, a lot
of set reductions are made, mainly due to the operation normalize. This happens because most

49

A Method to Simplify Expressions Le Charlier, Atindehou

sets of structures now contain more structures, increasing the probability of having different
structures with the same key. Unifying the sets containing those structures creates new struc-
tures with the same key, which has a snowball effect. By looking to the third last column, we
can see that the number of set unifications by unit of time is continuously increasing until the
critical interval between ¢ = 20000 and ¢ = 22500 is met. Then, it decreases significantly but it
is because most structures are discarded, (i.e., merged) at this stage. When ¢ > 22500 almost
nothing is left to do, so it is not useful to comment on the two last lines. Hence, our algorithm
is very efficient to solve the satisfiability problem of [8]. We conclude by showing the results of
a second experiment in which the list of equations i1y = ji,...,%, = j, is generated completely
randomly, allowing every identifier to appear in the list an arbitrary number of times and in
any position. We see that the results are similar but the “critical section” of the algorithm
takes place earlier (which could have been anticipated). Also most set reductions are due to the
operation normalize contrary to the first experiment. More equations are now trivially verified
because the two identifiers involved in them at the beginning are mapped on the same one.

| i] t]| #Set | §Struct | U]l N]J T t/i|dt/di] T/t]dT/dt]] dS/dt]
0 0.0 || 36901 | 36901 0 0 0 0 0 0
2500 | 0.032 || 34339 | 36839 | 2500 62| 2562 | 13.0| 13.0| 78 78 1
5000 | 0.055 || 31740 | 36740 | 5000 161 | 5161 || 11.0 9.0 | 93 115 4
7500 | 0.074 || 29122 | 36622 | 7500 279 | 779 9.9 7.9] 103 132 5
10000 | 0.096 || 26463 | 36463 || 10000 438 |1 10438 || 9.6 8.6 || 108 122 7
12500 | 0.116 || 23613 | 36113 || 12500 788 | 13288 || 9.3 7.8 || 114 144 17

15000 | 0.314 860 2128 || 14296 | 21745 | 36041 || 20.9 | 79.1 || 114 114 171
17500 | 0.316 422 1295 || 14386 | 22093 | 36479 || 18.0 0.8 || 115 205 391
20000 | 0.317 296 1041 || 14432 | 22173 | 36605 || 15.8 0.5 || 115 97 196
22500 | 0.319 163 678 || 14471 | 22267 | 36738 || 14.1 0.5 || 115 97 265
25000 | 0.32 73 384 || 14490 | 22338 | 36828 || 12.8 0.5 114 71 233
36901 | 0.323 12 140 || 14510 | 22379 | 36889 || 8.7 0.3 || 113 16 66

Finally, it can be stressed that the timings reported here are consistent with the timings reported
for our bottom-up and goal oriented algorithms, which create much more structures and solve
many more equations.

A lot of work has been devoted to the problem of simplifying boolean expressions, but most
of the work has been done to simplify expressions written in disjunctive or in conjunctive normal
form (see, e.g., [2]). The algorithms presented in this paper are not intended to compete with
those methods but they are more general since they are applicable to many kinds of simplifi-
cation problems. Basically, we used the boolean expression simplification problem mainly as
a (significant) example of application. Very often, boolean expression simplification is used to
better understand facts represented by the boolean expressions. The use of OBDDs to simplify
boolean expressions is often advocated in that case (see, e.g. [3]). We have applied our method
to analyze the so-called guards of a medical process model constructed by the authors of [3],
with good results; but we have not compared our results with the use of OBDDs, yet.

Finally, parts of our work can be related to other areas such as rewriting systems, constraint
programming or SAT-solving, to name only three, but we have not investigated those relations
in great details yet. We will surely do so in the future, mainly to improve the efficiency and
the applicability of our goal oriented algorithm.

50

A Method to Simplify Expressions Le Charlier, Atindehou

7 Conclusion and Future Work

We have presented a method to represent large sets of equivalent terms compactly, and we
have shown how this representation can be used to solve interesting simplification problems.
We have put the focus on boolean expression minimization and simplification but our method
obviously is much more general. Therefore, we plan to use it to investigate other simplification
problems such as the (very difficult) problem of simplifying regular expressions (see, e.g., [11]).

The algorithms that we have presented in Sections 3 and 5 can certainly be significantly
improved, especially the goal oriented algorithm. We plan to improve them by using incre-
mental techniques related to the Rete algorithm [5]. Several other avenues of research can be
considered. Let us consider two of them. We can extend and improve our current syntax for
writing axioms. Our simple language can be augmented with “meta predicates” to write more
specific axioms, and to allow the writing of implications. A second (difficult) topic should be to
specialize our main data structure (sets of structures) to take into account common properties
of operations such as associativity and commutativity.

Acknowledgments

The authors wish to thank Charles Pecheur for useful discussions and for providing them with
pointers to important related work. Comments from the reviewers are also greatly acknowl-
edged.

References

[1] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision procedures with
applications to verification. Springer, 2007.

[2] Olivier Coudert. Two-level logic minimization: an overview. Integration, 17(2):97-140, 1994.

[3] Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde. Generating process models in
multi-view environments. In Dependable Software Systems Engineering, pages 105-127. 2015.

[4] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758-771, October 1980.

[6] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17-37, 1982.

[6] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun. ACM,
7(5):301-303, 1964.

[7] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algo-
rithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

[8] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J. ACM,
27(2):356-364, 1980.

[9] Robert Nieuwenhuis and Albert Oliveras. Proof-Producing Congruence Closure. In Giesl J, editor,
Proc. 16th International Conference on Rewriting Techniques and Applications (RTA-2004), Nara,
Japan, number 3467 in LNCS. Springer, 2005.

[10] Stephan Schulz. System Description: E 1.8. In Proc. of the 19th LPAR, Stellenbosch, volume 8312
of LNCS, pages 735-743. Springer, 2013.

[11] Alley Stoughton. Formal Language Theory: Integrating Ezperimentation and Proof. Cambridge
University Press, 2016.

[12] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215—
225, 1975.

51

	Introduction
	Structures and Sets of Structures
	Operations over Sets of Structures

	Bottom-up Algorithm
	Simplifying Boolean Expressions
	Goal Oriented Algorithm
	Related Work
	Conclusion and Future Work

