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Abstract

In this paper, we propose an innovative approach that incorporates formal verification
methods into the training process of stochastic Reinforcement Learning (RL) agents. Our
method allows for the analysis and improvement of the learning process of these agents.
Specifically, we demonstrate the capability to evaluate RL policies (prediction) and opti-
mize them (control) using different model checkers. The integration of formal verification
tools with stochastic RL agents strengthens the applicability and potential of our approach,
paving the way for more robust and reliable learning systems.

1 Introduction

Reinforcement Learning (RL) [1] is a powerful paradigm in the field of artificial intelligence,
enabling agents to learn optimal actions through trial and error while interacting with an
environment. RL has demonstrated success in solving complex tasks, such as game playing [2],
robotics [3], and autonomous systems [4]. Within the RL framework, prediction refers to the
task of estimating the expected value or future outcomes given a particular state or action,
whereas control involves determining the optimal actions or policy that maximize the expected
cumulative reward. Despite recent successes, challenges persist, including instability in the
training process, difficulty in achieving convergence, and the lack of formal guarantees for
learned policies, particularly in the context of prediction and control tasks.

Imitation learning [5] is an approach within the realm of RL, where agents learn by observ-
ing and imitating the behavior of an expert. By leveraging the knowledge and experience of
the expert, imitation learning can potentially lead to faster convergence and more reliable poli-
cies. However, obtaining a suitable expert can be difficult or expensive, and even with expert
guidance, it is still challenging to prove convergence and correctness of the learned policies.

Previous work [6] presented a method to combine formal verification tools with deterministic
RL agents to address these issues. By translating RL models into transition systems, one could
apply formal verification techniques, and use the output of model checkers as expert trajectories
to guide the learning process. This allows us to improve the learning process, demonstrate the
convergence of RL models, and explore new trajectories that can aid the agent in overcoming
challenges such as getting stuck in non-terminal states.

In this work, we tackle the challenge of adapting verification techniques, primarily tailored
for deterministic systems, to address the distinct challenges associated with stochastic decision-
making processes in RL. We illustrate how non-probabilistic model checking techniques can
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be effectively employed to enhance the learning process (control), while incorporating a prob-
abilistic model checker for quantitative evaluation of the agent’s behavior (prediction). This
synergistic approach enables the comprehensive assessment and refinement of stochastic RL
policies.

We acknowledge that there may be additional computational overhead in utilizing model
checkers for verification and expert trajectory generation. However, we emphasize that our
approach aims to strike a balance between computational complexity and the benefits gained
from formal verification.

Our main contributions can be summarized as follows:

e Broadening the scope of the previous approach to encompass stochastic RL agents, show-
casing the versatility of formal verification tools in handling both control and prediction
tasks.

e Adeptly integrating probabilistic techniques with probabilistic model checkers, creating a
holistic framework for the analysis and improvement of stochastic RL agents.

e Fortifying the bridge between Reinforcement Learning and Formal Verification, paving
the way for the development of robust and dependable learning systems backed by formal
guarantees.

2 Method

Verification Challenges with Stochastic RL Agents

One of the primary challenges in applying formal verification techniques to stochastic RL agents
is that traditional nondeterministic model checkers, such as SMV-like verifiers [7, 8], cannot
effectively represent the stochastic nature of these agents. These model checkers rely on nonde-
terministic state transition diagrams or automata to represent the system’s behavior. However,
in stochastic RL, the agent’s behavior is inherently probabilistic, making it difficult to represent
it as a non-stochastic finite state machine. Additionally, traditional model checkers do not have
built-in support for probabilistic reasoning, further limiting their applicability in this context.

As a result, we cannot rely on them for our stochastic RL agents’ formal verification needs.
Instead, we turn to probabilistic model checkers such as PRISM [9], which are specifically
designed to handle the stochastic behavior of systems. To address the challenges posed by
the stochastic nature of RL agents, we propose a hybrid approach that combines both non-
probabilistic and probabilistic verification techniques. Specifically, we utilize non-probabilistic
verification techniques for control tasks, and probabilistic verifiers for prediction tasks, allow-
ing us to leverage their support for temporal logic model checking and quantitative rewards.
This combination enables us to perform fine-grained analysis of the agent’s behavior while
maintaining scalability and efficiency.

Hybrid Approach for Enhanced Control and Prediction of Stochastic
RL Agents

At a high level, our approach consists of the following steps—Training, Evaluation and Improve-
ment: First, we train a stochastic RL agent using standard RL methods. Next, we evaluate the
probability of the agent reaching the goal using PRISM, a probabilistic model checker. To im-
prove the agent’s performance, after x epochs, we create a deterministic version of the policy by
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taking the greedy action at each state, using the learned Q-table. We then use non-probabilistic
model checking to verify the policy’s correctness. If the policy hasn’t converged to the optimal
policy, we take the counter example generated by the model checker, representing a trajectory
violating the desired specification, and use it as an expert trajectory to guide the agent’s learn-
ing process. This counterexample serves as invaluable expert data, providing specific insights
into the agent’s erroneous behavior and guiding the learning process towards improvement.
While it is true that providing counterexamples from a model checker is a common capability
found in many mature model checking tools, the significance lies in the integration of these
counterexamples as expert trajectories to enhance the training of our stochastic RL agent.
This process is repeated for a fixed number of epochs, or until the probability of reaching the
goal exceeds a predefined threshold, allowing us to iteratively refine the agent’s policy until we
achieve satisfactory performance.

The main advantage of our hybrid approach is that it allows us to leverage the strengths of
both non-probabilistic and probabilistic verification techniques. By using a non-probabilistic
model checker, we can generate valuable expert trajectories to guide the agent’s learning process,
even in the presence of stochastic behavior. Meanwhile, by using a probabilistic model checker,
we can evaluate the agent’s expected behavior and make informed decisions about when to
continue training and when to refine the agent’s policy.

Formulation of the Hybrid Process

To formalize the entire process, let us consider an RL problem defined by a Markov Decision
Process (MDP), which consists of a tuple {S,.4, P, R,v}. Here, S represents the state space,
A denotes the action space, P defines the transition probabilities, R represents the reward
function, and ~ is the discount factor.

During the training phase, we obtain a tabular solution or policy, which can be expressed
as a transition system:

T =(V,0,p) (1)

Here, V represents the system variables, 6 represents the initial conditions, and p represents
the transition relation. The variables V encode the state space S, while p captures the actions
taken from each state based on the current policy 7. Additionally, 6 includes the initial
position(s) of the system.

Once we have learned a model in the form of a transition system, we can utilize it as a finite
state machine, enabling us to leverage model checking techniques for verification. The query
typically involves LTL/CTL properties, with the primary question being, “Does the current
model reach the goal from all optional initial states?” In terms of LTL, the query is “Is Finally
the goal state always reachable?”

Once we obtain the output from the model checker, we utilize it to enhance the model,
incorporating the insights gained from the analysis. Subsequently, we evaluate the quality of
the enhanced model using a probabilistic model checker. Specifically, we pose the question,
“Given the learned model formulated as a finite state machine (FSM), what is the probability
of reaching the goal, starting from initial states?”. We express this probability using PCTL as
“P =7 [F state=Goal]”. This quantitative assessment allows us to measure the likelihood of
successfully achieving the specified goal, providing valuable insights into the effectiveness of the
learned model and guiding further refinements in the reinforcement learning process.
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Results

Frozen Lake is a widely used benchmark in reinforcement learning, consisting of a grid world
environment with multiple obstacles and a frozen lake, where an agent must navigate to reach
a goal state while avoiding holes and frozen squares. We ran vanilla Q-learning on a stochastic
agent, and found that the resulting policy had a low probability of reaching the goal. However,
when we incorporated trajectories from the model checker, the final probability increased sig-
nificantly. We tested the algorithm using different hyperparameter configurations, and found
that using the expert’s trajectories consistently led to higher probabilities of success. In Figure
1, we show results for the Frozen Lake game with two different grid sizes (10 x 10 and 20 x 20)
and various stochastic rates, upon which we ran @-learning using our approach. Without the
verification mechanism, all training sessions resulted in an almost zero probability of reaching
the goal state (vanilla agents without the verification mechanism achieved very low probabilities
of success in both grid sizes, and hence were not included in the graph). However, when incor-
porating the verification mechanism, we observed significantly improved success rates, with the
agent reaching high probabilities of success where the stochastic rates are lower. Notably, the
agent’s probability of success remained sufficient even with aggressive stochastic rates, compared
to the vanilla agent.

Particularly, we were able to quantitatively compare the performance of the agent both
with and without the expert trajectories, thanks to the use of the probabilistic model checker,
PRISM. This allows us to demonstrate the efficacy of our approach and the improvement gained
from incorporating expert guidance.

3 Related Work

The field of artificial intelligence has a long history of research in safe reinforcement learning,
with many different approaches proposed. While most methods do not use formal verification,
recent works have started to apply formal methods to reinforcement learning. One example is
the Justified Speculative Control (JSC) [10] technique, which combines formal verification and
run-time monitoring to ensure system safety. Another approach, called Verily [11], verifies deep
reinforcement learning systems by converting them into satisfiability problems and solving them
using a SAT solver. Meanwhile, other works [12,13] focus on synthesizing deep neural network
controllers for nonlinear systems subject to safety constraints, or on training and verifying
DNNs with finite input states [14]. Finally, counter-example driven techniques like the one
proposed by Zhu et al. [15] have also been used to improve the safety of reinforcement learning
algorithms. Our approach differs from these works in two key aspects. First, we generate
counterexamples using formal methods in a different way. Second, we combine different model
checkers for both prediction and control, allowing us to ensure safety during both the training
and deployment phases.

4 Summary

In this paper we discuss an extension of previous work [6] on incorporating formal verification
methods into deterministic RL agents to now include stochastic RL agents. We propose a
hybrid approach that combines both non-probabilistic and probabilistic verification techniques
to create a comprehensive framework for the analysis and improvement of stochastic RL policies.
We demonstrate our approach on the Frozen Lake benchmark in RL and show that incorporating
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Figure 1: Performance of Frozen Lake agent with verification mechanism. For two
different grid sizes, we evaluated the performance of our mechanism on the Frozen Lake game,
showing the probability of success achieved by the agent under various stochastic rates.

expert trajectories from the model checker leads to higher probabilities of success for the agent.
This work is still in its initial stages and further evaluation and progress is needed.
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