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Abstract

Generalizing the novel clause elimination procedures developed in [1], we introduce explicit

(CCE), hidden (HCCE), and asymmetric (ACCE) variants of a procedure that eliminates covered

clauses from CNF formulas. We show that these procedures are more effective in reducing CNF

formulas than the respective variants of blocked clause elimination, and may hence be interesting as

new preprocessing/simplification techniques for SAT solving.

1 Introduction

Simplification techniques applied both before (i.e., in preprocessing) and during search have proven in-

tegral in enabling efficient conjunctive normal form (CNF) level Boolean satisfiability (SAT)1 solving

for real-world application domains. Further, while many SAT solvers rely mainly on Boolean con-

straint propagation (i.e., unit propagation) during search, it is possible to improve solving efficiency by

applying additional simplification techniques also during search. Noticeably, when scheduling combi-

nations of simplification techniques during search, even quite simply ideas can bring additional gains

by enabling further simplifications by other techniques.

Generalizing the clause elimination procedures developed in [1], in this paper we introduce explicit

(CCE), hidden (HCCE), and asymmetric (ACCE) variants of a clause elimination procedure that elimi-

nates what we call covered clauses from CNF formulas. We compare these procedures to the analogous

variants BCE, HBCE, and ABCE (see Sect. 1.1) of blocked clause elimination [1, 2] w.r.t. relative

effectiveness.

Definition 1. Assume two clause elimination procedures S1 and S2 that take as input an arbitrary CNF

formula F and each outputs a CNF formula that consists of a subset of F that is satisfiability-equivalent

to F . Procedure S1 is at least as effective as S2 if, for any F and any output S1(F ) and S2(F ) of S1

and S2 on input F , respectively, we have that S1(F ) ⊆ S2(F ); S2 is not as effective as S1 if there is an

F for which there are outputs S1(F ) and S2(F ) of S1 and S2, respectively, such that S1(F ) ⊂ S2(F );
and S1 is more effective than S2 if (i) S1 is at least as effective as S2, and (ii) S2 is not as effective as

S1.

This definition of relative effectiveness takes into account non-confluent elimination procedures, i.e.,

procedures that do not generally have a unique fixpoint and that may thus have more than one possible

output for a given input. In fact, we show that out of the three covered clause elimination procedures, the

explicit variant CCE is confluent. Extending the relative effectiveness hierarchy presented in [1] (see

the solid arrows in Fig. 1), we show that the variants of covered clause elimination are more effective

than their counterparts based on blocked clauses (see the dashed arrows in Fig. 1). In this sense, the
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1We assume that the reader is familiar with basic concepts related to CNF satisfiability. When convenient we view a clause as

a set of literals and a CNF formula as a set of clauses.
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elimination procedures introduced in this paper are proper generalizations of the techniques analyzed

in [1]. This is interesting since it has been recently shown in [2] that already BCE is surprisingly

effective, as it can—purely on the CNF level—implicitly perform a combination of structure-based

circuit-level techniques, including the polarity-based Plaisted-Greenbaum CNF encoding and difference

circuit simplifications. Here, the most effective technique is the asymmetric variant of covered clause

elimination.
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Figure 1: Relative effectiveness hierarchy of clause elimination procedures. An edge from X to Y

means that X is more effective than Y . A missing edge from X to Y means that X is not as effective

as Y . Transitive edges are missing from the figure for clarity. The dashed arrows present results of this

paper.

1.1 Variants of Blocked Clause Elimination

The resolution rule states that, given two clauses C1 = {l, a1, . . . , an} and C2 = {l̄, b2, . . . , bm}, the

implied clause C = {a1, . . . , an, b1, . . . , bm}, called the resolvent of C1 and C2, can be inferred by

resolving on the literal l, and write C = C1 ⊗l C2.

We compare the clause elimination procedures based on covered clauses to the following proce-

dures [1] that eliminate blocked clauses [3]. Notice that out of these three, only BCE is confluent [1].

BCE Given a CNF formula F , a clause C and a literal l ∈ C, the literal l blocks C w.r.t. F if (i) for

each clause C′ ∈ F with l̄ ∈ C′, C⊗lC
′ is a tautology, or (ii) l̄ ∈ C, i.e., C is itself a tautology2. Given

a CNF formula F , a clause C is blocked w.r.t. F if there is a literal that blocks C w.r.t. F . Removal of

blocked clauses preserves satisfiability [3]. For a CNF formula F , blocked clause elimination (BCE)

repeats the following until fixpoint: if there is a blocked clause C ∈ F w.r.t. F , let F := F \ {C}. The

CNF formula resulting from applying BCE on F is denoted by BCE(F ).

HBCE Given a CNF formula F , we denote by F2 the set of binary clauses contained in F . For a

given clause C ∈ F , we denote by (hidden literal addition) HLA(F,C) the unique clause resulting

from repeating the following clause extension steps until fixpoint: if there is a literal l0 ∈ C such that

there is a clause (l0 ∨ l) ∈ F2 \ {C} for some literal l, let C := C ∪{l̄}. For a CNF formula F , a clause

C ∈ F is called hidden blocked if HLA(F,C) is blocked w.r.t. F . Hidden blocked clause elimination

(HBCE) repeats the following until fixpoint: if there is a hidden blocked clause C ∈ F , remove C from

F .

ABCE For a clause C and a CNF formula F , (asymmetric literal addition) ALA(F,C) denotes the

unique clause resulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C and there is a

clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {l̄}. A clause C ∈ F is called

2Here l̄ ∈ C is included to handle the special case that for any tautological binary clause (l∨ l̄), both l and l̄ block the clause.

Even without this addition, every non-binary tautological clause contains at least one literal that blocks the clause.
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asymmetric blocked if ALA(F,C) is blocked w.r.t. F . Asymmetric blocked clause elimination (ABCE)

repeats the following until fixpoint: if there is an asymmetric blocked clause C ∈ F , let F := F \ {C}.

2 Covered Clause Elimination Procedures

Given a CNF formula F , a clause C, and a literal l ∈ C, the set of resolution candidates of C w.r.t. l is

RC(F,C, l) := {C′ | C′ ∈ Fl̄ and C ⊗l C
′ is not a tautology}. Notice that every clause in RC(F,C, l)

contains the literal l̄. If RC(F,C, l) = ∅, then C is blocked w.r.t. F . The literals apart from l̄ which

occur in all clauses of RC(F,C, l) form the resolution intersection RI(F,C, l) of l and C w.r.t. F ,

defined as

RI(F,C, l) :=
(

⋂

RC(F,C, l)
)

\{l̄}.

Given a CNF formula F , a clause C ∈ F , and a literal l ∈ C, we say that l covers the literals in

RI(F,C, l) (w.r.t. F and C). A literal l′ is covered by l ∈ C if l′ ∈ RI(F,C, l). A literal l ∈ C is

covering w.r.t. F and C if l covers at least one literal, i.e., RI(F,C, l) 6= ∅.

Lemma 1. For any CNF formula F , clause C ∈ F , and literal l ∈ C, it holds that replacing C by

C ∪ RI(F,C, l) in F preserves satisfiability.

Proof. For any literal l ∈ C it holds that VE(F, l) = VE((F \ {C}) ∪ {C ∪ RI(F,C, l)}, l), where

VE(F, l) denotes the CNF formula resulting from variable eliminating3 the variable of the literal l from

F .

For a given clause C in a CNF formulaF , we denote by (covered literal addition)CLA(F,C) the clause

resulting from repeating the following until fixpoint: if there is a literal l ∈ C such that RI(F,C, l)\C 6=
∅, let C := C ∪ RI(F,C, l).

Lemma 2. Replacing a clause C ∈ F by CLA(F,C) preserves satisfiability.

Proof. The clause CLA(F,C) is obtained by iteratively applying Lemma 1 on clause C.

Lemma 3. Assume two clauses C,D with l ∈ C ⊆ D and two sets of clauses F,G with F ⊆ G.

Further assume that D is not blocked w.r.t. F and hence C is not blocked w.r.t. G. Then RC(G,C, l) ⊇
RC(F,D, l) 6= ∅ and hence RI(G,C, l) ⊆ RI(F,D, l).

Proof. Monotonicity of RC w.r.t. its first argument and anti-monotonicity w.r.t. its second argument

follows directly from its definition. For RI, note that intersection is anti-monotonic for non-empty sets

of sets.

Theorem 1. Given a CNF formula F and a clause C ∈ F , CLA(F,C) is blocked or uniquely defined.

Proof. Assume C is not blocked w.r.t. F and contains two literals l1, l2, which cover the literals L′

i
=

RI(F,C, li) respectively. Consider the clauses C1 = C∪L′

1 and C2 = C∪L′

2. Now assume that both of

C1, C2 are not blocked w.r.t. F . Then all clauses D ∈ RC(F,C1, l2) ⊆ RC(F,C, l2) contain all literals

in L′

2. Since C1 is not blocked and thus RC(F,C1, l2) is not empty, we obtain L′

2 ⊆ RI(F,C1, l2).
The case where the indices are exchanged (i.e., L′

1 ⊆ RI(F,C2, l1)) is symmetric. Thus as long clauses

do not become blocked, covered literals can be added independently. The case that both of C1, C2 are

blocked is trivial.

3More formally, VE(F, l) = (Fl ⊗ F
l̄
) ∪ (F \ (Fl ∪ F

l̄
)), where Fl and F

l̄
consist of the clauses in F that contain l and l̄,

respectively, and Fl ⊗ F
l̄
= {C ⊗l C

′ | C ∈ Fl, C
′ ∈ F

l̄
, and C ⊗l C

′ is not a tautology}.
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What remains (by symmetry) is the case that C2 is blocked but C1 is not. Again, as above, we

get L′

2 ⊆ RI(F,C1, l2). For C′

1 = C1 ∪ RI(F,C1, l2) we have C′

1 = C ∪ L′

1 ∪ RI(F,C1, l2) ⊇
L′

1 ∪ (C ∪ L′

2) ⊇ C′

2 which is also blocked. This generalizes to the following observation: For any

non-deterministic choice of adding covered literals to C, the literal l2 remains covering. Further, if in

this process the clause did not become blocked, it will eventually become blocked if the covered literals

of l2 are added.

To illustrate the effect of adding covered literals on logical equivalence4, consider the formula

FCLA = (a ∨ b ∨ c) ∧ (a ∨ b̄ ∨ d) ∧ (a ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ d̄) ∧ (ā ∨ c ∨ d).

Notice that RI(FCLA, (a∨b∨c), b) = {d} andRI(FCLA, (a∨b∨c), c) = {d̄}. Therefore, depending

on the order of addition,CLA(FCLA, (a∨b∨c)) is either (a∨b∨c∨d) when starting with covering literal

b or (a∨b∨c∨d̄) when starting with covering literal c. In both cases CLA(FCLA, (a∨b∨c)) is blocked.

After replacing (a ∨ b ∨ c) by (a ∨ b ∨ c ∨ d) the truth assignment τ with τ(a) = τ(b) = τ(c) = false

and τ(d) = true satisfies the new formula, while falsifying (a∨ b∨ c) ∈ FCLA. In fact, FCLA witnesses

the fact that none of the clause elimination procedures introduced next preserve logical equivalence in

general.

2.1 Covered Clause Elimination

Definition 2. Given a CNF formula F , a clause C ∈ F is covered if CLA(F,C) is blocked w.r.t. F .

Lemma 4. Removal of an arbitrary covered clause preserves satisfiability.

Proof. C can be replaced by CLA(F,C) (Lemma 2), and C can be removed as CLA(F,C) is blocked.

For a given formula F , covered clause elimination (CCE) repeats the following until fixpoint: if

there is a covered clause C ∈ F , remove C from F . The resulting unique formula is denoted by

CCE(F ).

Confluence of CCE follows from the following lemma.

Lemma 5. The following holds for any CNF formula F , clause C ∈ F , and set of clauses S ⊆ F such

that C 6∈ S. If C is covered w.r.t. F , then C is covered w.r.t. F \ S.

Proof. Let CLA(F,C) = Ck, where C0 := C, and Ci+1 := Ci ∪ RI(F,Ci, li) for each i = 0..k − 1
and li ∈ Ci. Now define D0 := C and, for each i = 0..k − 1, Di+1 := Di if Di is blocked w.r.t. F \ S
and Di+1 := Di ∪ RI(F \ S,Di, li) otherwise. Using Lemma 3, one can show by induction that for

each i we have either (i) Di is blocked w.r.t. F \ S, or (ii) RI(F \ S,Di, li) ⊇ RI(F,Ci, li). If (i) holds

for some i, then CLA(F \ S,C) is blocked w.r.t. F \C. If Di is not blocked w.r.t. F \ S for any i, then

CLA(F \ S,C) ⊇ CLA(F,C).

Theorem 2. CCE is confluent.

Theorem 3. CCE is more effective than BCE.

Proof. CCE is at least as effective as BCE follows from the fact that C ⊆ CLA(C): if C is blocked,

so is CLA(C). Moreover, in FCLA no clause is blocked. However, all clauses are covered. Hence BCE
will not remove a single clause, while CCE removes all of them.

4In this context, two formulas F and F ′ are logically equivalent if they have exactly the same set of satisfying assignments

when restricting these assignments to the variables appearing in both F and F ′.
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2.2 Hidden Covered Clause Elimination

For a given CNF formula F , a clause C ∈ F is hidden covered if the clause resulting from repeating

1. C := CLA(F,C); 2. C := HLA(F,C) until fixpoint is blocked w.r.t. F . Hidden covered clause

elimination (HCCE) repeats the following until fixpoint: if there is a hidden covered clause C in F ,

remove C from F .

Lemma 6. Removal of an arbitrary hidden covered clause preserves satisfiability.

Proof. Follows from the facts that (i) F is satisfiability equivalent to (F \ {C})∪ {CLA(F,C)}; (ii) F

is satisfiability equivalent to (F \ {C}) ∪ {HLA(F,C)}; and (iii) BCE preserves satisfiability.

Theorem 4. HCCE is more effective than CCE.

Proof. HCCE is at least as effective as CCE follows from the fact that C ⊆ HLA(F,C): if C is

covered, so is HLA(F,C). Moreover, consider the formula

FHCCE = (a ∨ b) ∧ (a ∨ c) ∧ (ā ∨ d) ∧ (ā ∨ e) ∧ (b ∨ c) ∧ (b̄ ∨ d)∧
(b̄ ∨ ē) ∧ (c̄ ∨ d̄) ∧ (c̄ ∨ e) ∧ (d̄ ∨ ē).

In FHCCE no clause is covered. However, all clauses are hidden covered. Hence CCE will not remove

a single clause, while HCCE removes all of them.

By replacingCCE andBCE byHCCE and HBCE in the proof of Theorem 3 we have the following.

Theorem 5. HCCE is more effective than HBCE.

2.3 Asymmetric Covered Clause Elimination

For a given CNF formula F , a clause C ∈ F is called asymmetric covered if the clause resulting from

repeating 1. C := CLA(F,C); 2. C := ALA(F,C) until fixpoint is blocked w.r.t. F . Asymmetric

covered clause elimination (ACCE) repeats the following until fixpoint: if there is a hidden covered

clause C in F , remove C from F .

Lemma 7. Removal of an arbitrary asymmetric covered clause preserves satisfiability.

Proof. Follows from the facts that (i) F is satisfiability equivalent to (F \ {C})∪ {CLA(F,C)}; (ii) F

is satisfiability equivalent to (F \ {C}) ∪ {ALA(F,C)}; and (iii) BCE preserves satisfiability.

Theorem 6. ACCE is more effective than (i) ABCE, and (ii) HCCE.

Proof. (i) By replacing CCE and BCE by ACCE and ABCE in the proof of Theorem 3.

(ii) ACCE is at least as effective as HCCE follows from the fact that HLA(F,C) ⊆ ALA(F,C):
if HLA(F,C) is covered, so is ALA(F,C). Moreover, consider the formula

FACCE = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (a ∨ b̄ ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c) ∧ (ā ∨ b ∨ c̄) ∧

(ā ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ c̄) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ d̄) ∧ (a ∨ b̄ ∨ d) ∧ (a ∨ b̄ ∨ d̄)

In FACCE no clause is hidden covered. However, ACCE can remove (a ∨ b ∨ c) and (a ∨ b ∨ c̄).
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3 Discussion and Conclusions

Our current preliminary implementation of CCE requires on average twice the computational cost of

BCE on the 2009 SAT Competition application benchmark set when applied until fixpoint. This implies

that CCE can be made quite fast in practice. Regarding the practical effectiveness of CCE, on about

half of the instances, CCE(F ) is approximately the same size as BCE(F ) (the difference is less than

10 clauses). However, on the other half the additional reduction is about 5% compared to BCE; for the

best case, we observed one instance for which the additional reduction was as high as 40%.

As further work on this subject, we will focus on studying the effectiveness of CCE further in

practice, and also possibilities of implementing HCCE and ACCE. Here it is important to notice

that, even when a specific elimination technique is too costly for practical purposes to be run until

fixpoint, such a technique may be of practical use in a restricted form, i.e., by only applying it on

long clauses or for a restricted time. Also, we will measure the effect of applying these elimination

techniques on solving interesting benchmark formulas. On the more foundational side, we will study

how to reconstruct solutions for a CNF formula F from solutions to any CCE(F ), HCCE(F ) and

ACCE(F ); this is important for practical applications since CCE, HCCE, and ACCE do not preserve

logical equivalence.
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