
Discovering Specifications for Unknown

Procedures

- Work in Progress

Florin Craciun1, Chenguang Luo1, Guanhua He1, Shengchao Qin1 and

Wei-Ngan Chin2

1 Durham University, {florin.craciun,chenguang.luo,guanhua.he,shengchao.qin}@durham.ac.uk
2 National University of Singapore, chinwn@comp.nus.edu.sg

Abstract

We study automated verification of pointer safety for heap-manipulating imperative
programs with unknown procedure calls or code pointers. Given the specification of a
procedure whose body contains calls to an unknown procedure, we try to infer the possible
specifications for the unknown procedure from its calling contexts. We employ a forward
shape analysis with separation logic and an abductive inference mechanism to synthesize
both pre- and postconditions for the unknown procedure. The inferred specification is a
partial specification of the unknown procedure. Therefore it is subject to a later verification
when the code or the complete specification for the unknown procedure are available. Our
inferred specifications can also be used for program understanding.

1 Introduction

A program verification system takes as input a given program and a specification of its desired
properties and attempts to determine whether or not the programmeets the specified properties.
The verifier usually requires to have access to the entire given program which, in practice, may
not be completely available for various reasons. In general the unknown program fragments
can correspond to unknown procedure calls which might be either calls to library procedures
without source codes or code pointers with their corresponding meta-programming features like
run-time generation/loading of code.

To deal with the verification of programs with unknown procedure calls, current program
verifiers either

• stop at the first unknown procedure call and provide an incomplete verification, or

• simply ignore the unknown procedure calls (e.g. replace them by skip) or treat them
as nondeterministic assignments without side effects (both methods can be unsound in
general) ([4]), or

• assume the variables that are modified by the unknown procedure call and its caller do
not overlap (so they have different so-called footprints and the hypothetical frame rule
[15] can be applied; however this assumption does not hold in most cases), or

• use specification mining [1] to discover possible specifications for the program (which is
performed dynamically and is just a check instead of a proof for program correctness), or

• ask for a description of the unknown procedure properties, which might be obtained by
analyzing their binary code ([2, 8, 12, 10]). In the case of code pointers it is necessary

76 A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 76–91

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

to have an analysis that can estimate all possible procedures to which the pointers may
refer at run-time. In general this estimation may return too many candidates, making
the verification almost impossible at compile time.

In this paper we propose a different approach to the verification of programs with unknown
procedure calls. Based on the desired properties specified for the entire program, our solution is
to verify the known program fragments, and to postpone the verification of the unknown proce-
dures by inferring partial specifications of their desired properties. The inferred specifications
are subject to a later verification when the code or the complete specification of the unknown
procedure become known (e.g. at loading time in Java). Our inferred specifications can also
be used for program understanding to build partial specifications of the generic procedures
(e.g. the methods of Java interfaces). The inferred specifications are derived from the calling
contexts. Therefore, in the case of multiple specifications for the same unknown procedure they
have to be combined together in order to get a more general (stronger) specification. Even
though our approach can not discover the complete specification of the unknown procedure,
what we can discover can be used to completely describe the unknown procedure behaviour
inside the analyzed module (e.g. the behaviour of the implementation of method compareTo of
interface Comparable inside the current analyzed Java package, JavaCup).

We use our approach to verifying the pointer safety of heap-manipulating programs with
unknown procedure calls. Our framework is built on the work on shape analysis with separation
logic [16, 7, 13]. Program specifications are given as pre and post conditions for each known pro-
cedure. We perform a modular verification on a per procedure basis as in the HIP system [13].
Starting with the given precondition, a forward verification is run until the unknown procedure
call is met. A precondition for the unknown procedure is derived from the current heap state
([11]). Thus the current heap is split into two disjoint heaps: (1) the unknown procedure’s
precondition consisting of all of the current heap nodes reachable from the unknown proce-
dure’s actual parameters, and (2) a frame. The frame is used as initial state for the forward
verification of any program code that follows the unknown procedure call. The verification
might find situations where there is not enough information to perform an operation such as
a (known) procedure call or a dereferencing. If the missing information refers to the actual
arguments or to the result of the unknown procedure call then we perform a similar abductive
inference as that in Calcagno et al. [3, 4] to infer what is missing. The inferred information will
be part of the unknown procedure postcondition. If the missing information does not refer to
the unknown procedure then there is an error in the code.

Our proposal is mainly inspired by the recent work [4] that uses bi-abduction to infer the
pre/post conditions of a given procedure by analysing its body. It uses a bottom up approach
such that the procedures called in the body of the given procedure are known and their pre/post
conditions were inferred prior to the current procedure. The problem we solve in this paper is
dual to that in Calcagno et al. [4]. Given the pre/post conditions of a procedure whose body
invokes an unknown procedure, we attempt to infer the pre/post conditions of the unknown
procedure. A similar problem to ours has been solved in the context of logic programs [9],
where, based on the specification and the implementation of a logic programming module, an
abductive method infers constraints on undefined literals of that module.

Our proposal can also be regarded as a top-down inference system rather than a bottom-up
one [4] that most traditional approaches rely on. In our case the user provides the specification
for the top-level procedure and our approach can infer the specifications for the called proce-
dures. This process may be repeated at several levels down. However the inferred specifications
may not be complete, therefore they are subjected to a later verification.

A verification system uses an entailment procedure to check whether the program heap

77

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

state ∆i computed at the program instruction i entails the precondition Prei+1 (namely the
requirements for a correct execution) of the next program instruction i+ 1 as follows:

∆i ⊢ Prei+1

In general not the entire current program state ∆i is required to establish Prei+1. Therefore a
more general form of the entailment is used:

∆i ⊢ Prei+1 ∗ Ri

where ∗ stands for the separation conjunction [16], and Ri is the frame, namely the part of the
heap state ∆i which is not accessed by the program instruction i+ 1. When the entailment
fails

∆i 0 Prei+1

we can use a reasoning with abduction

∆i ∗ [Mi] ⊲ Prei+1

to find the missing part Mi of the heap state ∆i such that

∆i ∗Mi ⊢ Prei+1 ∗ Ri

In principle the abduction strengthens the current heap state ∆i. Our approach mainly uses
the abduction to discover the postconditions of the unknown procedures. However a naive ap-
plication of the abduction may generate too strong postconditions for the unknown procedures,
in which cases acceptable implementations of the unknown procedures can be rejected as being
incorrect. Therefore, in Section 2 we define the property that has to be satisfied by an abductive
system in order to be useful for our approach.

The remainder of the paper is organized as follows. Section 2 introduces the key features
of our approach by a simple example that consists of one unknown procedure call. Section 3
extends our approach to multiple sequential calls of the same unknown procedure. A brief
conclusion is then given at the end.

2 Discovering a Specification for an Unknown Procedure

In this section we illustrate how our analysis computes a precondition and a postcondition for
an unknown procedure. Before that, we introduce the abstract domain that we will use, which
is similar to the one exploited in Calcagno et al. [4].

We have two disjoint sets of variables. One is a finite set of program variables V ar (denoted
by x, y, z, ...) and a countable set of logical variables LV ar (expressed by x′, y′, ...). The logical
variables are never used in programs; they are for recording some historical values of program
variables. Hence they may be existentially quantified at any point. Loc is a countably infinite
set of locations, and V al is a set of values that includes Loc. Our storage model is a traditional
separation logic one:

Heap =df Loc ⇀ V al
Stack =df (V ar ∪ LV ar) → V al
State =df Stack ×Heap

78

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

We regard symbolic heaps as special separation logic formulae to represent the abstraction of a
set of concrete heaps. They are defined as follows:

E ::= x | x′ Expressions
Π ::= E = E | E 6= E | true | Π ∧Π Pure formulae
B ::= E 7→ E | list(E,E) Basic separation predicates
Σ ::= B | true | emp | Σ ∗ Σ Separation formulae
∆ ::= Π ∧Σ Symbolic heaps

Expressions can be both kinds of variables. Pure formulae are composed by the conjunction of
(dis) equalities between expressions to show (non) alias relationship between references. The
basic separation predicates describe simple points-to or list segments, which will be introduced
later. Separation formulae stand for basic shape predicate, or empty heap, or a separation
conjunction of them. A symbolic heap consists of both pure part and separation (shape) part.
We overload the separation conjunction over ∆1 and ∆2 to conjoin their shape and pure parts,
respectively.

Based on the abstract domain defined, consider the procedure findLast whose specification
and implementation are shown in Figure 1. The procedure searches for the last (non-null)
element of a singly linked list. At line 4 it calls the unknown procedure unkProc. We use
an imperative language with references. The data structure node { int val; node next }

defines a list element.
We run a standard forward shape analysis based on separation logic. The results of our

analysis are marked as comments in the code. A list segment is described inductively by the
following separation predicate:

list(x, y) =df (x=y ∧ emp) ∨ (x 7→y) ∨ (∃z · x 7→z ∗ list(z, y) ∧ z 6= y)

where the points-to predicate x 7→y denotes a heap with a single allocated node at address x

with its next field pointing to the address y.
The analysis starts with the procedure findLast precondition (line 0a). The verification

is straightforward until just before the unknown procedure call. At line 3, the current heap
∆3 is split into two disjoint heaps: the local heap Local(∆3, {x}) to be sent to the unknown
procedure and the frame heap Frame(∆3, {x}) that is not accessed by the unknown procedure.
The local heap is obtained by taking the part of the current heap ∆3 reachable in the formula
from the actual parameter x of the unknown procedure.

In general, at a call site f(x1, .., xn) the current heap state ∆ can be expressed as ∆ = Π∧Σ,
where Π is a pure formula insensitive to heap (mainly consisting of aliasing information) and
Σ expresses heap shape (the shape of linked data structures located on the heap). The part of
the heap to be sent to the procedure is denoted by Local(Π ∧ Σ, {x1, .., xn}) and is defined as
follows:

Local(Π ∧ Σ, {x1, .., xn}) = ∃fv(Π ∧ Σ) \ ReachVar(Π ∧Σ, {x1, .., xn}) ·
Π ∗ ReachHeap(Π ∧ Σ, {x1, .., xn})

where fv(∆) stands for all the free (program and logical) variables occurring in ∆. And the
frame, namely the part of the heap that is not accessed by the procedure call is defined as
follows:

Frame(Π ∧Σ, {x1, .., xn}) = Π ∧ UnreachHeap(Π ∧ Σ, {x1, .., xn})

where UnreachHeap(Π∧Σ, {x1, .., xn}) is the formula consisting of all ∗-conjuncts from Σ which
are not in ReachHeap(Π∧Σ, {x1, .., xn}). The formula ReachHeap(Π∧Σ, {x1, .., xn}) denotes the

79

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

// Given Specification:

// PrefindLast := list(x, null) ∧ x 6=null

// PostfindLast := list(x, res) ∗ res7→null

node findLast(node x) {

0 node w, y, z;

0a // ∆0 := PrefindLast

0b // ∆0 ⊢ x 6=null

1 w := x.next;

1a // ∆1 := x 7→w ∗ list(w, null) ∧ x 6=null

2 if (w == null) return x;

2a // ∆2 := w=null ∧ res=x ∧ x 7→null∧ x 6=null

2b // ∃w, y, z ·∆2 ⊢ PostfindLast

3 else {

3a // ∆3 := x 7→w ∗ list(w, null) ∧ x 6=null ∧ w 6=null

3b // Local(∆3, {x}) := x 7→w ∗ list(w, null) ∧ x 6=null ∧ w 6=null

3c // Frame(∆3, {x}) := x 6=null ∧ w 6=null

3d // PreunkProc := Local(∆3, {x})

4 y := unkProc(x);

4a // ∆4 := (∃fv(PreunkProc) · Frame(∆3, {x})) ∗ (emp ∧ y′=y ∧ x′=x)

4b // M := (resunkProc=y ∧ y′=y ∧ x′=x)

4c // ∆4 0 [y/x] PrefindLast

4d // ∆4 ∗ [M1] ⊲ [y/x] PrefindLast M1 := list(y, null) ∧ y 6=null

4e // fv(M1) ⊆ ReachVar(∆4 ∗M1, {x
′, y′}) M := M ∗M1

4f // ∆4 ∗M1 ⊢ [y/x] PrefindLast ∗ R1 R1 := y′=y ∧ x′=x

5 z := findLast(y);

5a // ∆5 := R1 ∗ [y/x, z/res] PostfindLast

6 return z;

6a // ∆6 := ∆5 ∧ res=z

6b // (∃z, y, y′, x′ ·∆6) 0 PostfindLast

6c // (∃z, y, y′, x′ ·∆6) ∗ [M2] ⊲ PostfindLast M2 := list(x, y)

6d // fv(M2) ⊆ ReachVar(∆6 ∗M2, {x
′, y′}) M := M ∗M2

7 } }

8 // PostunkProc := ∃fv(M) \ (fv(PreunkProc)∪{resunkProc}) ·M

Figure 1: Procedure findLast calling an unknown procedure unkProc.

80

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

part of Σ reachable from {x1, .., xn} and is formally defined as the ∗-conjunction of the following
set of formulae:

{Σ1 | ∃z1, z2,Σ2 · z1 ∈ ReachVar(Π ∧ Σ, {x1, .., xn}) ∧ Σ = Σ1 ∗ Σ2 ∧ Σ1 = B(z1, z2)}

ReachVar(Π ∧ Σ, {x1, .., xn}) is the minimal set of variables which are aliases or are reachable
through the heap such that:

{x1, .., xn} ∪ {z2 | ∃z1,Π1 · z1 ∈ ReachVar(Π ∧Σ, {x1, .., xn}) ∧ Π = (z1 = z2) ∧ Π1}∪
{z2 | ∃z1,Σ1 · z1 ∈ ReachVar(Π ∧ Σ, {x1, .., xn}) ∧Σ = B(z1, z2) ∗ Σ1} ⊆
ReachVar(Π ∧ Σ, {x1, .., xn})

Note that B(z1, z2) stands for either z1 7→z2 or list(z1, z2).
Thus the precondition of unkProc is set to the local heap Local(∆3, {x}) as follows:

PreunkProc := x 7→w ∗ list(w, null) ∧ x 6=null∧ w 6=null

The above precondition is a safe estimation of that part of the calling context heap that may
be accessed by the unknown procedure unkProc. Therefore it is not one of the weakest possible
preconditions. Our computed precondition may also contain cutpoints. In our example the
cutpoint is w. As can be seen below, this cutpoint does not occur in the postcondition (II) of
the procedure unkProc. Therefore it can be existentially quantified as follows:

PreunkProc := ∃w · (x 7→w ∗ list(w, null) ∧ x 6=null∧ w 6=null) (I′)

Next we perform a weakening over the above formula (I′). Generally it is unsound to weaken
a computed precondition in verification; however, we can abstract (I′) to a simpler one for two
reasons. First, we inferred this precondition from the calling context (rather than the procedure
body). Second, for a possible later verification against the procedure body, this weakening does
not allow any incorrect implementation to pass. Therefore we get the weakened result as follows:

PreunkProc := list(x, null) ∧ x 6=null (I)

However the precondition (I′) requires a list with at least two nodes while the precondition
(I) requires a list with at least one node. Thus the precondition (I) may reject some possible
correct implementations of the unknown procedure unkProc. Therefore, to maintain necessary
precision, it is not always desired to weaken the precondition inferred from the calling context.

The unknown procedure call is at line 4. In general the heap state after a procedure call
consists of two disjoint parts: the frame (the heap part that is not changed by the procedure
call) and the procedure postcondition (the heap part that is changed by the procedure call).
In our case the frame is known (the first part of state ∆4 at line 4a), but the procedure
postcondition is unknown. What we know is that the unknown procedure unkProc may change
the heap reachable from the program variables x and y. Therefore initially we set the unknown
procedure postcondition to emp ∧ y=y′ ∧ x=x′ (the second part of state ∆4 at line 4a). We
use the logical variables x′ and y′ to denote respectively the values of the program variables
x and y when the unknown procedure call returns. Our goal is to discover the postcondition,
namely the heap that can be reached from x′ and y′ by analysing the usage of x′ and y′ in
the remaining code after the unknown procedure call. Therefore after the unknown procedure
call our analysis keeps track of a pair 〈∆i; M〉 where ∆i is the current heap state, while M

denotes the postcondition discovered so far for the unknown procedure. The notations Mi are
also used to denote parts of the discovered postcondition. Thus the first discovered information

81

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

M is that just after the unknown call the value of the program variable y and the unknown
procedure result are equal (line 4b). M also contains the information that the logical variables
x′ and y′ denote the values of the program variables x and y respectively, just after the unknown
procedure call.

At line 5 the procedure findLast is called recursively. Since the current heap state ∆4

does not entail the precondition of the procedure findLast (line 4c) there is an error. However
this error may not be a program error, it may be caused by the incomplete heap denoted by x′

and/or y′. Therefore our analysis performs an abductive reasoning (line 4d) to infer the missing
part M1 of ∆4 such that M1 ∗∆4 entails the precondition of the procedure findLast. At line 4e
our analysis checks whether the inferred M1 is part of the unknown procedure postcondition,
namely whether M1 refers either to x′ and/or y′ or to aliases of x′ and/or y′ or to a heap
reachable from x′ and/or y′. This check succeeds and therefore M1 is added to the current
discovered postcondition M.

The heap state ∆4 combined with the inferred M1 entails the precondition of the procedure
findLast and also generates a residual frame heap R1 (line 4f). The heap state ∆5 after the
recursive call consists of the procedure findLast postcondition and the frame heap R1 (line
5a).

At the end of the procedure body the current heap state ∆6 (computed at line 6a) must
entail the postcondition of the procedure findLast. This entailment fails (line 6b). We perform
another abductive reasoning (line 6c) to infer the missing M2 as follows:

(∃z, y, y′, x′ · list(y, z) ∗ z 7→null ∧ res=z ∧ y=y′ ∧ x=x′) ∗ [M2] ⊲ list(x, res) ∗ res7→null

where ∆6 and PostfindLast are replaced by their formulae. The above judgment can be further
simplified as follows:

list(y, res) ∗ res7→null ∗ [M2] ⊲ list(x, res) ∗ res7→null

and then to the following:
list(y, res) ∗ [M2] ⊲ list(x, res)

Using the abductive inference rules from Calcagno et al. [4] we can obtain the following result
M2 := list(x, res) that passes the check from line 6d. Using formula from line 8 we obtain the
following postcondition for the unknown procedure (where u stands for α-renaming of res):

PostunkProc := ∃u · list(x, u) ∗ list(resunkProc, null) ∧ resunkProc 6=null (II′)

The above postcondition (II′) and the precondition (I) might form a candidate specifi-
cation for the unknown procedure unkProc. However, the postcondition (II′) is not strong
enough to establish the postcondition of the outer procedure findLast. This problem is due
to incompleteness of the abductive inference system from Calcagno et al. [4].

It is very difficult to impose the completeness for an abductive inference system. Therefore
we define the following weaker property that has to be satisfied by the abductive system. In
general, given an abductive judgment:

∆ ∗ [M] ⊲ H

there are many possible solutions for M. In order to be able to compute the most precise
postcondition we are interested in the weakest solution M (namely minimal solution w.r.t. the
order � defined in Calcagno et al. [4]) satisfying the following entailment

∆ ∗ [M] ⊢ H ∗ R (III)

82

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

such that R does not refer to the arguments and result of the unknown call, or to the aliases of
the arguments and result of the unknown call, or to the heap reachable from the arguments and
result of the unknown call. Using the notations of our example with an unknown call having
the argument x′ and the result y′ the property of R can be expressed as follows:

fv(R) 6⊆ ReachVar(∆ ∗M, {x′, y′}) (IV)

The computation of a solution that satisfies the properties (III) and (IV) depends on the
abductive inference rules which implement the abductive judgment. However the existence of
this solution does not imply the completeness of the abductive inference system.

In our case for the following abductive judgment:

list(y, res) ∗ [M2] ⊲ list(x, res)

there are three possible solutions M2 := x=y, M2 := x 7→y, and M2 := list(x, y) which satisfy
the above properties (III) and (IV). The best solution is M2 := list(x, y) which is weaker than
the other two solutions. However the current abductive inference rules from Calcagno et al. [4]
are not able to infer these solutions. Therefore those rules have to be refined such that they
can also support matching on the right sides of two separation predicates when their left sides
are equal. Using the best solution M2 := list(x, y) we can obtain a more precise postcondition
for the unknown procedure as follows:

PostunkProc := list(x, resunkProc) ∗ list(resunkProc, null) ∧ resunkProc 6=null (II)

where the best solution M2 := list(x, y) also satisfies the check from line 6d.
Note that the accumulation of the inferred Mi into M does not generate any inconsistency as

long as the effect of each Mi is reflected in the next state ∆i+1 through the entailment residual
frame (e.g. line 4f).

After each abduction our analysis checks whether the inferred formula can be part of the
unknown procedure postcondition (e.g. checks from lines 4e and 6d). A failed check denotes
a program error. In Figure 2 we consider the same example from Figure 1 but after line 4 we
added a new instruction which dereferences a local variable. The new instruction is a program
error. Our analysis discovers this error at line 4e when the check on the new abducted formula
M1 fails.

3 Multiple Invocations of an Unknown Procedure

In this section we illustrate how our analysis computes a precondition and a postcondition for
an unknown procedure, which is invoked more than once. There are two cases: (1) the two
unknown calls are in sequence and are executed one after another; (2) the two unknown calls are
on different program execution paths. For the second case (e.g. two unknown calls are in two
different branches of a conditional statement) it is not difficult to use the approach described
in the previous section. First we infer the preconditions for both unknown calls by localizing
the program state immediately before the calls. Then we do abductions till the end to gain
their postconditions, respectively. Since the two specifications are inferred from different calling
contexts, they are combined by conjunction [6]. In a later verification of the procedure’s body
they must be verified to ensure the implementation satisfies requirements from each calling
context. Therefore in this section we concentrate on the first case where some source code
invokes an unknown procedure many times in sequence.

83

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

// Given Specification:

// PrefindLast := list(x, null) ∧ x 6=null

// PostfindLast := list(x, res) ∗ res7→null

node findLast(node x) {

0 node w, y, z, a, b;

0a // ∆0 := PrefindLast

0b // ∆0 ⊢ x 6=null

1 w := x.next;

1a // ∆1 := x 7→w ∗ list(w, null) ∧ x 6=null

2 if (w == null) return x;

2a // ∆2 := w=null ∧ res=x ∧ x 7→null∧ x 6=null

2b // ∃w, y, z ·∆2 ⊢ PostfindLast

3 else {

3a // ∆3 := x 7→w ∗ list(w, null) ∧ x 6=null ∧ w 6=null

3b // Local(∆3, {x}) := x 7→w ∗ list(w, null) ∧ x 6=null ∧ w 6=null

3c // Frame(∆3, {x}) := x 6=null ∧ w 6=null

3d // PreunkProc := Local(∆3, {x})

4 y := unkProc(x);

4a // ∆4 := (∃fv(PreunkProc) · Frame(∆3, {x})) ∗ (emp ∧ y=y′ ∧ x=x′)

4b // M := (resunkProc=y ∧ y=y′ ∧ x=x′)

4c // ∆4 0 b 6=null

4d // ∆4 ∗ [M1] ⊲ b 6=null

4e // M1 := b 6=null

4f // fv(M1) 6⊆ ReachVar(∆4 ∗M1, {x
′, y′}) Error!!!

5 a := b.next;

6 z := findLast(y);

7 return z;

8 } }

Figure 2: An error in the procedure findLast.

84

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

We start from a simplest case. Figure 3 describes the general scenario consisting of a known
procedure, known which calls twice the same unknown procedure unknown. Note that the code
blocks b1, b2 and b3 are composed by known program instructions. The specification of the
known procedure known is given as the precondition Preknown and the postcondition Postknown.
We denote by P1, Q1, and R1 (P2, Q2, and R2) the precondition, the postcondition and the
frame, respectively for the first (the second) unknown procedure unknown call. Our goal is to
infer P1, Q1, P2 and Q2 from procedure known’s codes and specification.

Preknown
procedure known()

b1; // Code block one

// P1 ∗R1

unknown(~x1);
// Q1 ∗R1

b2; // Code block two

// P2 ∗R2

unknown(~x2);
// Q2 ∗R2

b3; // Code block three
end

Postknown

Figure 3: Two sequential unknown procedure calls.

In order to achieve our goal we assume there exists a most general specification {Preunknown}
unknown {Postunknown}, such that P1 implies Preunknown, P2 implies Preunknown, Postunknown implies
Q1 and Postunknown implies Q2. This assumption may not be useful for all possible unknown
procedures unknown, since in the worst case the most general specification corresponds to the
trivial specification {true} unknown {false}. However our goal is to avoid the trivial specification
and to get more precise result.

Algorithm InferTwoSpec

Do forward analysis from Preknown over b1 to get P1 ∗R1;

Distinguish P1 as the local state of ~x1;

Do forward analysis with abduction from 〈emp; emp〉 to
〈Postknown; M1〉 over b3 to get M1 as Q2;

Assume Q1 := σ Q2, and P2 := σ−1 P1;

Do forward analysis with abduction from 〈Q1 ∗R1; emp〉 to
〈P2 ∗R2; M2〉 over b2 to get M2;

return {P1} unknown {Q1 ∗M2};

Figure 4: Analysis algorithm for two sequential unknown calls.

The general idea of our abduction-based approach is informally described in Figure 4. First
our approach infers the precondition P1 of the first unknown call and the postcondition Q2 of

85

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

the second unknown call in the same way as in the previous section. Afterwards we regard them
as a raw specification for the unknown procedure (with necessary substitutions), and attempt
to refine them with the codes in between the two unknown calls. Therefore we have Q1 := σ Q2

and P2 := σ−1 P1, and try to verify b2 with the specification {Q1 ∗R1} b2 {P2 ∗R2}.
Here is an example for our general approach. We consider the procedure appendThreewhose

specification and implementation are shown in Figure 5. The procedure appends three singly
linked lists into one, by updating one’s tail to point to another’s head. It has two invocations
of the same unknown procedure unkProc, one followed by the other.

// Given Specification:

// PreappendThree := list(x, null) ∗ list(y, null) ∗ list(z, null)

// PostappendThree := list(x, y) ∗ list(y, z) ∗ list(z, null)

// Goal:

// To infer unkProc’s specification

void appendThree(node x, node y, node z) {

0a // Step 1:

0b // ∆0 := list(x, null) ∗ list(y, null) ∗ list(z, null)

0c // Local(∆0, {x, y}) := list(x, null) ∗ list(y, null)

0d // Frame(∆0, {x, y}) := list(z, null)

0e // PreunkProc := Local(∆0, {x, y})

1 unkProc(x, y);

1a // Step 3:

1b // Current state ∆3 := ∃u · list(x, u) ∗ list(u, y) ∗ list(y, null) ∗ list(z, null)

1c // Check entailment ∆3 ⊢ [z/y] PreunkProc

1d // Entailment succeeds, and unkProc’s specification is approved

2 unkProc(x, z);

2a // Step 2:

2b // ∆1 := emp ∧ x=x′ ∧ z=z′ M := emp ∧ x=x′ ∧ z=z′

2c // Do abduction to get ∆1 ∗ [M1] ⊲ PostappendThree

2d // M1 := list(x, y) ∗ list(y, z) ∗ list(z, null)

2e // ∆2 := ∆1 ∗M1 M := M ∗M1

2f // PostunkProc := ∃x, z, u · [u/y] M

2g // PostunkProc := ∃u · list(x′, u) ∗ list(u, z′) ∗ list(z′, null)

3 }

Figure 5: Procedure appendThree calling an unknown procedure twice.

To focus on our algorithm itself, this example has no other codes except for the unknown
calls, without losing generality. From the beginning we are provided with PreappendThree and
PostappendThree, and our aim is to find the unknown procedure unkProc(x,y)’s specification.

86

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

As shown in line 0a, the first step is to infer the initial precondition of the unknown procedure
call, P1. This is accomplished by localizing the state before the first unknown call against its
parameters x and y. We get P1 := list(x, null) ∗ list(y, null), with the frame part list(z, null)
left unchanged and to be carried over to the second unknown call.

The second step beginning from line 2a is analogous to the inference of the unknown pro-
cedure call’s postcondition in the last section. It starts with emp ∧ x = x′ ∧ z = z′ to assume
the unknown call’s effect as emp with logical variables to record the parameters’ current values,
and utilizes abduction when necessary to get the postcondition Q2 for the unknown procedure
call. In this case it directly gains the abduction result from appendThree’s postcondition as
list(x, y) ∗ list(y, z) ∗ list(z, null). As postprocessing, it then existentially quantifies y as it does
not occur in the second unknown call’s parameter list, and changes its name to u. So the
postcondition is ∃u · list(x, u) ∗ list(u, z) ∗ list(z, null).

The last step from line 1a performs a final check for {Q1 ∗ R1} b2 {P2 ∗ R2}. Here from
context we know R1 := list(z, null) and R2 := emp. According to our algorithm, Q1 is assumed
the same as Q2 and P2 the same as P1, under some substitutions. Hence we have Q1 ∗ R1 :=
∃u· list(x, u)∗ list(u, y)∗ list(y, null)∗ list(z, null), and P2∗R2 := list(x, null)∗ list(z, null). Then
the entailment Q1 ∗R1 ⊢ P2 ∗R2 is checked to ensure the correctness of the second invocation.
As it succeeds, the specification for the unknown procedure unkProc(a1, a2) is as follows:

PreunkProc := list(a1, null) ∗ list(a2, null)
PostunkProc := ∃u · list(a1, u) ∗ list(u, a2) ∗ list(a2, null)

However, it is still possible that Q1 ∗R1 is not sufficiently strong in the verification for b2 to
establish P2 ∗R2, especially when the specification for the known procedure is imprecise (either
the precondition is excessively strong or the postcondition is too weak). For this sake we will
use abduction in the verification to collect the heap states (M2) that Q1 lacks, and strengthen
Postunknown to be Q1 ∗M2.

We have yet another example to illustrate this postcondition strengthening. Figure 6 de-
scribes a procedure towardsLast. According to its specification, the procedure takes the head
of a linked list as input, and returns any node in the list. It also calls twice the same unknown
procedure in sequence, and our aim is to analyze the procedure’s pre- and postconditions.

To start with, we still take towardsLast’s precondition to do forward analysis to get the
precondition for the first unknown call. As shown in lines 0b and 0e, the program state
immediately before that call is list(y, null)∧ y 6=null∧ y=x, and the localized precondition for
the call is list(y, null) ∧ y 6=null.

In the second step, we use the same approach (forward analysis with abduction) to find out
the postcondition of the second unknown procedure call, expressed from lines 3a to 3g. After
that call we have no knowledge about the heap, and so the result of abduction will be the
whole postcondition of towardsLast, list(x, z) ∗ list(z, null) ∧ x 6=null. The current discovered
postcondition is computed at line 3g.

Last we also try to verify the codes between the two unknown calls, from the postcondition
of the first call (plus its frame part) to the precondition of the second. In this case there are
no codes and an entailment checking is performed to guarantee that [y/resunkProc] PostunkProc∧
y′=x ⊢ PreunkProc, where the logical variable y′ stands for the previous value of the program
variable y. This check fails, because the first postcondition is not adequately strong. Therefore
an abduction is necessary to enhance it, as accomplished in line 1d. There we achieve an extra
requirement for the postcondition such that the final specification for the unknown procedure
unkProc(a) is as follows:

87

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

// Given Specification:

// PretowardsLast := list(x, null) ∧ x 6= null

// PosttowardsLast := list(x, res) ∗ list(res, null) ∧ x 6= null

node towardsLast(node x) {

0 node y := x, z;

0a // Step 1:

0b // ∆0 := list(y, null) ∧ y 6=null ∧ y=x

0c // Local(∆0, {y}) := list(y, null) ∧ y 6=null

0d // Frame(∆0, {y}) := emp ∧ y=x

0e // PreunkProc := Local(∆0, {y})

1 y := unkProc(y);

1a // Step 3:

1b // Initialize M := emp ∧ resunkProc=y

1c // Current state ∆3 := ∃u · list(u, y) ∗ list(y, null) ∧ u 6=null ∧ y′=x

1d // Do abduction to get ∆3 ∗ [M3] ⊲ PreunkProc

1e // M3 := y 6=null M := M ∗M3

1f // So the unknown’s postcondition is strengthened to be

1g // PostunkProc := ∃x, y, z · PostunkProc ∗M

1h // PostunkProc := ∃u · list(u, resunkProc) ∗ list(resunkProc, null) ∧

// u 6=null ∧ resunkProc 6=null

2 z := unkProc(y);

3 return z;

3a // Step 2:

3b // ∆1 := emp∧y=y′′∧z=z′∧z=res M := emp∧y=y′′∧z=z′∧z′=resunkProc

3c // Do abduction to get ∆1 ∗ [M1] ⊲ PosttowardsLast

3d // M1 := list(x, z) ∗ list(z, null) ∧ x 6=null

3e // ∆2 := ∆1 ∗M1 M := M ∗M1

3f // PostunkProc := ∃x, y, z ·M

3g // PostunkProc := ∃x · list(x, resunkProc) ∗ list(resunkProc, null) ∧ x 6=null

4 }

Figure 6: Procedure towardsLast calling an unknown procedure twice.

88

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

PreunkProc := list(a, null) ∧ a 6=null
PostunkProc := ∃u · list(u, resunkProc) ∗ list(resunkProc, null) ∧ u 6=null ∧ resunkProc 6=null

In this case our inferred postcondition is strengthened to meet the request of the second
unknown call’s precondition. It is always safe to do this for two reasons. First, according to
previous discussions, it is unsound to weaken a precondition or strengthen a postcondition in
an analysis for some known codes’ specifications [4]. However, since our aim is to find possible
specifications of unknown procedure calls for a possibly later verification, when we weaken the
precondition or strengthen the postcondition that we found, the range of “correct” programs is
narrowed, which is always sound (safe), although at the cost of possible precision lost. Second,
the strengthened postcondition is always capable to entail the known procedure’s postcondition.
This maintains the consistency of steps 2 and 3 in our analysis algorithm and stands for the
other aspect of our approach’s soundness.

Preknown
procedure known()

b1 // Code block one;

// P1 ∗R1

unknown(~x1);
// Q1 ∗R1

b2 // Code block two;

// P2 ∗R2

unknown(~x2);
// Q2 ∗R2

...

bn // Code block n;

// Pn ∗Rn

unknown(~xn);
// Qn ∗Rn

bn+1 // Code block n+1;
end

Postknown

Figure 7: n unknown procedure calls in sequence.

At last it is worth noting that, this approach can be extended without difficulty to cater
for more invocations of the same unknown procedure. Suppose we have n calls as shown in
Figure 7. In this case, first we still infer the precondition for the first unknown call and the
postcondition for the last, to gain Preunknown := P1 and Postunknown := Qn, respectively. After
that we use abduction to verify b2, b3, . . . , bn with the post- and preconditions. For bi we
take σ1 Postunknown ∗Ri−1 as its precondition and σ2 Preunknown ∗Ri as postcondition, to gather
abductions that strengthen Postunknown.

4 Conclusion

To verify the pointer safety for imperative programs with unknown procedure calls (or code
pointers), we propose a novel approach to inferring the possible specifications for the unknown
procedure from the calling contexts. We employ a forward shape analysis with separation
logic and an abductive inference mechanism to synthesize both pre- and postconditions of the

89

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

unknown procedure. We have defined the property that has to be satisfied by an abductive
system in order to be useful for our approach. We have also discussed the solution for multiple
calls of the same unknown procedure. The inferred specifications are partial specifications of
the unknown procedure therefore they are subject to a later verification when the codes or the
complete specifications of the unknown procedures become known.

Currently we are working on the formalization of our framework. We have also started to
implement a prototype for an experimental validation of our approach.

Our approach is a general framework such that changing the abstract domain permits our
framework to infer specifications within that new abstract domain. Two possible future works
are to extend this method to broader shape domains and/or to other shape-related domains.
The first adds more shape predicates to the domain to increase expressiveness, like doubly
linked lists and trees ([13]). The second extension, for example the size domain ([5]), allows us
to reason about properties such as length of lists, sortedness, and so forth. With the extended
domains, the abstract semantics and analysis algorithm will remain conceivably the same, but
the abduction will be redefined to discover the anti-frames for the newly introduced features.
Since one possible application scenario for our approach consists of programs where the unknown
procedures are only known at runtime, it might be interesting to combine our method with
runtime verification of separation logic specifications [14].

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council [grant
number EP/E021948/1]. We would like to thank Hongseok Yang for helpful discussion on
abduction and footprint analysis.

References

[1] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In POPL ’02: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 4–16, New York, NY, USA, 2002. ACM.

[2] Michael G. Burke, Paul R. Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive interproce-
dural alias analysis in the presence of pointers. In LCPC ’94: Proceedings of the 7th International
Workshop on Languages and Compilers for Parallel Computing, pages 234–250, London, UK, 1995.
Springer-Verlag.

[3] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Footprint analysis:
A shape analysis that discovers preconditions. In Static Analysis Symposium 2007 (SAS’07),
Denmark, 2007.

[4] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional shape
analysis by means of bi-abduction. In Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (POPL), Savannah, Georgia, USA, January 2009. ACM Press.

[5] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verification
of shape, size and bag properties. In Proc. 12th IEEE International Conference on Engineering
Complex Computer Systems, pages 307–320, 2007.

[6] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Multiple pre/post specifi-
cations for heap-manipulating methods. In Proc. 10th IEEE High Assurance Systems Engineering
Symposium (HASE’07), Dallas, Texas, November 2007. IEEE CS Press.

90

Discovering Specifications for Unknown Procedures Craciun, Luo, He, Qin, Chin

[7] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based on separation
logic. In Tools and Algorithms for the Construction and Analysis of Systems, volume 3920 of LNCS.
Springer, 2006.

[8] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In PLDI ’94: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation, pages 242–256, New York,
NY, USA, 1994. ACM.

[9] R. Giacobazzi. Abductive analysis of modular logic programs. In M. Bruynooghe, editor, Proc.
1994 Int’l Symposium on Logic Programming (ILPS’94), pages 377–391. The MIT Press, 1994.

[10] Denis Gopan and Thomas Reps. Low-level library analysis and summarization. In Proceedings of
International Conference on Computer Aided Verification 2007, 2007.

[11] Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis with separated
heap abstractions. In Static Analysis Symposium 2006 (SAS’06), 2006.

[12] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call graphs for c programs with
function pointers. Automated Software Engineering, 11(1):7–26, 2004.

[13] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated verification
of shape and size properties via separation logic. In VMCAI 2007: Proceedings of the 8th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation, volume 4349 of
Lecture Notes in Computer Science, 2007.

[14] Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. Runtime checking of separation logic. In
VMCAI 2008: Proceedings of the 9th International Conference on Verification, Model Checking,
and Abstract Interpretation, LNCS. Springer, 2008.

[15] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding.
In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL), Venice,
Italy, January 2004. ACM Press.

[16] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceedings of the
Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages 55–74, 2002.

91

	Introduction
	Discovering a Specification for an Unknown Procedure
	Multiple Invocations of an Unknown Procedure
	Conclusion

