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Abstract

We present some parallelization techniques for the Model Evolution (ME) calculus,
an instantiation-based calculus that lifts the DPLL procedure to first-order clause logic.
Specifically, we consider a restriction of ME to the EPR fragment of clause logic for which
the calculus is a decision procedure. The main operations in ME’s proof procedures, namely
clause instantiation and candidate literal generation, offer opportunities for MapReduce-
style parallelization. This term/clause-level parallelization is largely orthogonal to the sort
of search-level parallelization performed by portfolio approaches. We describe a hybrid
parallel proof procedure for the restricted calculus that exploits parallelism at both levels
to synergistic effect. The calculus and the proof procedure have been implemented in a
new solver for EPR formulas. Our initial experimental results show that our term/clause-
level parallelization alone is effective in reducing runtime and can be combined with a
portfolio-based approach to maximize performance.

1 Introduction

The ME calculus [3] is an instantiation-based calculus that lifts to first-order logic without
equality the popular DPLL procedure for propositional logic [6]. Like DPLL, it works with
formulas in clause form, maintains at all times a candidate model for the input clause set, and
keeps modifying that model until it finds one that satisfies all input clauses, or it determines
that the clause set has no models. The main difference with DPLL is that the input clauses need
not be ground and the candidate model is a Herbrand structure, represented finitely by a set of
literals, called a context, instead of simple truth assignment. The calculus combines DPLL-style
rules, such as unit propagation and splitting, with unification operations that generate instances
of input clauses potentially not satisfied by the current candidate model. Such instances provide
literals that can be added to the current context to obtain a new candidate model incrementally
from the old one as needed. Implementations of ME benefit from enhancements similar to those
developed for CDCL SAT solvers—the modern descendant of the DPLL procedure—such as
conflict driven backjumping, lemma learning, and so on.

Roughly speaking, and ignoring those enhancements, a typical proof procedure for ME is
a backtracking procedure relying on the following main data structures: a context M , a set of
literals; a clause set F ; a set R of candidate decision (or split) literals. The procedure starts
with F consisting of the input clauses, R empty, and M = {¬v} denoting a Herbrand structure
in which every ground atom is false. Then, it repeatedly performs the following. By unifying
clauses in F with literals in M , it generates new propagation literals and adds them to M .1

Then it identifies instances of clauses in F that are possibly falsified (by the structure denoted)
by the context M . A simple syntactic check is used to determine if the context is unrepairable,
i.e., both M and any of its enlargements definitely falsify one of those instances. If the context
is instead repairable, the proof procedure uses the generated clause instances to compute new
possible decision literals, and adds them to the candidate set R. Finally, it picks a literal from R

1Intuitively, these are literals all of whose ground instances must be satisfied from that point on; their addition
prevents future extensions of M that would break this requirement.
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according to some selection heuristic, creates a new decision point, and adds the chosen literal
or its complement to the context. When the current context is not repairable, the procedure
backtracks to a previous decision point, if any, and replaces the corresponding decision literal
l, and all literals added after that, by the complement of l. The process ends when no more
instances of F are falsified by M , which means that F is satisfiable, or when M is unrepairable
but there are no decision points to backtrack to, which indicates that F is unsatisfiable.

1.1 Parallelizing ME

In sequential implementations of ME’s proof procedure, computing propagation and decision
literals takes a considerable portion of the runtime. This computation, however, presents several
opportunities for large scale parallelization of some of the term-level and clause-level operations
involved. The work presented here was motivated by the conjecture that such parallelization
would be effective in reducing execution times.

The proof procedure’s exploration of the search space is determined in large part by a
heuristic selection of decision literals—the other main factor being the backtracking heuristics.
Decision literal selection offers its own parallelization opportunities that can be exploited for
instance with a portfolio-style approach using concurrent proof procedures with different selec-
tion heuristics. The success of portfolio approaches in CDCL SAT solvers suggests that ME

proof procedures could benefit from them as well. However, in our case it was not obvious how
term/clause-level parallelization might interact with a portfolio-style one.

To investigate these opportunities and their interactions we designed and implemented a
parallel proof procedure for ME. For simplicity, with started with a restriction of ME to EPR
clauses, (universal) clauses whose literals may contain variables, constants but no function
symbols. While an extension of this work to the whole clause logic fragment is left to future work
the restriction to the EPR case is interesting in its own right because (i) ME yields (practical)
decision procedure for the satisfiability EPR formulas and (ii) many interesting problems can
be recast as EPR satisfiability problems [16, e.g.]. Our initial experimental results show that
both term/clause-level and portfolio-style parallelizations produce significant speed ups for ME.
Furthermore, the two have largely orthogonal effects and so combine nicely to produce better
runtime results than either of them alone.

1.2 Related Work

Parallel approaches in first-order theorem proving have been categorized at three different levels:
term, clause and search level [5]. In term-level approaches parallelize operations such as term
matching or unification; clause-level approaches parallelize operations such as deduction of new
clauses or backward subsumption; search-leval approaches parallelize the exploration of the
search space. Because first-order calculi can generate thousands of clauses, each with tens of
literals, parallelism at term or clause level requires sophisticated data structure and scheduling
algorithms. Usually, the overhead of thread scheduling overcomes the benefit of concurrency.
To our knowledge, with one exception [10], there has been no new work on term/clause level
parallelism in first-order theorem proving after a number discouraging attempts (see [5] again)
done in the 1990s.

Search level parallelism has received most of the attention, especially in SAT and SMT
solving, with two approaches: Guiding Path and Portfolio. The Guiding Path approach, intro-
duced in PSATO [20], follows a Master/Slave architecture. A Master process initiates several
sequential sub-solvers with partial models which partition the whole search space into several
disjoint parts. If any sub-solver gets a satisfiable model, the problem is satisfiable; otherwise,

97



Exploiting parallelism in ME T. Liang, C. Tinelli

it is unsatisfiable if all fail. This concept was further extended with a job stealing heuristics
in ySAT[8]. By encoding QBF into SAT, QMiraXT became the first published parallel QBF
solver[14]. A similar QBF solver can be found in [15, 9].

In the portfolio approach, introduced in ManySAT[11], a master process initializes several
sub-solvers with different heuristics and makes them compete, of the same search space. The
approach requires the various heuristics to be diverse enough. Complementary heuristics often
generate super-linear speedups. This approach was also described as using different random
seeds in [4]. Due to its success of SAT, the portfolio concept was also lifted to SMT solvers,
with similar levels of success [19].

Lemma sharing is also an important factor in parallel SAT solvers. The portfolio approach
benefits not only from the competition between subsolvers, but also from their cooperation
through the exchange of lemmas [11]. There are two main shortcomings in lemma sharing. First,
the set of shared lemmas may grow too large and possibly contain lemmas that are irrelevant
to most subsolvers. Second, lemma communication can be a major source of overhead. Some
SAT solvers minimize these problems by sharing only unit lemmas [4].

MapReduce is a software framework for processing large sets of data in a distributed sys-
tem [7]. Very generally speaking, its main idea is to divide a large but highly distributable
problem into small parts that can be processed completely independently (map step), and then
compute the final result by combining the processed parts (reduce step). The sort of term/clause
level parallelization that we describe in this paper could be seen as example of MapReduce.

1.3 Technical Preliminaries

The version of the ME calculus we consider here works in the EPR fragment of first-order clause
logic without equality, which is restricted to clauses with no function symbols of positive arity.
We use two disjoint sets of variables: a set X of universal variables and a set P of parametric
variables.2 We also use two disjoint sets of constants: a set A of input constants and a set SK
of Skolem constants, with C = A∪SK. A term is either a constant or a variable. Atoms, literals
(denoted by k, l, l0, k0, . . .) and clauses (C,C0, . . .) over the set of terms above are defined as
usual. We write ¬l to denote the complement of a literal l; l0 ∨ l1 ∨ · · · ∨ ln to denote a clause
C modulo AC of ∨; |C| to denote the number of literals in C; and 2 to denote the empty
clause. A Skolemization of a literal l, denoted by lsko is any literal obtained by replacing each
universal variable in l by a fresh Skolem constant. A substitution σ is an idempotent function
from variables X ∪ P to terms X ∪ P ∪ C such that the set Dom(σ) = {z ∈ X ∪ P | zσ 6= z}
is finite. Substitutions extend to terms and clauses as usual. We use the standard notions of
unifier and most general unifier. The join σ ./ ρ of two substitutions σ and ρ is the most general
simultaneous unifier of the set {{z, zσ} | z ∈ Dom(σ)} ∪ {{z, zρ} | z ∈ Dom(ρ)} when such
a unifier exists—otherwise it is undefined. For notational convenience, we will treat the join
operator as left associative. A substitution σ is p-preserving if its restriction to P is a bijection
onto P. It is a p-renaming if it is p-preserving and its restriction to X is a bijection onto X .
A literal l′ is a p-variant of a literal l if lσ = l′ for some p-renaming σ. For any literals l0, l1,
we write l0 ≥ l1 if l0σ = l1 for some p-preserving substitution σ; we call l1 a p-instance of l0.
If L is a set of literals, we write L ≥ l1 if l0 ≥ l1 for some l0 ∈ L. We denote respectively by
Par(l) and Var(l) the set of all parametric and all universal variables occurring in literal l. A
literal l is ground if Var(l) = Par(l) = ∅; universal if Par(l) = ∅; and pure if either Var(l) = ∅
or Par(l) = ∅, or both.

2Parametric variables were called parameters in earlier papers on ME.
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2 A transition system for the ME calculus

To make the paper more self contained, we provide in this section a more formal description of
the variant of ME used in this work. We refer the reader to [3] for more details on ME.

As with formal and abstract treatments of the DPLL procedure and its extensions to Sat-
isfiability Modulo Theories [17, 13, e.g.], one can formalize general classes of proof procedures
for ME in a way that makes it easy to model and analyze operational features like backtracking
and learning. An ME proof procedure can be described abstractly as a transition system over
states of the form unsat, a distinguished fail state, or the form 〈M,F,R,A〉 where F is a clause
set, M is a context, R is a set of remainders, and A is a set of propagation literals (see below).
We model generic ME proof procedures by means of a set of states of the kind above together
with a binary transition relation over these states defined by means of transition rules. For a
given state S, a transition rule precisely defines whether there is a transition from S by this rule
and, if so, to which state S′. A proof procedure can then be abstracted by a transition system,
a set of transition rules defined over states, together with a strategy to generate executions in
the system. We introduce a basic transition system for ME in the following.

Contexts and context unifiers A context M is a finite sequence of decision points (•), and
pure literals. A literal of M is decision literal if it immediately follows a decision point. Every
maximal decision-point-free subsequence Mi of a context M = M0 •M1 • · · · •Mn is a decision
level of M . When convenient, we will treat a context as a set. A literal l is contradictory with
a context M , written l ⊥M , if lσ = ¬kσ for some p-preserving substitution σ and p-variant k
of a literal in M . We write l 6⊥M if l is not contradictory with M .

Definition 1. Let M be a context and C = l0∨. . .∨lm−1∨lm∨. . .∨ln be a clause with 0 ≤ m ≤ n.
A substitution σ is a context unifier of C against M with remainder r = lmσ ∨ . . . ∨ lnσ if the
following hold for some fresh p-variants k0, k1, . . . , kn of literals in M :

1. (i) σ is a simultaneous most general unifier of {{k0,¬l0}, . . . , {kn,¬ln}},

2. (ii) Par(ki)σ ⊆ P for i = 0 . . .m− 1,

3. (iii) Par(ki)σ 6⊆ P for i = m. . . n.

The context unifier σ is also admissible if the literals in r are pure and do not share universal
variables. We write M |σC to denote the remainder of an admissible context unifier σ of C
against M .

We observe that any context unifier can be turned into an admissible one by renaming
selected universal variables to parametric ones.

A clause C conflicts with a context M via a context unifier σ, written C ⊥σ M , if σ is an
admissible context unifier of C against M with an empty remainder. We write C ⊥ M (resp.,
C 6⊥M) if C ⊥σ M for some (resp., no) σ.

2.1 The transition rules

The transition rules of the system are listed in Figure 1. Each rule operates on a current
state of the form 〈M,F,R,A〉, and modifies some of its components. The A-Add rule identifies a
propagation (or assert) literal and adds it to the set A of propagation literals, while removing
from A all p-instances of the new literal. The A-Remove rule removes from A any literal that has
become contradictory with or a p-instance of the current context M. The R-Add rule generates
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A-Add
C ∨ l ∈ F C ⊥σ M Par(lσ) = ∅ A 6≥ lσ

A := {a ∈ A | lσ 6≥ a} ∪ {lσ}

A-Remove
A = {l} ∪A l ⊥ M or M ≥ l

A := A
R-Add

C ∈ F |C| > 1 r = M|σC r 6∈ R

R := R ∪ {r}

Assert
A = {l} ∪A l 6⊥ M M 6≥ l

A := A M := M l
Decide

R = {l ∨ C} ∪R l 6⊥ M ¬lsko6⊥ M A = ∅
R := R M := M • l

Backjump
M = M ′ • lM ′′ F |= C C ⊥ M C 6⊥M ′

M := M ′ ¬lsko A := ∅
Fail

• 6∈ M C ∈ F C ⊥ M

unsat

Figure 1: Transition Rules

a new remainder from a non-unit clause C and adds it to the set R of remainders. The Assert
rule moves a propagation literal to the current context provided that the literal is neither
contradictory with nor a p-instance of the context. The Decide rule selects a literal l from the
available remainders in R and adds it as a decision literal to context, provided that neither l
nor its Skolemized complement is contradictory with the context.

The Backjump rule removes one or more decision levels from the current context and replaces
the oldest of the removed decision literals by its Skolemized complement. A backjump clause C
entailed by the clause set is used to determine how far to backjump. In actual implementations
this clause can be computed from an input clause that conflicts with the current context, by
using a conflict resolution mechanism similar to the one used in CDCL SAT solvers. The Fail
rule applies, producing the distinguished state unsat, if an input clause conflicts with the current
context and the context contains no decision points (to backtrack to).

An actual implementation of the transition system would remove from the set R when
backjumping all remainders computed using literals no longer in the context M. We do not
model this here just to simplify the description of the rules and because keeping stale remainders
in R does effect correctness. Also for simplicity, we hardcode into the rules the heuristics that
choses to process all current propagation literals before applying Decide. This is unnecessary
for correctness if Backjump is modified to remove from A propagation literals computed using
context literals no longer in M after the backjump.

Although we will not show it here, any fair execution of the transition system above starting
with a state where M = {¬v} and all the other fields except F are empty terminates in the
unsat state if and only if the clauses in F are jointly unsatisfiable.

3 A Sequential Proof Procedure

In this section, we describe in some detail a sequential proof procedure we have implemented for
the transition system in the previous section. The procedure mimics closely the behavior of the
Darwin theorem prover [1], a full implementation of ME for clause logic without equality, when
run on an EPR problem. The procedure uses these data structures for the main components
of a state: a context, a priority queue of propagation literals, a priority queue of remainders, a
set of clauses. Its main loop consists of the following steps:

1. Propagation. The highest-priority literal from the propagation queue, if any, is removed
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from the queue. If it is neither p-subsumed by nor contradictory with the context, it is
added to the context; otherwise, it is discarded and this step repeats.

2. Decision. If the context was unchanged by the previous step, the remainder with the
highest-priority literal among all the remainder literals is removed from the remainder
queue, if any. Then, that literal is added to the context if it is neither p-subsumed by
nor contradictory with the context. Otherwise, the remainder is discarded and this step
is repeated.

3. Unit Context Unifier Calculation. If the context was extended in the previous steps,
the newly added context literal k is unified with the complement of each literal l in each
clause in the clause set. Each most general unifier computed this way, is stored as a unit
context unifier for l.

4. Remainder Generation. The procedure identifies all sets {σ1, . . . , σn} of substitutions
where (1) for i = 1, . . . , n, σi is a unit context unifier for literal li in some clause l1∨· · ·∨ln,
and (2) one (or more) of the σi’s was newly computed in the previous step. For each of
these sets {σ1, . . . , σn}, the substitution σ1 ./ · · · ./ σn, when defined, is a context unifier
of the corresponding clause l1∨· · ·∨ ln. The procedure computes all such context unifiers,
makes them admissible, and adds their remainder to the remainder queue.3 The process is
interrupted, however, as soon as a context unifier with an empty remainder is computed.
In that case, the procedure moves immediately to Step 6.

5. Propagation Literal Generation. A process similar to the one in the previous substep
is used to generate propagation literals and add them to the propagation queue.4

6. Backjumping. After an analysis of the conflict represented by the empty remainder
computed in the previous step, the procedures identifies a previous decision level d to
backtrack to. If d is the top level, the procedure ends with an “unsatisfiable” result.
Otherwise, it clears the propagation queue, undoes all additions to the context and to
the remainder queue from that level on, adds to the context (at decision level d− 1) the
Skolemized complement lsko of the decision literal l of d, and resumes the main loop from
Step 1.

If neither of the first two steps is able to add literals to the context, the main loop aborts
and the procedure terminates with success: the context denotes a model of the clause set.

Selection Heuristics In our current implementation, the priority function used in the prop-
agation queue is determined by a ranking of literals where propositional literals5 are preferred
over (i.e., have a higher rank than) universal ones, which in turn are preferred over parametric
literals. Among universal literals, those with more variables are preferred. Among parametric
literals, those with less parameters are preferred. After the criteria above, literals introduced in
the propagation queue in an earlier decision level are preferred. Any ties after that are broken
in an arbitrary, but fixed, way. Something similar is done for the remainder queue. There, the
same literal ranking as the one in the propagation queue is used first locally in each remainder,
to select a literal, and then globally to chose among those selected literals.

For comparison, we also implemented two random selection heuristics: controlled random
and totally random. The controlled random heuristics modifies the priority functions above

3We ignore here the enhancement that considers only productive context unifiers (see [3] for details).
4In reality, this step and Step 4 are interleaved. We present them here as sequential for simplicity.
5That is, literals with a 0-arity predicate symbol.
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by breaking the final ties randomly (as opposed to a fixed way). With the totally random
heuristics no priority function is actually used. The dequeue operation in both queues simply
picks an element from the queue at random.

4 A Parallel Proof Procedure

The sequential proof procedure highlighted above presents several opportunities for paralleliza-
tion. We have focused on parallelizing two main aspects: the computation of context unifiers
and the exploration of the search space.

Term/Clause-level Parallelization At each iteration of the sequential proof procedure most
of the computation is spent in the generation of context unifiers. Since the individual unit
context unifiers computed in Step 3 are completely independent from each other, they can
all be computed in parallel, MapReduce style. The computation of the context unifiers
done in Step 4 (by joining unit context unifiers) can be parallelized in a similar way for
each clause in the clause database.

Search-level Parallelization As in DPLL, in ME the exploration of the search space is driven
by the selection of the next decision literal. In fact, since empty remainders trigger a back-
jump as soon as they are generated, the exploration is also driven by the order in which
propagation literals are chosen. Our experiments on candidate selection confirm that,
again as in DPLL, the selection heuristics can have a significant impact on performance for
some problems. To account for that we also implemented a portfolio-based approach [11]
where the input problem is given to several subsolvers running independently from each
other. The subsolvers differ only for the candidate selection heuristics they use for the
propagation and the remainder queues. They run completely independently except that
they are all stopped once one of them proves or disproves the input problem.

4.1 General Architecture

Our parallel proof procedure follows the actor model of computation, and relies on a small
number of actor classes. All actors communicate asynchronously via message queues and run
in their own computation thread. The actor model considerably simplifies the implementation
of parallel systems with respect to the shared-memory model. It also minimizes synchroniza-
tion needs, leading to less overhead and greater scalability with the increase of computational
resources.

Main Actors The main actors in our architecture, sketched in Figure 2, are one Main Solver,
one Context Manager, one or more Clause Managers, one Unification Pool, and one or more
Candidate Generators. Roughly, the Main Solver parses the input formulas, sets ups a number
of data structures, creates the other actors, and then passes control to the Context Manager.
The Context Manager manages the context data structure, and is the one effectively applying
the rules of the calculus by selecting literals to add to the context, analyzing conflicts caused
by empty remainders, deciding where to backjump, and shrinking the context accordingly. A
Clause Manager is responsible for one or more input clauses and for the computation of
unit context unifiers for them. In an ideal situation, with the system running on a unlimited
number of parallel computational (e.g., cores), we would have one clause manager per clause.
In reality, the clause set is partitioned so that each Clause Manager manages several clauses
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Figure 2: Architecture of the parallel EPR Solver. The solid lines represent data flow, the dash
lines represent control flow. The dotted ovals stand for multiple actors.

sequentially, to reduce the number of threads running on the same core. The Unification Pool
is in charge of computing context unifiers, by merging unit context unifiers received from the
Clause Manager, as well as computing propagation literals or remainders from those context
unifiers. It performs its functions by delegating them to one or more Candidate Generators it
manages. It is essentially a scheduler, creating and assigning unification tasks to the Candidate
Generators as they became available.

The portfolio extension adds several subsolver actors below the Main Solver, each relying
on its own Context Manager, Clause Managers, Unification Pool, and Candidate Generators
according to the architecture above.

4.2 Synchronization

The parallel proof procedure has been designed to minimize the need for the various actors
to synchronize with one another while also minimizing runtime differences between identical
runs when no randomized selections heuristics are used. The main synchronization points are
discussed below.

Synchronization between sub-solvers. Once started, the subsolvers are completely inde-
pendent from the main solver and each other. Synchronization with the main solver occurs
only once a subsolver solves the input problem, i.e., determines if it is satisfiable or not,
at which point the main solver terminates all subsolvers, outputs a response, and quits.

Synchronization before candidate selection. Before selecting a candidate as a new con-
text literal, the Context Manager waits for all context unifier computations in each Can-
didate Generator to terminate, to make sure that all possible candidates are available for
selection in the propagation and the remainder queue.

Synchronization when backjumping. When an empty remainder is generated, the Context
Manager is immediately notified. In turn, it immediately instructs all Clause Managers
and the Unification Pool to abort their computation, and waits for an acknowledgment
from them before backjumping and sending a new context literal to the Clause Managers.
Waiting for an acknowledgment is needed because the actor model does not guarantee
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Seq S1C1U1 S1C3U20 S4C1U1 S4C3U20 CR TR
EPT Solved 161 175 199 197 222 213 186
EPS Solved 125 125 128 129 134 135 128

Total Solved 286 300 327 326 356 348 314

Median runtime (s) 1.48 1.82 1.61 1.52 1.81 1.77 1.43
Average runtime (s) 11.83 19.93 27.29 27.46 27.23 32.62 18.74

Med speedup 0.93 1.27 1.21 1.38 1.35 1.35
Avg speedup 1.29 1.67 1.88 2.34 2.16 1.96
Max speedup 11.99 14.27 45.50 43.62 42.36 39.26

Med speedup (≥ 5s) 1.75 1.93 2.16 2.93 2.61 2.48
Avg speedup (≥ 5s) 2.64 3.21 4.18 5.59 5.10 4.25

Figure 3: Results for several solver configurations over the EPS and EPT problems of TPTP.
The columns represent the tested solver configurations: the sequential solver (Seq); the parallel
solver with i subsolvers, j clause managers, and k candidate generators in the unification pool
(SiCjUk); the parallel solver with 4 subsolvers each using the controlled random heuristics (CR)
or the totally random heuristics (TR).

that messages received by an actor in the same order they were sent. Note that an actor’s
computation cannot be interrupted by another actor. Since Candidate Generators take
a while to complete their tasks, they are not notified about a backjump and just let run
to completion. However, they are required to time-stamp, with the number of backjumps
so far, the candidates they compute. This way, such candidates can be discarded if
they arrive to the Context Manager when they are no longer current because of a later
backjump.

In our current implementation of the parallel proof procedure several parallelization parame-
ters such as the number of subsolvers, clause managers and candidate generators, are controlled
by user-configurable options. Since we focus on parallel strategies, we did not implement at
this time any preprocessing simplifications on the input clause set.

5 Experimental Evaluation

We evaluated the performance of our implementation of the sequential and the parallel proof
procedures described above against the EPR benchmarks of the TPTP library [18] which are
divided into EPS problems (satisfiable clause sets) and EPT problems (unsatisfiable clause
sets).6 Since our current solvers do not include inference rules for equality yet, we focused on
the 483 clausal problems without equality. Of those, 318 are EPT problems and 165 are EPS
problems.

All tests were run on a computer with two 12-core AMD Opteron 6172 processors and 32Gb
of memory, and running under Ubuntu 11.10. The solvers were developed in Scala, a language
based on the Java Virtual Machine. We used OpenJDK 64-Bit Version 1.6.0 as the JVM engine.
All experiments were run using the JVM option “-XX:+UseCompressedOops”. Since CPU time
is not very meaningful when measuring the runtime performance of parallel programs, we used
wall clock time7, with a timeout limit of 300 seconds.

6Detailed results together with the benchmark problems and our implementation can be found at http:

//www.cs.uiowa.edu/~tiliang/paar12/.
7Measured with the same utilities used at SMT-COMP 2011 (http://www.smtcomp.org/2011/).
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5.1 Results

Our experimental results are summarized in Figure 5 for the baseline sequential solver and for
several configurations of the parallel solver. The results refer to a single run of each configu-
ration. Configuration S1C1U1 of the parallel solver uses a single subsolver, one clause group
(managing all clauses), and one candidate generator (again for all clauses) in the unification
pool. It is parallel only in that its various actors run concurrently. In contrast, S1C3U20 is
more properly MapReduce-style for having 3 clause managers and 20 candidate generators.
Configuration S4C1U1 uses 4 subsolvers which differ from each other only in the fixed way they
break the final ties in their selection heuristics. Each subsolver has just one clause manager
and one candidate generator, making this configuration essentially a pure portfolio-style solver.
Configuration S4C3U20 is a hybrid resulting from the combination of the previous two. Con-
figuration CR (resp. TR) is like S4C3U20 except that the subsolvers use the controlled (resp.,
totally) random selection heuristic, each with a different seed.

For each configuration, averages and median runtime values are computed over the problems
solved by that configuration. Speedup factors are with respect to the runtimes of the Seq
configuration, and computed for each problem solved by Seq. The rows marked with (≥ 5s)
remove from consideration easy problems, defined as problems solved by Seq in less than 5s
(216/483). Focusing on those rows for the parallel configurations is instructive because for easy
problems the overhead caused by thread initialization and scheduling generally cancels out most
of the performance improvement due to parallel execution—in fact, it actually increases overall
runtimes for most problems solved by Seq within 1 second.

5.2 Analysis

As we conjectured, the sequential solver exhibits the lowest success rate, measured as the
percentage of problems solved within the time limit, solving only 59% of the 483 problems. All
the parallel configurations solve a superset of the problems solved by Seq, with an increased
success rate that goes from 62% for the minimally parallel S1C1U1 to 75% for the hybrid
S4C3U20. The improvement provided by S1C1U1 shows that just computing unit context unifiers
in parallel with joining such unifiers to generate candidates is already advantageous.

We experimented with a number of additional configurations (not reported here) differing
from S1C1U1 only in the number of clause managers and the size of the unification pool. Our
main conjecture was that increasing those parameters would lead to a greater success rate
because of the relative independence of the computations performed by each clause group
and each candidate generator. Our general findings confirm that conjecture, with a sweet spot
provided by S1C3U20. Adding more clause managers or more candidate generators usually leads
to a degraded performance, possibly because then, as we have verified, the number of threads
significantly exceeds the number of physical cores. These experiments, together with additional
ones on machines with fewer cores, show that the success rate of the S1C*U* configurations
increases lineraly with the number of cores. This strongly suggest that our solver will scale up
well, within the limits of Amdahl’s law [12], as processors with more and more cores become
available.

The very simple portfolio approach implemented by configuration S4C1U1 impressively
achieves almost the same success rate (67%) as that of the more sophisticated MapReduce
configuration S1C3U20 (68%). Its superiority to the sequential solver is consistent with similar
findings by others on parallelizing SAT and SMT solvers. What is interesting in our case is
that the MapReduce and the portfolio strategies are complementary to a certain extent, as
shown in the scatter plot of Figure 4. In particular, each solves about 20 problems that the
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Figure 4: Comparative runtime performance of a MapReduce (S1C3U20) and a portfolio strategy
(S4C1U1). Times are in seconds.

Figure 5: Runtime performance of all configurations.

other cannot solve. The same plot also shows that for problems solved by both, S1C3U20 is
superior to S4C1U1 in terms of runtimes. The overall superiority of S1C3U20 is confirmed by a
Wilcoxon rank-sum test on the whole set, which allows us to accept the alternative hypothesis
that S1C3U20 is faster than S4C1U1 with a p-value smaller than 0.001.

We obtained similar results also for configuration S1C3U10 (not shown), which creates about
as many threads as S4C1U1. It is possible that the subsolvers of S4C1U1 are not diverse enough to
fully exploit the advantages of a portfolio approach. However, additional controlled experiments
with one subsolver using random selection heuristics, for greater variability, did not improve
the overall performance of S4C1U1.

The complementarity of S1C3U10 and S4C1U1 suggests that combining them could have
a synergistic effect on performance. This is confirmed by the results obtained by S4C3U20
which can solve not only all the problems solved by S1C3U10 and by S4C1U1 individually, but
also a few more. In fact, S4C3U20 is also faster than any other configuration on the problems
solved by both. This is reflected by the average speed up factors in Figure 3. As with the
pure portfolio strategies, adding randomization in the selection process, both in a controlled or
uncontrolled fashion, did not improve the performance of S4C3U20 further, actually resulting
in worse performance. The superiority S4C3U20 in general to all other configurations listed
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in Figure 3 is clearly shown in the chart of Figure 5, indicating again that clause-level and
search-level parallelism can be combined to great effect in ME.

Finally, we observe that the best average speedup factor we achieved for hard problems (5+)
seems to be low with respect to the number of cores used. On the one hand, this contrasts with
results achieved by the best portfolio SAT solvers [11, e.g.] whose average speedups versus a
sequential version can be superlinear in the number of cores. On the other hand, our portfolio
implementation is fairly unsophisticated yet and lacks crucial features such as lemma sharing.
Also, EPR satisfiability is a much harder problem that propositional satisfiability (NEXPTIME
vs. NP) and so it is possibly correspondingly harder to parallelize. So, while our results could
be considered a good first step, more work and experimental evaluations are still needed.

6 Conclusion and Future Work

We have described concurrent proof procedures for the ME calculus that rely on term/clause-
level as well as search-level parallelism. Our experiments provide initial evidence that the
former is effective in reducing runtimes in instantiation-based theorem proving when using
MapReduce-style approaches which minimize the interactions between concurrent threads. Our
results show that, in addition to improving performance by themselves, such approaches also
combine synergistically with the traditional portfolio approaches.

We are working on an enhancement of the proof procedure with lemma learning, and lemma
sharing in the portfolio case. Lemma learning in ME is similar to lemma learning in SAT
solvers but has its own distinct features for exploring at the first-order, as opposed to the
propositional, level [2]. Further work will involve conducting further experimental evaluations
on the effectiveness of lemma sharing between subsolvers in our parallel implementation.
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