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Abstract

We propose a number of powerful dynamic-epistemic logics for multi-agent information
sharing and acts of publicly or privately accessing other agents’ information databases.
The static base of our logics is obtained by adding to standard epistemic logic comparative
epistemic assertions, that can express epistemic superiority between groups or individuals,
as well as a common distributed knowledge operator (that combines features of both com-
mon knowledge and distributed knowledge). On the dynamic side, we introduce actions by
which epistemic superiority can be acquired: “sharing all one knows” (by e.g. giving access
to one’s information database to all or some of the other agents), as well as more complex
informational events, such as hacking. We completely axiomatize several such logics and
prove their decidability.

1 Introduction

In this paper, we look at actions by which agents gain access to other agents’ information
databases, and thus can in principle learn everything known to those others, acquiring epistemic
superiority over them. We assume that information is distributed in a number of information
sources or ‘sites’ (e.g. files, folders, data sets, websites, databases etc) at a given time. Each
source can be thought of as being associated with an agent, either because it is the knowledge
base of a real agent (natural or artificial), or because we think of the source itself as an abstract
‘agent’ (possessing exactly the information that is locally stored at that site).

We enrich static epistemic logic with two new ingredients: (1) comparative epistemic as-
sertions for individuals or groups, that can capture epistemic superiority (e.g. “she knows all
they know”); (2) a new modal operator for common distributed knowledge, that generalizes the
two standard notions of common knowledge and distributed knowledge. On this static base,
we built communication logics obtained by adding various dynamic operators for information
sharing, public or private accessing etc.

An agent may gain access to a site, after which it can be assumed to instantly ‘read’ all the
information stored at that source. The ‘reading’ agent gains access to a source either because it
is granted such access by the source agent itself (by “sharing” her database, in which case it is
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natural to assume that the source ‘knows’ it is being accessed), or because it somehow succeeded
to illegally gain such access via e.g. hacking (in which case typically the source doesn’t know
it’s being accessed).1 So a reading action can be public (when it is common knowledge that the
information is visible to everybody), or semi-public (when it is accessible only to some agents,
but it is common knowledge who has access and who doesn’t), or fully private (when both the
information and the access are unknown to outsiders). Multiple agents may simultaneously
access multiple sources. After each such reading action, each reading agent knows everything
that was known by its source agents.

There are various possible applications of this work to multi-agent information gathering:
e.g. multi-body planning tasks in which sensed information from different bodies, each having
its own sensors, is to be collected and acted upon in order to reach a goal state [21]; recommender
systems collecting user-preferences from multiple sources in order to provide a meaningful rec-
ommendation; cryptographic communication, involving protocols in which agents share their
public keys and others use them to send messages, but also attacks by intruders getting access
to private keys; etc.

In the context of information accountability, here is a concrete example from [17]. The
agents are internet users, including website owners who have control over their own website as
well as web robots (or web-crawlers) who can extract information from those websites. Such
web robots can be directed to the URL of specific website owners and can be used for different
purposes, e.g. to index website content. Yet not all web crawlers are designed for legitimate
purposes: e.g. they can also be used extract valuable information for e.g. spamming; in
the worst case, they can gain access to all the private content of some users and hence gain
‘epistemic superiority’ over them. Website owners can disallow robots to visit their website (e.g.
via ‘robots.txt’ (https://www.robotstxt.org/) website owners can use a file to give instructions
to the web robots or they can directly block an IP address). Giving such access-restricting
instructions is a “semi-public” action (in the technical sense of our paper): the ‘/robots.txt’ file
is publicly available, hence what parts are under ‘no-access’-restriction is public information.
Still, robots used by spammers or malware robots could actually ignore these instructions.
In practice, it can be hard to detect whether a user’s site has been visited by a web robot,
especially as existing detection-methods are far from waterproof. Thus, the need for the more
general setting in section 6 of our paper, e.g. actions by which different agents secretly and
simultaneously gain access to others’ sites (without the owners’ knowledge).

The paper is structured as follows: section 2 gives some background on epistemic logic.
In section 3 we add epistemic comparative assertions for groups, and give a complete axiom-
atization of the resulting logic. In section 4 we study public and semi-public sharing/reading
actions, and axiomatize them in the absence of common knowledge operators. Motivated by
the problems posed by common knowledge, we generalize this notion in section 5 (to “common
distributed knowledge”), provide a complete and decidable axiom system, and use it to axiom-
atize semi-public actions. The proofs are relegated to the Appendix. Finally, in section 6, we
further generalize this work to arbitrary reading actions, giving an axiomatization, and ending
with a Conjecture, which we plan to settle in a future journal version of this paper.

1Although sometimes it does get to know it, either because the hacker publicizes all the stolen information,
or because somehow the source agent is able to detect the hacking. Our account can deal with various such
scenarios.
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2 Preliminaries

An epistemic model S = (S,∼a, •)a∈A consists of: a set S of states; a family of equivalence
relations ∼a⊆ S × S, labelled by agents a ∈ A coming from a finite set A, and denoting
the respective agents’ epistemic indistinguishability relations; and a truth-assignment function2

• : S → 2Prop, mapping each state s ∈ S to a truth-assignment s : Prop → 2 = {0, 1}
defined on a given set Prop of atomic propositions (and mapping each p ∈ Prop to a truth
value s(p) ∈ {0, 1}). For any group of agents B ⊆ A, we define two equivalence relations
∼B ,∼B⊆ S × S:

∼B :=
⋂
b∈B

∼b, ∼B := (
⋃
b∈B

∼b)∗,

where, for any relation R ⊆ S × S, we take R∗ to denote the reflexive-transitive closure of R.
One can now introduce, for each group B ⊆ A, a distributed knowledge operator DBϕ as

the Kripke modality3 for ∼B , and a common knowledge operator CBϕ as the Kripke modality
for ∼B . In this paper, individual knowledge Kaϕ is defined as just an abbreviation for D{a}.

4

The logic of distributed knowledge LD has as language the set of all formulas built recursively
from atomic formulas p ∈ Prop by using negation ¬ϕ, conjunction ϕ ∧ ψ and distributed
knowledge operators DBϕ (for all groups B ⊆ A). The logic of distributed knowledge and
common knowledge LDC is obtained by extending the language of LD with common knowledge
modalities CBϕ. These logics are known to be decidable and have the finite model property.
Table 1 below includes complete proof systems LDC and LD for these logics:

(I) Axioms and rules of classical propositional logic

(II) S5 axioms and rules for distributed knowledge:
(D-Necessitation) From ϕ, infer DBϕ
(D-Distribution) DB(ϕ→ ψ)→ (DBϕ→ DBψ)
(Veracity) DBϕ→ ϕ
(Pos. Introspection) DBϕ→ DBDBϕ
(Neg. Introspection) ¬DBϕ→ DB¬DBϕ

(III) Special axiom for distributed knowledge:
(Monotonicity) DBϕ→ DCϕ, for all B ⊆ C ⊆ A
(IV) Axioms and rules for common knowledge:
(C-Necessitation) From ϕ, infer CBϕ
(C-Distribution) CB(ϕ→ ψ)→ (CBϕ→ CBψ)
(C-Fixed Point) CBϕ→ (ϕ ∧

∧
b∈B KbCBϕ)

(C-Induction) CB(ϕ→
∧

b∈B Kbϕ)→ (ϕ→ CBϕ)

Table 1: The proof system LDC. Individual knowledge is a defined operator Kaϕ := D{a}ϕ.
The system LD is obtained by eliminating the axioms in group (IV).

Example 2.1. The drawing below represents an epistemic model S with 4 atomic propositions
Prop = {p, q, r, w} and 3 agents A = {a, b, c}. The possible states are represented by circles,
inside which we write all the atomic propositions that are true at that state. By default, the
missing ones are false, so this fully captures each state’s truth assignment (e.g. the circle labelled

2This last component is just a dual presentation of the more standard valuation map ‖ • ‖ : Prop→ P(S).
Indeed, given the truth-assignment map, we can define the valuation by putting ‖p‖ := {s ∈ S : s(p) = 1}. And
vice-versa: given the valuation, we can put s := {p ∈ Prop : s ∈ ‖p‖}.

3The Kripke modality [R] for a binary relation R ⊆ S × S is defined by putting s |= [R]ϕ iff we have t |= ϕ
for all the states t ∈ S with sRt.

4But see e.g. [16] for an alternative treatment, in which both K and D are primitive operators, with Kaϕ
being only logically equivalent to D{a}ϕ.
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p represents a state at which p is true, but q and r are false. The epistemic indistinguishability
relations are represented as edges (“links”) labelled by the respective agent. Since all our epis-
temic models are assumed to be S5, all ∼B are equivalence relations; hence, we skip the loops,
as well as some of the links that can be obtained by transitivity.

p q

r w

b

a
c

a

b

In this model, the disjunction of all atomic propositions is common knowledge: we have
C{a,b,c}(p ∨ q ∨ r ∨ w). In the p-state, p is true, but this fact is not known to any individ-
ual agent. Instead, p is distributed knowledge among all agents: we have D{a,b,c}p. Intuitively,
this distributed knowledge can be “resolved”, i.e. converted into actual (common) knowledge,
if the agents share all their information.5 In fact, in this state p is distributed knowledge even
within any 2-agent group: we have D{a,b}p ∧ D{b,c}p ∧ D{a,c}p. Again, intuitively this can
be converted into common knowledge within each such 2-agent group by using only in-group
communication: e.g. if a and c tell each other all they know, then C{a,c}p holds after that.
In fact, a and c become “epistemically superior” to b after that: they will know all he knows.
Finally, note that in this model, the only way to obtain full common knowledge C{a,b,c}p is to
require every agent to share her information with some others: no communication restricted to
a specific 2-agent subgroup can ever result in C{a,b,c}p in this model. As we’ll see, this is not
the case in other models: very restricted forms of communication can sometimes realize full
common knowledge!

We are interested in extending the framework of epistemic logic to capture all the intuitive
observations above. Standard temporal-epistemic logics [16, 18], and dynamic approaches e.g.
Public Announcement Logic (PAL) [20] and Dynamic Epistemic Logic (DEL) [4, 15, 11, 7],
can do this in a sense; but only by always making explicit the specific sentences that are being
communicated. This is not always convenient: the total sum of an agent’s knowledge can
typically be expressed only by a huge formula! In fact, sometimes this is worse: depending on
the expressivity of the language, there might be no formula in our language that captures this!

But even when there is one, there are problems with the standard DEL setting in some
cases. In a purely syntactic approach to communication, the order of the announcements mat-
ters: previously expressible information may become inexpressible after another announcement,
which may prevent the full resolution of distributed knowledge [9]. Moreover, information that
is locally expressible by formulas in every state may not be uniformly captured by any formula.6

What we need is to be able to abstract away from the specific announcement, and formalize
directly the action of sharing “all you know” (with some or all of the other agents). Before
doing that though, we need to formalize the effects of such an action: the state of affairs in
which one agent (or group) has epistemic superiority over another agent (or group).

5In [5], we study different epistemic and doxastic states of groups of groups of agents that are realizable via
specific sharing protocols.

6Say, all that agent a knows is the value of some variable xa (ranging over natural numbers), e.g. some
secret password. Suppose it is common knowledge (among all agents a, b, c) that a shares this information with
b. In each state, this is equivalent to a specific announcement of a sentence x = n shared between a and b. But
from the perspective of the outsider agent (c), this is not equivalent to a specific announcement of any sentence,
and not even to any finite set of possible such announcements! Indeed, to calculate b’s knowledge after this
action in standard DEL, we need an event model with infinitely many events (one for each formula x = n for
any n ∈ N), all indistinguishable for agent c.
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3 We know all you know

As we saw, not all epistemic agents are equal. Some may know ‘more’ than others: in fact,
an agent b may know everything that another agent c knows. This is easier and more realistic
to assume if we identify agent c’s ‘knowledge’ with the content of his associated information
database. The more ‘expert’ agent b may have accessed this database, legally or illegally.

In this paper, we extend epistemic logic LDC, with comparative epistemic assertions B � C
between groups of agents B,C ⊆ A, saying that group B’s (distributed) knowledge includes all
group C’s (distributed) knowledge.7 For short, we read this as: group B “knows at least as
much” as group C. When B � C but C 6� B, we write B ≺ C and say that group B is “more
expert” than (or “epistemically superior to”) group C. As before, we skip set brackets when
dealing with singletons, e.g. writing b � c for {b} � {c}, etc. The semantics is given by:

s |= B � C iff ∀t ∈ S (s ∼B t⇒ s ∼C t).

This definition needs some explanation. Intuitively, the strongest piece of knowledge collectively
possessed by group B at state s (that entails everything known by every b ∈ B) is s’s equivalence
class [s]B = {t ∈ S : s ∼B t} modulo ∼B (comprising all states compatible with the information
possessed by agents in B).8 The above clause says that B � C holds at s iff [s]B ⊆ [s]C , i.e. if
group B’s total distributed knowledge is at least as strong as group C’s distributed knowledge.

Example 3.1. In the model in Example 2.1, group {a, b} is ‘epistemically superior’ to c: the
distributed knowledge within {a, b} includes everything known by c but not the other way around
(i.e. {a, b} � c but c 6� {a, b}. In the same model, groups {a, b} and {b, c} are ‘epistemically
equivalent’: their distributed knowledge is the same (i.e. {a, b} � {b, c} and {b, c} � {a, b}).

Example 3.2. In the previous example, all mentioned epistemic comparisons hold globally (at
all states). But in the model below, the group {a, c} is epistemically superior to {b, d} only
in the r-state; dually, {b, d} is superior to {a, c} in the q-state; while in the p-state, the two
groups are incomparable ({a, c} 6� {b, d} and {b, d} 6� {a, c}. But groups {a, b} and {c, d} are
epistemically equivalent ({a, b} � {c, d} and {c, d} � {a, b}) in all states.

q p r
a, c b, d

The following is our first new result, whose proof is sketched in Appendix A.9

Proposition 3.3. The logic LDC �, obtained by adding to the language of LDC group com-
parison statements B � C, is decidable. A complete axiomatization is given by the proof system
LDC � in Table 2. Moreover, the fragment LD � (obtained by eliminating the common knowl-
edge operator) is axiomatized by the proof system LD �, obtained by removing from Table 2 the
last group (IV) (the axioms and rules for common knowledge).

7This is an extension to groups of the individual comparisons b � c in [14].
8Note that if this equivalence class shrinks, the knowledge of the agent (or group of agents) increases. The

highest level of knowledge that an agent can achieve is the one in which she can distinguish between all states, i.e.
when the equivalence classes are singletons. While this is a standard way of modelling knowledge in epistemic
logic, philosophically this conception of knowledge is also well known in the literature and captures the concept
of “information as range” [10].

9The proof is rather intricate: both completeness and decidability involve a detour through a more general
type of relational models, called pseudo-models.
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(I) Axioms and rules of classical propositional logic

(II) S5 axioms and rules for distributed knowledge
(As in Table 1)

(III) Axioms for comparative knowledge:
(Inclusion) B � C, provided that C ⊆ B
(Additivity) (B � C ∧B � E)→ B � C ∪ E
(Transitivity) (B � C ∧ C � E)→ B � E
(Known Superiority) B � C → DB(B � C)
(Knowledge Transfer) B � C → (DCϕ→ DBϕ)

(IV) Axioms and rules for common knowledge
(As in Table 1)

Table 2: The proof system LDC �. Individual knowledge is a defined operator Kaϕ := D{a}ϕ.
The system LD � is obtained by eliminating the axioms in group (III).

Note that the axioms of group (III) take the place of the Monotonicity Axiom from Table
1, capturing natural properties of epistemic comparison and its interaction with distributed
knowledge.10 In particular, “Known Superiority” says that the more-expert group (collectively)
knows its own epistemic superiority over a less-expert group. “Knowledge Transfer” says that
everything that a more-expert group collectively knows everything known by a less-expert group.

4 Tell me all you know: semi-public sharing

We move on now to dynamics. How can an agent b come to know everything known by another
agent a? One way is if a actually shares all her information with b. In this section we assume
this access permission is common knowledge: all agents know that this access is being granted
to b (and know that the others know, etc). But note that we are not capturing a’s intentions
or her deontic permissions, but only in the epistemic-informational features of this action. For
instance, suppose that b gains access to a’s information without a’s permission (say, by hacking
a’s information database), but this is done in such an obvious way that it is still common
knowledge that it is being done (say, the hacker is ‘bragging’: he issues a public statement
confirming the hack). As long as b’s access gaining is still common knowledge, this information
stealing has the same epistemic effect as the previously considered action of information sharing!

We can consider more general such actions, e.g. a shares her information with a whole
group G (say, she gives permission to all agents in G to access her knowledge base). Or all the
agents in a group H share all their information with another group G; or alternatively, some
member of G hacks H’s database, “reads” it and posts it all on a G-shared forum (so that
all G-members can also “read” it), but the theft is discovered and publicly announced on TV;
while, at the same time another group H ′ shares all their information with group G′, etc.

We call all these actions semi-public ‘reading’ events. In all of them, some agents get to
access (‘read’) some other agents’ knowledge base(s). But the fact that this access is gained
(or not) is public: it is common knowledge who can “read” whose knowledge base during these
events. The class of semi-public reading events include the fully public ones, in which both the
information that is being accessed and the access itself are publicly available: e.g. an agent or
group publicly shares their information with everybody ; or when a hacker gains access to another
agent database and posts on the internet all the information contained in it, thus making it all
publicly available (cf. the WikiLeaks case).

10Indeed, Monotonicity becomes now provable from these axioms.
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Reading maps. To represent a semi-public reading event, we only need the specify who can
“read” what. A reading map is a function α : A → P(A), mapping agents a ∈ A to sets of
agents α(a) ⊆ A, subject to the constraint that

a ∈ α(a) (for every a ∈ A).

Intuitively, α(a) is the set of agents whose information is accessed by a during this action. So
this last constraint means that every agent a can always re-read her own knowledge base.11

Given a reading map α, we extend the notation α(a) to groups of agents B ⊆ A, putting

α(B) :=
⋃
b∈B

α(b)

for the set of agents whose information can be accessed by some B-agent during this action.

Notation conventions for reading maps. In general, we denote specific reading maps by
using tuples of expressions a : B, one for each agent a, to express the fact that agent a reads the
knowledge bases of all agents in B. So the tuple (a : Ga)a∈A denotes the map α : A → P(A)
given by α(a) = Ga for all a ∈ A. But we also introduce some conventions to simplify this
notation: since a ∈ α(a) is assumed as a general condition, we can always choose to skip a from
the list of agents in Ga. Also, if α assigns the same reading assignment to two or more agents,
we can compress the tuple, writing e.g. G : H instead of the longer enumeration (a : H)a∈G.
Also, we skip the set brackets whenever either G or H is a singleton. It is also natural to be able
to skip altogether from our tuple the agents a who can only read their own base α(a) = {a}.
With these conventions, e.g. (A : a) represents the map α given by α(b) = {a, b} for all b ∈ A;
while (G : H) represents the map β given by: β(b) = H∪{b} if b ∈ G, and β(b) = {b} otherwise.

Special reading maps. We also introduce special notations for especially useful types of
reading maps. Given a group G, we also ambiguously denote by G the reading map (A : G)
(mapping every agent a toG∪{a}, so everybody reads the information possessed byG-agents).12

In particular, when G = {b} is a singleton, we skip the set brackets as mentioned above, and
write a for the reading map {a} = (A : a) (by which everybody reads a’s information). Finally,
given mutually disjoint groups G1, . . . , Gn, we use the abbreviated notation (G1, G2, . . . , Gn)
to denote the reading map (G1 : G1, G2 : G2, . . . , Gn : Gn) (that maps every agent b to Gk if
b ∈ Gk for some k, and to {b} otherwise). As before, we skip set brackets when any of the Gk’s
is a singleton. Note though that the reading maps G and (G) are different (and the same for a
versus (a)). In fact, this last notation can be naturally generalized to lists G1, . . . , Gn ⊆ A of
groups that are not necessarily mutually disjoint : this will denote the map α given by putting
α(b) =

⋃
{Gk : 1 ≤ k ≤ n with b ∈ Gk} if b ∈

⋃
kGk, and α(b) = {b} otherwise.)

We proceed now to formalize semi-public reading actions in DEL style [4, 11, 15], as epistemic
updates: functions mapping every epistemic model S to a new model S!α.

Semantics of semi-public reading events. Given a reading map α, we denote by !α the
corresponding semi-public event: it is common knowledge that every agent a ∈ A simultaneously
accesses the knowledge bases of all agents b ∈ α(a). Formally, given any epistemic model
S = (S,∼b, •)b∈A, the event !α returns an updated model S!α := (S,∼!α

b , •)b∈A, having the

11This is a technical assumption, not actually necessary (since we assume our agents have perfect memory,
so they don’t actually need to keep re-reading their own information), but which simplifies our reduction laws.

12We use systematic ambiguity: the reader can see from the context when G denotes a group and when it
denotes the corresponding reading map.
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same set of states S, the same valuation •, but new epistemic indistinguishability relations ∼!α
b ,

given by:
∼!α
b := ∼α(b)

Intuitively, each agent b acquires all the knowledge of group α(b), hence her new indistinguisha-
bility relation will coincide with the distributed knowledge relation for this group. (Note that, if
b has perfect memory, then his new knowledge relation should in fact be ∼b ∩ ∼α(b)=∼{b}∪∼α(b)

;
but this is the same as ∼α(b), given our above-mentioned simplifying assumption that b ∈ α(b).)

Adding dynamic modalities for semi-public reading actions. As usual in Dynamic
Epistemic Logic, we can now enrich the syntax of any of our logics by adding dynamic modalities
[!α]ϕ for each reading map α, saying that ϕ will hold after the semi-public reading event α. The
semantic clause for these dynamic modalities is given again as usual in Dynamic Epistemic
Logic, by evaluating ϕ at the same state in the updated model:

s |=S [!α]ϕ iff s |=S!α ϕ.

Example 4.1. ( Tell Us All You Know) For a given agent b ∈ A, !b is a “fully public” action,
formally given by the reading map b = (A : b) (which according to the above conventions maps
every a ∈ A to {a, b}). This can be interpreted as public sharing: b publicly announces all she
knows; but as already mentioned, it can also represent “public hacking”: an anonymous hacker
posts all b’s information on a public site. In the drawing below, we represent the effect of the
action !b performed on the initial epistemic model S in Example 2.1 (reproduced below in the
diagram on the left). The updated model S!b after the action !b is in the diagram on the right.

p q

r w

p q

r w

b

a
c

a

b

b

b

!b

Before this communication event (i.e. in the model on the left), a can distinguish between the
left states and the right states (she knows p∨ r if the actual state is on the left, and knows q∨w
if the actual state is on the right), b can distinguish between the upper and the lower states,
while c can distinguish between the two diagonals. After b publicly shares all his knowledge (i.e.
in the updated model on the right), the other agents a and c will add b’s knowledge to their
own, and will thus be able to distinguish between every two states: they both come to know
the actual state. The only one still uncertain is b himself (who learns nothing from his own
announcement).

Example 4.2. ( Tell Me All You Know) For given agents a, b ∈ A, the action !(a : b) (given by
the reading map (a : b), according to the above conventions) is the one in which it is common
knowledge that a shares with b all she knows. Note that this sharing event is not fully public:
the outsiders cannot read a’s information (though they know that b can read it).

Example 4.3. ( You’all Tell Us All You Know) For a given group G ⊆ A, the action !G is
the one by which all agents in G publicly announce all they know. Formally, it is given by the
reading map G (which maps every b ∈ A to G∪ {b}). Like !b, this sharing action !G is a “fully
public” event. We illustrate this event in the diagram below. We start with the same initial
epistemic model S as in the previous example (on the left), and perform its update with the
action !{a, b}, by which both agents a and b publicly share with everybody all they know. The

97



Learning What Others Know Baltag and Smets

result is the updated model S!{a,b} on the right. After this action, everybody comes to know
the actual state, in fact if p was the actual state them after this action p becomes common
knowledge among all agents in {a, b, c}:

p q

r w

p q

r w

b

a
c

a

b

!{a, b}

Example 4.4. ( Sharing Between Groups) For a given group G,H ⊆ A, the semi-public reading
action !(G : H) (formally given by the reading map (G : H)) is the one in which it is common
knowledge that all agents in G share all they know with all agents in H.

Example 4.5. ( Sharing Within Groups) For groups G1, . . . , Gn ⊆ A, the semi-public event
!(G1, . . . , Gn) (given by the reading map (G1, . . . , Gn) = (G1 : G1, . . . , Gn : Gn)) is the one in
which it is common knowledge that every agent in every group Gk shares all she knows with
the agents in that same group Gk. A special case is the so-called G-resolution event !(G), in
which (it is common knowledge) that agents in G share all they know with each other. Note the
difference between !(G) and the event !G above. The corresponding dynamic operator [!(G)]ϕ
has already been considered in [1], under the name of resolution operator, denoted by RGϕ.

Closure under sequential composition. It is easy to see that the class of semi-public
reading actions is closed under sequential composition:

(S!α)!β = S!(α◦β),

where (α ◦ β)(a) := α(β(a)) is the functional composition of reading maps. This immediately
gives us the validity

[!α][!β]ϕ ←→ [!(α ◦ β)]ϕ,

known again as the “Composition Law” for public reading events.

Subclasses closed (or not) under composition. Subclasses !K of semi-public actions that
are closed under sequential composition thus correspond to subclasses K of reading maps that
are closed under functional composition. An example is the class of group public sharing actions
{!G : G ⊆ A}, which is also closed under sequential composition. This can be easily seen from
the fact that

(A : G) ◦ (A : H) = (A : G ∪H),

which gives us

(S!G)!H = S!(G∪H).

In contrast, the class of individual sharing actions {!a : a ∈ A} is not closed under composition
(since !a; !b =!{a, b} 6=!c for any c ∈ A). Neither is the class {!(G) : G ⊆ A} of resolution
actions, nor its extension to families of groups {!(G1, . . . , Gn) : n ∈ N,G1, . . . , Gn ⊆ A}.
The compositional closure of a class of actions Given any subclass !K of semi-public
actions (based on a subclass K of reading maps), we can look at its compositional closure

!K+ := {!(α1 ◦ . . . αn) : n ≥ 1, α1, . . . , αn ∈ K},
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which is the smallest class of actions that includes K and is closed under sequential composition.
For instance, it is easy to check that the compositional closure of the class {!(G) : G ⊆ A} of
resolution actions is the class

{!(G1 ◦ . . . ◦Gn) : n ≥ 1, G1, . . . , Gn ⊆ A}

where the reading map (G1 ◦ . . . ◦ Gn) := (G1) ◦ . . . ◦ (Gn) is the functional composition of
the reading maps (G1), . . . , (Gn). It is useful to unfold this into the following explicit inductive
definition of the liftings of these reading maps to sets of agents:

(G1)(B) := G1 ∪B if G ∪B 6= ∅, (G1)(B) := G1 ∪B otherwise;

(G1 ◦ . . . Gn)(B) := G1(G2 ◦ . . . ◦Gn(B)),

from which we get their direct definition as maps from agents to sets:

(G1 ◦ . . . Gn)(b) := (G1 ◦ . . . Gn)({b}).

Dynamic logics for semi-public actions The logic LD �! is obtained by adding to the
“static” language of LD � dynamic modalities [!α]ϕ for all reading maps13 α; while the logic
LDC �! is obtained by adding such modalities to the language of LDC. Also, for any special
class of reading maps, we can consider the logic with dynamic modalities restricted to the
corresponding events, e.g. the ones of the form !a (with a ∈ A), or !G (with G ⊆ A), or !(G).

Proposition 4.6. The dynamic logic LD �! has the same expressivity as the static logic
LD �: every formula in LD �! is (provably) equivalent to a formula in LD � (via a step-
by-step reduction using the Reduction Laws below). A complete axiomatization LD �! of the
dynamic logic LD �! is obtained by taking the axioms and rules of the system LD � in Table
2, together the usual axioms and rules of normal modal logic14 for dynamic modalities [!α], as
well as the following ‘Reduction Laws’ for semi-public reading actions:

[!α]p ←→ p

[!α]¬ϕ ←→ ¬[!α]ϕ

[!α](ϕ ∧ ψ) ←→ [!α]ϕ ∧ [!α]ψ

[!α]DBϕ ←→ Dα(B)[!α]ϕ,

[!α](B � C) ←→ α(B) � α(C).

The proof of this result is in Appendix B. In particular, applying the DB-reduction law to a
singleton group B = {b}, for any b ∈ A, we obtain a reduction law for individual knowledge:

[!α]Kbϕ ⇐⇒ Dα(b)[!α]ϕ

Also, by restricting to the appropriate subclasses of events, we obtain axiomatizations of the
corresponding logics. For instance, the logic of public sharing actions !G is axiomatized by the
!G-instances of the reduction axioms, of which we only spell out the reductions for D and �:

[!G]DBϕ ←→ DB∪G[!G]ϕ [!G](B � C) ←→ B ∪G � C ∪G

13Note that, if A is finite, then there are only finitely many reading maps.
14For details, see e.g. [13].
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By restricting instead to “resolution” actions !(G) (allowing sharing only within G), we
obtain an axiomatization for the logic of resolution !(G), in which e.g. the reduction law for D
splits in two cases, depending on the overlap of G with B:15

[!(G)]DBϕ ←→ DB∪G[!(G)]ϕ for B ∩G 6= ∅

[!(G)]DBϕ ←→ DB [!(G)]ϕ for B ∩G = ∅

Here are some other interesting theorems of LD �! :

[!a](b � a)

(“After a publicly announces all she knows, everybody comes to know all she knows.”),

DG∪{b}p→ [!G]Kbp

(“If p is distributed knowledge in the group G ∪ {b}, then after this group publicly shares all
they know agent b comes to know p.”)

But what about adding common knowledge to this logic? The logic LDC �!, obtained by
adding common knowledge operators CB to the language of LD �!, can capture interesting
fundamental properties. Here is a validity of LDC �! that involves the resolution operator !(G)
(by which agents G share all they know with each other):

DGp↔ [!(G)]CGp

(“Distributed knowledge DGp is the necessary and sufficient condition for realizing common
knowledge CGp using only communication/sharing within the group G).

No reduction for common knowledge Unfortunately, it turns out that there are no reduc-
tion laws for common knowledge [!G]CBϕ after sharing! In the Dynamic Epistemic Literature,
there are two well-known strategies for dealing with this problem. The first strategy, used e.g.
in [4], is to directly axiomatize the resulting logic, typically by using some kind of analogues of
the axioms for common knowledge. The second strategy, used e.g. in [12], is to enrich the static
base of this logic with new operators, that allow for a reduction law for common knowledge.

In the rest of this section, we sketch without proofs the result of applying the first strategy
to semi-public actions. Then in the next section, we systematically explore the second strategy.

A direct axiomatization of LDC �! The idea of this first strategy is to treat the combination
[!α]CB as if it was a single operator (“common knowledge after event e”), like a kind of ‘dynamic
version’ of common knowledge. Then one can generalize the Fixed Point and Induction axioms
to this dynamic combination.

To understand our generalization, it is convenient to first restate the C-Induction Axiom in
terms of an inference rule:

From η →

(
ϕ ∧

∧
b∈B

Kbη

)
infer η → CBϕ.

It is well-known (and easy to check) that this rule is equivalent to the Induction Axiom. We
can now state our generalization, in the form of a dynamic [!α]C-Induction Rule:

15While the reduction law for � splits into four cases, depending on the overlaps of G with B and with C.
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From η →

(
[!α]ϕ ∧

∧
b∈B

Dα(b)η

)
infer η → [!α]CBϕ.

The other ingredient we need is the above-mentioned Composition Axiom, which allows us
to compress strings of dynamic modalities [!α1] . . . [!αn]CBϕ into a single dynamic modality
[!α]CBϕ.

Proposition 4.7. A complete axiomatization of LDC �! consists of the following:

− the axioms and rules of the proof system LD �!;

− the Axioms and Rules for Common Knowledge;

− the Necessitation Rule and Distribution Axiom for dynamic modalities [!α]ϕ;

− the above Composition Axiom;

− the above [!α]C-Induction Rule.

In fact, the proof is modular: given any class !K of semi-public reading actions that is closed
under sequential composition, we get a complete axiomatization of the logic LDC �!K (with
dynamic modalities only for actions in !K) by restricting the above axioms only to the instances
that belong to this logic. As applications, we obtain the following two results:

Corollary 4.8. A complete axiomatization of the logic LDC �!G of public sharing with com-
mon knowledge consists of the following:

− the above axiomatization of the logic LD �!G of public sharing actions;

− the Axioms and Rules for Common Knowledge;

− the Necessitation Rule and Distribution Axiom for dynamic modalities [!G]ϕ;

− the !G-Composition Axiom: [!G][!H]ϕ↔ [!(G ∪H)]ϕ;

− the [!GC-Induction Rule:

From η → ( [!G]ϕ ∧DB∪Gη ) infer η → [!G]CBϕ.

Corollary 4.9. A complete axiomatization of the logic LDC �!(G) of resolution actions with
common knowledge consists of the following:

− the above axiomatization of the logic LD �!(G) of resolution actions;

− the Axioms and Rules for Common Knowledge;

− the Necessitation Rule and Distribution Axiom for dynamic modalities [!(G)]ϕ;

− the [!(G)]C-Induction Rule:

From η →
(

[!G1] . . . [!(Gn)]ϕ ∧D(G1◦...Gn)(B)η
)

infer η → [!G]CBϕ,

where (G1◦. . . Gn)(B) is the composed reading map defined by the inductive clauses above.
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The last result is a correction (and extension) of the system in [1], where the logic of
resolution actions was studied, but only in the absence of comparative knowledge statements
B � C. The authors of [1] gave reduction laws for distributed knowledge after resolution (the
same as the ones we obtained by applying our general reduction laws to resolution events).
They also proposed an axiomatization for the extension with common knowledge, based on a
dynamic version of the Induction Rule, similar to our [!(G)]C-Induction Rule. However, their
version of the rule is much simpler than ours, and seems to us to be “wrong”: sound, but too
weak to be complete.16

We relegate the proofs of these results to a future journal version of this paper, since they
are not central to the line of investigation pursued here. In the next section, we solve the same
problem using the “second strategy” mentioned above (following [12]): enrich the static base of
this logic with new operators, allowing for simple reduction laws for common knowledge after
any semi-public event. The resulting axiomatization will not rely on closure under composition
(and hence will be applicable to every subclass of semi-public actions).

5 Common distributed knowledge

To ‘pre-encode’ common knowledge after a public or semi-public reading action, we need to
introduce a relatively new concept17: common distributed knowledge. Though motivated here
by the aim of obtaining reduction laws, this epistemic notion is of interest in its own respect.

Given a family B ⊆ P(A) of groups of agents, we say that ϕ is said to be common distributed
knowledge among (the groups in) B if we have that: each group B ∈ B has distributed knowledge
that ϕ; each group B ∈ B has distributed knowledge that each other group B′ ∈ B has
distributed knowledge that ϕ; etc (for all iterations). Formally:

s |= CdBϕ iff s |= DB1DB2 . . . DBnϕ for all sequences (of any length n ≥ 0) B1, . . . , Bn ∈ B.

Equivalently, we can define CdB as the Kripke modality for the relation ∼B, given by

∼B := (
⋃
B∈B
∼B)∗

(where as before, R∗ is the reflexive-transitive closure of R). Unfolding this definition, we get:

s |= CdBϕ iff t |= ϕ holds at every state t reachable by any finite chain

(of any length n ≥ 0) s = s0 ∼B1 s1 ∼B2 . . . ∼Bn sn = t with all Bi ∈ B.
Here is one way to explain the informational significance of common distributed knowledge,
versus plain distributed knowledge. We already noted the validity DGp ←→ [!αG]CGp, say-
ing that distributed knowledge DGp is the sufficient and necessary precondition for realising
common knowledge CGp by information sharing only within the group G. But given a family
B = (G1, . . . , Gn) ⊆ P(A) of groups of agents, the question arises: when can we achieve com-
mon knowledge of p in the larger group G = G1 ∪ . . . Gn by info-sharing only within each of the
subgroups (B1, . . . , Bn)?

16The induction rule for [!(G)]C in [1] uses (conjunctions of) individual knowledge in the premise, instead
of distributed knowledge, which is very strange (since the reduction law for [!(G)]K uses D). In any case, the
completeness proof for that rule in [1] contains a gap. Our [!(G)]C-Induction Rule looks so complicated because
the class of resolution events is not closed under composition.

17As far as we know, this concept was first defined, but not axiomatized, in an ILLC master thesis [22]
supervised by the first author.
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The answer is: whenever p is common distributed knowledge among the groups B1, . . . , Bn.
This fact is captured by the validity

CdG1,...,Gn ←→ [!(G1, . . . , Gn)]CGp,

where G = G1∪ . . . Gn and !(G1, . . . , Gn) is the semi-public event of sharing-within-each-group,
as defined in the previous section, via the reading map (G1, . . . , Gn) = (G1 : G1, . . . , Gn : Gn).

Example 5.1. In the model drawn in Example 3.2 (reproduced below on the left), p is common
distributed knowledge in the p-state between groups {a, b} and {c, d}, i.e. we have Cd{a,b},{c,d}p:
all iterations of D{a,b}p, D{c,d}p, D{a,b}D{c,d}p, D{c,d}D{a,b}p etc, hold at this state. This is
witnessed dynamically by the fact that full common knowledge of p can be achieved by sharing
information only within the two groups, as witnessed by the drawing below: the updated model
after !({a, b}, {c, d}) is on the right-side, and its p-state satisfies C{a,b,c,d}p.

q p r
a, c b, d

q p r
!({a, b}, {c, d})

Example 5.2. In contrast, here is an example in which p is distributed knowledge in each of the
two groups, but it is not common distributed knowledge. In the left-side model of the diagram
below, the upper p-state satisfies both D{a,b}p and D{c,d}p ; but we also have ¬D{a,b}D{c,d}p
in this world; hence p is not common distributed knowledge in the family {{a, b}, {c, d}}. This
is witnessed by the fact that sharing within each the two groups cannot produce full common
knowledge of p. Indeed, the action !({a, b}, {c, d}) produces the right-side model, in which we
do not have C{a,b,c,d}p in the upper p-state:

q p r

q p r

a, c b, d

a, c, d b, c, d

a a, b b

q p r

pq r

a, b

c, d c, d

!({a, b}, {c, d})

Static and dynamic logics The static logic of common distributed knowledge LCd � has
CdB as the only modalities (one for each family B ⊆ P(A)), in addition to atomic propositions,
Boolean connectives and comparative statements B � C. Its dynamic counterpart LCd �! has
in addition dynamic modalities [!α]ϕ, for all reading maps α.

In these logics, all the standard epistemic operators are definable as abbreviations: DBϕ :=
Cd{B}ϕ, Kbϕ := Cd{b}ϕ, CBϕ := Cd{{b}:b∈B}ϕ.

Proposition 5.3. The static logic LCd � is decidable. A sound and complete axiomatization
is given by the proof system LCd � in Table 3.

The completeness and decidability proofs are included in Appendix A. Once again, the
proofs are intricate,involving a detour through a non-standard relational semantics.

Note that the old axioms and rules for D and C are now both replaced by the axioms and
rules for Cd (group (II) in Table 3): indeed, one can easily check that those old axioms for D
and C are now derivable in LCd �.
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(I) Axioms and rules of classical propositional logic

(II) Axioms and rules for common distributed knowledge:
(Cd-Necessitation) From ϕ, infer CdBϕ
(Cd-Distribution) CdB(ϕ→ ψ)→ (CBϕ→ CBψ)
(Cd-Fixed Point) CdBϕ → (ϕ ∧

∧
B∈BDBCdBϕ)

(Cd-Induction) CdB(ϕ→
∧

B∈BDBϕ) → (ϕ→ CdBϕ)
(Cd Neg. Introspection) ¬CdBϕ→ CdB¬DBϕ

(III) Axioms for comparative knowledge
(As in Table 2)

Table 3: The proof system LCd �. Distributed knowledge, common knowledge and individual
knowledge are defined operators: DBϕ := Cd{B}ϕ, CBϕ := Cd{{b}:b∈B}ϕ, Kbϕ := Cd{{b}}ϕ.

Finally, we obtain our desired axiomatization of LCd �!:

Proposition 5.4. The dynamic logic LCd �! has the same expressivity as its static base
LCd �. A complete axiomatization LCd �! is obtained by putting together the axioms and rules
of the proof system LCd � above with the ones of the proof system LD �! from Proposition
4.6, as well as with the following Reduction law for Common Distributed Knowledge:

[!α]CdBϕ ←→ Cd{α(B):B∈B}[!α]ϕ

The proof of this result is in Appendix B. Note that the Reduction Law for distributed
knowledge DB from Proposition 4.6 is in fact redundant now: we can regain it by applying the
reduction law for common distributed knowledge CdB to a singleton family B := {B}.

Once again, we can obtain axiomatizations of various sublogics, by restricting the above
axioms to the appropriate classes of events: for instance, we get an axiomatization of the logic
of fully public sharing !G and common distributed knowledge, with the following reduction
axiom for Cd:

[!G]CdBϕ ←→ Cd{B∪G:B∈B}[!G]ϕ.

In a similar way, we obtain an axiomatization of the logic of ‘resolution’ actions !(G) and Cd,
in which the instances of the reduction law for Cd split again in two cases:

[!(G)]CdBϕ ←→ CdB∪G[!(G)]ϕ for B ∩G 6= ∅,

[!(G)]CdBϕ ←→ CdB [!(G)]ϕ for B ∩G = ∅.

6 Wilder scenarios: arbitrary reading events

Until now, our relational models captured only static information: they all were state models, in
which the accessibility relations described the agents’ uncertainty concerning the current state.
The dynamic induced by semi-public actions was simply given by specific model transformers.
But when dealing with more complex scenarios (involving privacy, secrecy, hacking etc), it
is more useful to represent the actions themselves in a relational model, with accessibility
relations that capture the agents’ uncertainty concerning the current action. These so-called
“event models” (or action models) are one of the central features of Dynamic Epistemic Logic
[7, 11, 14], at least in its most popular incarnation (the ‘BMS approach’, due to Baltag, Moss
and Solecki [4]). Here we adapt this setting to our reading actions.
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A reading event model is a structure E = (E,∼a, •)a∈A, where: E is a finite set of ‘events’;
∼a⊆ E × E are equivalence relations, describing each agent’s epistemic indistinguishability
between events; and • : E → P(A)A is a reading assignment, associating a reading map
e : A→ P(A) to each event e ∈ E. Intuitively, the events e ∈ E represent the possible actions
that might be taking place at a given moment; e(a) ⊆ A is the set of agents whose knowledge
bases are accessed (‘read’) by agent a during action e; while the accessibility relations ∼a express
agent a’s knowledge/beliefs about the current action taking place. As before, the associated
reading functions satisfy a ∈ e(a), but in addition they are subject to the constraint

e ∼a f implies e(a) = f(a),

saying that agents know what information bases they read. The relations ∼a⊆ E × E can be
extended to groups B ⊆ A and families of groups B ⊆ P(A), to define relations ∼B , ∼B and
∼B between events in E, in exactly the same way we defined them on states.

As usual in Dynamic Epistemic Logic, we describe the dynamics induced by a reading event
by defining a product update operation: a reading action e from a given event model E “acts”
on an input-state s from a given state model S, producing an output-state (s, e) living in a new
state model S⊗E (that represents the possible states and the epistemic uncertainty after the
event). Once again, we need to adapt this construction to reading actions.

Product Update Given an epistemic model S = (S,∼a, •)a∈A and a reading event model
E = (E,∼a, •)a∈A, we can construct their update product, which is another epistemic model
S⊗E = (S × E,∼a, •)a∈A, obtained by taking:

− the set of states is Cartesian product: S × E := {(s, e) : s ∈ S, e ∈ E}.

− the new indistinguishability relations are

(s, e) ∼a (s′, e′) iff s ∼e(a) s
′ and e ∼a e′

(which implies that e(a) = e′(a), and hence that s ∼e′(a) s
′ as well).

− the truth assignment is as usually inherited from the original state:

(s, e) := s.

Intuitively, this definition can be justified as follows. The pair (s, e) denotes the output-
state produced by performing reading action e on input-state s: so our reading events are
deterministic. The new epistemic relations tell us that: agent a’s new knowledge after a reading
event e is the result of putting together the knowledge about the original state s gained by
reading the information of all agents in e(a) (which incorporates her initial knowledge about
s, due to the convention a ∈ e(a)) and her knowledge about the event e itself. Finally, the
definition of the new truth assignment says that these are pure reading events: non-epistemic
facts p stay unchanged.

Drawing conventions In our graphic representations, we represent the possible events as
circles, inside which we write the associated reading map. As before, the epistemic indistin-
guishability relations between events by links by the respective agent, and as before we skip the
loops, directions of arrows, and some arrows obtainable by transitivity.
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Example 6.1. ( Public Sharing vs. Secret Hacking) We can represent every semi-public read-
ing/sharing event !α, as a single-event model E = {e}, with e = α. For instance, suppose there
are only two agents A = {a, b}; then the one-event model on the left of the diagram below rep-
resents the fully public sharing !a by agent a (having only loops for both agents, thus no explicit
links in our graph). It is easy to see that taking the product update S⊗E of any epistemic state
model with this event model produces exactly the updated model S!a.

b : a b:a
a

In contrast, the model on the right in the above diagram represents the secret hacking by b of
a’s information base. The circle labeled b : a is the actual (hacking) action, while the empty
circle is the alternative scenario in which no hacking attack happens (or the attack fails). It is
common knowledge that: a has no access to b’s data (since she is no hacker); a doesn’t know
that she is being hacked (hence the a-link to the empty circle); but she considers this possible.

Example 6.2. ( Hacking-with-detection vs. Mutual-hacking) The event model on the left in
the diagram below represents “detected hacking” event (assuming again only two agents a and
b): everything goes as in the secret-hacking scenario above, except that now a is able to secretly
detect the attack (so she knows she is being hacked). The upper (b : a)-labeled circle is the
actual action (in which the hacking is being detected, so a knows she is being hacked: hence, no
a-uncertainty links between this circle and any others). Agent b doesn’t know that his attack has
been detected, but he is of course aware of this possibility (hence the b-link between the upper
and the lower (b : a)-labeled circle, capturing b’s uncertainty concerning detection).

b : a

b : a

a : b
b : a

b : a

a : b

b

a

b

a a

b

The event model on the right represents ‘mutual-secret-hacking’: there are only two agents a and
b, each secretely reading the other’s knowledge base. None of them knows that (s)he is being
hacked, but (being rational) they consider this possibility. The upper-left circle is the actual
event (of double-hacking), while the other circles represent events that are possible according to
one agent or another. E.g. the upper-right event represents the case that only b is hacking a’s
database: this is possible according to b, hence the horizontal b-link between the upper circles.

Adding dynamic modalities for arbitrary reading events Given a fixed (locally finite)
event model E, let LDE � be the logic obtained by adding to LD � dynamic operators [e]ϕ
for all events e ∈ E, and let LDCE � be its extension with common knowledge operators. The
semantic clause is again given by evaluating ϕ in the updated model:

s |=S [e]ϕ iff (s, e) |=S⊗E ϕ.

The proof of the next result is in Appendix B.

Proposition 6.3. The dynamic logic LD � E has the same expressivity as its static base
LD �. A complete axiomatization LD � E is obtained by adding to the proof system LD �
the usual axioms and rules of normal modal logic for the dynamic modalities [e]ϕ, as well as
the following ‘Reduction laws’ for arbitrary reading events:
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[e]p ←→ p [e]¬ϕ ←→ ¬[e]ϕ [e](ϕ ∧ ψ) ←→ [e]ϕ ∧ [e]ψ

[e](B � C) ←→ e(B) � e(C) for B �e C [e](B � C) ←→ ⊥ for B 6�e C

[e]DBϕ ←→
∧
{De(B)[f ]ϕ : f ∼B e}

where B �e C denotes the side condition ∀f ∈ E(f ∼B e⇒ f ∼C e) .

No reduction laws for C and Cd Once again, there are no general reduction laws for common
knowledge after arbitrary events, nor in fact for common distributed knowledge! To solve this
problem, one could again follow the “second strategy” (used in Section 5): extend the static base
logic, building on “group epistemic PDL” [22], itself based on [12]. This would embed common
distributed knowledge within a whole range of distributional levels of knowledge, similar to
[19], that may be of interest for applications in distributed computing. However, many of the
‘programs’ of epistemic PDL do not seem to have a very transparent and natural epistemic
interpretation. Moreover, the resulting reduction laws of (both epistemic PDL in [12], and
of) group epistemic PDL in [22] are extremely complex to even state, and too complex to be
actually used in any real proofs.

For all these reasons, the “first strategy” (used in Section 4) seems preferable in this case.
So in the rest of this section we will follow this strategy, sketching a direct axiomatization of
the full dynamic logic of arbitrary events, based on a dynamic analogue of the Induction Rule,
that extends the [!α]C-Induction Axiom from Section 4 to arbitrary events. Though relatively
complex, the resulting rule is still much simpler than reduction laws for epistemic PDL, and
can in fact be used in proving various theorems. We leave completeness of this system as a
Conjecture, since we did not yet spell out the proof in detail. We plan to do this in a future
journal version of this paper.

Towards an axiomatization of LDC � E Once again, the idea of the “first strategy”,
when adapted to event models, is to treat the combination [e]CB as if it was a single operator
(“common knowledge after event e”), like a ‘dynamic version’ of common knowledge. Then one
generalizes the Fixed Point and Induction axioms to this dynamic combination, as follows.

The Dynamic Induction Rule is a generalization of the [!α]C-Induction Axiom to arbitrary
events, obtaining by replacing the single premise η by a family of premisses ηf , one for each
event f reachable from the given event e by a chain of B-links:

Given an event e ∈ E, a group B ⊆ A, a formula ϕ, and a family of formulas
{ηf : f ∼B e} (one for each event f ∈ E with f ∼B e), suppose that the formulas

ηf → [f ]ϕ ∧Df(b)ηg

are provable, for all f ∼B e, b ∈ B and g ∼b f . Then we can infer

ηe → [e]CBϕ.

There is an also a similarly generalized “Dynamic Fixed Point Axiom”, but that is redun-
dant: it is actually derivable from the usual C-Fixed Point Axiom, together with the reduction
law for knowledge after e.

But the other essential ingredient we need is a Composition Axiom, that allows us to com-
press strings of dynamic modalities [e1] . . . [en]CBϕ into a single dynamic modality [e]CBϕ. For
this we need to first show that reading events are closed under sequential composition.
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Composition of Event Models Given full communication event models E = (E,∼a, •)a∈A
and E2 = (E2,∼a, •)a∈A, we can construct their sequential composition, which is another event
model E1;E2 = (E1 × E2,∼a, •)a∈A, obtained by taking:

− the set of events to be the Cartesian product

E1 × E2 := {e; f : e ∈ E1, f ∈ E2},

where we used the notation e; f for the ordered pair (e, f) ∈ E1 × E2, to stress that it
represents the sequential composition of the two events.

− the epistemic indistinguishability relations to be

e; f ∼a e′; f ′ iff e ∼f(a) e
′ and f ∼a f ′

(which implies that f(a) = f ′(a), and hence that e ∼f ′(a) e
′ as well);

− the reading assignment function is given by putting

e; f(a) := e(f(a)) =
⋃

b∈f(a)

e(b).

Closure Under Composition We can easily see that the function f : S × (E1 × E2) →
(S × E1)× E2 given by

f(s, (e; f)) := ((s, e), f)

is an isomorphism between the models S ⊗ (E1;E2) and (S ⊗ E1) ⊗ E2. This establishes the
soundness of the following Event Composition Axiom

[e][β]ϕ ↔ [e; f ]ϕ

We believe that the resulting system is a complete axiomatization of the logic LDC � E.
Since we did not yet check the proof, we leave this as an open question:

Conjecture A complete axiomatization of LDC � E consists of the following:

− the axioms and rules of the proof system LD � E in Proposition 6.3;

− the axioms and rules for common knowledge;

− the Necessitation Rule and Distribution Axiom for dynamic modalities [e]ϕ;

− the above Event Composition Axiom;

− the above Dynamic Induction Rule.

The Idea of the Completeness Proof By using the above Reduction Laws (as well as the
Necessitation Rule and Distribution Axiom for [e]), we can “push” dynamic modalities past
all the other operators except for common knowledge (and eliminate them when they come in
front of an atomic proposition p or a comparative statement B � C). In this way, we can
reduce any formula in the logic LCD � E to a formula in which all dynamic modalities occur
only in front of common knowledge operators, possibly stacked e.g. in expressions of the form
[e1][e2] . . . [en]CBϕ. We can then use the above Composition Law to “compress” the stacks into
a single dynamic modality [e]CBϕ. Finally, we can deal with the proof theory of expressions of
the form [e]CBϕ by using the Dynamic Induction Rule (and the Fixed Point Axiom).

As mentioned, we are planning to fully settle our Conjecture in a future journal version, by
spelling out this proof in detail.
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7 Comparison with other work

The problem of converting distributed knowledge into common knowledge via sharing was
discussed in detail in [9] (where it was shown that this conversion may fail if the agents can
share only information expressible by formulas in a given formal language). A more semantic
approach was taken in [5], based on protocols requiring agents to “tell everybody all they know”,
similarly to our public sharing actions !G (but without axiomatizing them).18

The more restricted resolution action !(G) (by which agents in G share all they know
only with each other) was considered in [1]. The authors gave reduction laws for distributed
knowledge after resolution (which can be obtained by applying our general reduction laws
to resolution events). They also proposed an axiomatization for the extension with common
knowledge, based on a dynamic version of the Induction Rule (as in the second strategy sketched
at the end of last section). But, as already mentioned, the completeness proof in [1] contains a
gap, and the version of induction rule proposed there seems too weak to be complete. In any
case, the strategy pursued in the first part of this paper (adding common distributed knowledge)
yields a much simpler complete axiomatization of resolution logic.

Comparative epistemic logic was introduced in [14], though allowing only individual com-
parisons b � c (which the authors write in reverse order, using c � b), and combining it only
with individual knowledge operators Kaϕ. Also, no dynamic extensions were considered. A
complete axiomatization of comparative epistemic logic was given in [14], using a non-standard
‘Gabbay-style’ inference rule. Since the rule requires an infinite supply of fresh atomic variables,
that completeness proof did not yield decidability. In contrast, our axiomatization immediately
gives decidability of this logic (and of its extensions considered in this paper).

There is an obvious analogy between some of the axioms in group (III) of Table 2 and
Armstrong’s axioms for functional dependence in Database Theory [2], as well as the logical-
epistemic properties of variable dependence [6, 3]. This is more than an analogy: one can
associate to each agent a corresponding variable, taking as “value” the agent’s information state
(her “local state”, in the sense of [16]). Agent a’s associated variable functionally determines
agent b’s variable iff agent a’s information cell at the current state uniquely determines (i.e. it
is included in) agent b’s information cell, which is the same as epistemic superiority: agent a
knows everything known by agent b. Indeed, the fragment LD � of our logic is in a sense just
an epistemic reinterpretation of the logic LFD of functional dependence in [6] (forthcoming)
accompanied by a simplification of the syntax (eliminating the predicates). In this sense, the
proof system LD � for this fragment is not completely new: it is a (simplified) variant of the
system LFD in [6]. But our results for all the larger languages are new, as are the setting of
semi-public sharing events and the further generalization to arbitrary reading events.

We should stress that the completeness and decidability results in this paper are non-trivial:
we are not aware of any known decidable logic in which our logics can be embedded via some
obvious translation. All natural candidates (e.g. the known decidable extensions of mu-calculus
or of Propositional Dynamic Logic, the fixed-point extensions of the guarded fragments of First-
Order Logic, Monadic Second Order Logic etc.) seem to be able to embed only some proper
fragment of our logics. Indeed, the logics presented in this paper are so powerful that they seem
to come very close to the borderline where expressivity runs into undecidability.19

18In fact, an (unpublished) axiomatization of !G-modalities for public sharing events !G (without comparative
knowledge, but with a version of common distributed knowledge) was presented by this paper’s first author at
a workshop affiliated with ESSLLI 2010.

19Even some very mild extensions (e.g. with dynamic operators [!ϕ]ψ) for public announcements in the usual
sense) pose problems to our proof methods, and may well turn out to be undecidable.
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A Completeness and decidability of the static logics

In this section, we sketch the proofs of completeness and decidability for the strongest static
logic LCd � above, and as an aside indicate how to extract from them similar proofs for its
sublogics LCd, LDC � and Ld �. The proof needs a detour through a more general type of
relational models, called pseudo-models.

Essentially, pseudo-models treat each group’s distributed knowledge relation ∼B as a ba-
sic, undefined equivalence relation (rather than defining them as intersections of individual
knowledge relations); and they also treat comparative knowledge statements B � C as atomic
propositions of the usual kind (whose meaning is directly given by truth-assignment functions
or valuations, rather than being defined in terms of the relations ∼B).

In fact, it is convenient to present pseudo-models in the more standard form involving
(extended) valuations, rather than using truth-assignment functions (although the two presen-
tations are of course equivalent).

A.1 Soundness and completeness for finite pseudo-models

Pseudo-models A pseudo-model is a structure S = (S,∼B , ‖ • ‖)B⊆A, where: S is a set of
states; ∼B⊆ S ×S are binary relations, one for each group B ⊆ A; and ‖ • ‖ : Prop∪ {B � C :
B,C ⊆ A} → P(S) is an extended valuation function, mapping atomic propositions p ∈ Prop
and formulas B � C into sets of states ‖p‖, ‖B � C‖ ⊆ S. These components are required to
satisfy the following conditions:

1. ∼B are equivalence relations on S;

2. if s ∈ ‖B � C‖ and s ∼B t, then s ∼C t and t ∈ ‖B � C‖;

3. ‖B � C‖ = S if C ⊆ B;

4. ‖B � C‖ ∩ ‖B � E‖ ⊆ ‖B � C ∪ E‖;

5. ‖B � C‖ ∩ ‖C � E‖ ⊆ ‖B � E‖.

Given a pseudo-model S = (S,∼B , ‖ • ‖)B⊆A, we can define recursively the satisfaction
relation s |= ϕ between states s ∈ S and formulas of LCd �, by using the valuation on formulas
θ ∈ Prop∪{B � C : B,C ⊆ A} in the usual way (putting s |= θ iff s ∈ ‖θ‖), using the standard
Tarski clauses for the propositional connectives, and using the standard modal clause for CdB
seen as a Kripke modality for the relation

∼B := (
⋃
B∈B
∼B)∗.

Proposition 1.1. The axioms and rules of LCd � are sound with respect to pseudo-models.

The proof is an easy verification: the semantic conditions imposed on pseudo-models are de-
signed to match each of the axioms of LD �, while Cd axioms and rules are always sound for
Kripke modalities for relations of the form (

⋃
B∈B ∼B)∗ based on any equivalence relations ∼B .

But completeness requires a bit more work.

Fisher-Ladner Closure Given any formula ϕ0 in the language of LCd �, its Fisher-Ladner
closure is the smallest set of formulas Σ = Σ(ϕ0) satisfying, for all groups B,C ⊆ A, families
B, C ⊆ P(A) and formulas ψ, θ:
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1. ϕ0 ∈ Σ;

2. (B � C) ∈ Σ;

3. if CdBψ ∈ Σ then CdCψ ∈ Σ;

4. if CdBψ ∈ Σ and B is not a singleton (consisting of a single set B = {b}), then DCCdBψ ∈
Σ;

5. if ψ ∈ Σ and θ is a subformula of ψ, then θ ∈ Σ;

6. Σ is closed under single negations20 ∼: if ψ ∈ Σ, then (∼ ψ) ∈ Σ.

Note that (given the fact Kb, DB and CB are in this language just abbreviations) conditions
3 and 4 imply the following closure conditions:

3’ if DBψ ∈ Σ then DCψ ∈ Σ;

4’ if CBψ ∈ Σ then KcCBψ ∈ Σ.

For the sublanguages missing the operator Cd, conditions 3 and 4 should be skipped, and
replaced with condition 3’(only when the operator D belongs to the given sublanguage) and
condition 4’ (only when C belongs to it). For LCd, we have to skip instead condition 2.

One can easily check that the Fisher-Ladner closure of any formula is finite.21

Finite Canonical Pseudo-Model For a fixed formula ϕ0, consider the following “canonical
pseudo-model for ϕ0” Sc = (Sc,∼B , ‖ • ‖), where: Sc is the set of all maximally consistent
theories T ⊆ Σ = Σ(ϕ0) (over the finite sublanguage given by the Fisher-Ladner closure of ϕ0);
for T ∈ Sc, B ⊆ A, we first put

TB := {(B � C) ∈ T : C ⊆ A} ∩ {(DCϕ) ∈ T : C ⊆ A with (B � C) ∈ T};

then the group group epistemic relations ∼B are given by putting, for all T,W ∈ Sc:

T ∼B W iff TB = WB ;

and the valuation is given by putting, for all θ ∈ Prop ∪ {B � C : B,C ⊆ A}:

‖θ‖ = {T ∈ Sc : θ ∈ T}.

It is easy to check that Sc is a pseudo-model : ∼B are obviously equivalence relations, and the
other conditions are ensured by the axioms. It is also clear that Sc is finite: since Σ = Σ(ϕ0),
the number of maximally consistent subtheories is bounded the size of P(Σ), hence |Sc| ≤ 2|Σ|.

For the following result, it is useful to denote by ±ϕ any of the formulas in the set {ϕ,∼ ϕ},
and to extend the sets TB by putting

T±B := {(±B � C) ∈ T : C ⊆ A} ∩ {(±DCϕ) ∈ T : C ⊆ A with (B � C) ∈ T}.

Then we can characterize ∼B in terms of one-way inclusion:

T ∼B W iff T±B ⊆W.
20The single negation ∼ ϕ is defined as: ∼ ϕ := θ if ϕ is of the form ¬θ; and ∼ ϕ := ¬ϕ if ϕ is not of the

form ¬θ (for any θ).
21Note that, given that DB is an abbreviation for Cd{B}, the restriction to non-singleton families in condition

4 is needed to avoid infinite iterations of DB ’s.
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Lemma 1.2. (“ Truth Lemma”) Given a finite canonical pseudo-model Sc over some Fisher-
Ladner closure Σ, we have for all ϕ ∈ Σ:

T |=Sc ϕ iff ϕ ∈ T,

for every T ∈ Sc.

Proof. For T ∈ Sc, we will use the notation T̂ :=
∧
T . The proof is by induction on the

complexity of ϕ, in which we treat the inductive case for DBϕ (i.e. Cd{B}ϕ) separately from
the one for CdBϕ with |B| > 1.

Base cases: Atomic propositions p ∈ Prop and comparative assertions B � C are taken care
by our choice of valuation.

Inductive cases for Boolean connectives: these are trivial.

Inductive case for DBϕ. Left-to-right : assume that T |= DBϕ, and suppose towards a
contradiction that (DBϕ) 6∈ T . Take the set

W0 = {∼ ϕ} ∪ T±B

(where T±B is the notation introduced earlier).

Claim: W0 is consistent.

Proof of Claim: Suppose not. Then we have ` T̂±B → ϕ. Applying D-Necessitation and

D-Distribution (derivable in our system), we obtain ` DBT̂
±
B → DBϕ. But it is easy to see that

we also have ` T̂±B → DBT̂
±
B (which follows from the theorems (` ±B � C)→ DB(±B � C)

and ` B � C → (±DCϕ→ DB ±DCϕ), derivable in our system from the Interaction Axioms

together with the derivable S5 laws for DB), and also ` T̂ → T̂±B (since T±B ⊆ T ). Putting all

these together, we obtain ` T̂ → DBϕ. Since (DBϕ) ∈ Σ and T is maximally consistent subset
of Σ, this gives us (DBϕ) ∈ T , which contradicts our assumption that (DBϕ) 6∈ T .

Given the above Claim, we can use the standard Lindenbaum Lemma for our language to
construct a maximally consistent subset W ∈ Sc, with T±B ⊆W and (∼ ϕ) ∈W . The first gives
us T ∼B W , and the second gives us ϕ 6∈ W , and so W 6|= ϕ (by the induction hypothesis),
which together contradict the assumption that T |= DBϕ.

Right-to-left : Assume that (DBϕ) ∈ T . To prove that T |= DBϕ, let W ∈ Sc be s.t. T ∼B W ;
it is enough to show that ϕ ∈W .

For this, note that, by the definition of ∼B in our canonical pseudo-model, (DBϕ) ∈ T
and T |= DBϕ imply (DBϕ) ∈ W , which in its turn implies that ϕ ∈ W (by the provable S5
“axiom’s” for D, in particular Truthfulness: ` Dbϕ→ ϕ).

Inductive case for CdBϕ with |B| > 1. Left-to-right : Assume that T |= CdBϕ. Let

SBT := {W ∈ Sc : there is a chain T = T 0 ∼B1 . . . ∼Bn Tn = W with n ≥ 0 and all Bi ∈ B}

We put η :=
∨
{Ŵ : W ∈ SBT }.

Claim 1 : We have ` η →
∧
B∈BDBη.

Proof of Claim 1 : Suppose not. Then there is some B ∈ B s.t. η ∧ 〈DB〉¬η is consistent
(where 〈DB〉θ := ¬DB¬θ is the existential dual of DB). Given the definition of η, and the easily

proven theorem `
∨
{V̂ : V ∈ Sc}, this means there exist W ∈ SBT , V ∈ Sc − SBT such that
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Ŵ ∧ 〈DB〉V̂ is consistent. But this implies that W ∼B V (using the definition of ∼B , S5 laws
for D, and the axioms of Known Superiority and Knowledge Transfer). From this and W ∈ SBT
(together with B ∈ B and the definition of SBT ), we obtain that V ∈ SBT , which contradicts of
our above choice of V ∈ Sc − SBT .

Claim 2 : We have ` η → ϕ.

Proof of Claim 2 : From T |= CdBϕ, using the semantics of Cd and the definition of SBT , we
obtain that W |= ϕ for all W ∈ SBT . By the induction hypothesis, we get that ϕ ∈ W , hence

` Ŵ → ϕ, for all W ∈ SBT . Using the definition of η, we derive ` η → ϕ, as desired.

Applying now Cd-Necessitation to the theorem in Claims 1, we obtain ` CdB(η →∧
B∈BDBη, which by the Cd-Induction Axiom yields ` η → CdBη. Combining this with the

theorem ` CdBη → CdBϕ (obtain from the theorem in Claim 2 by applying Cd-Necessitation

and Cd-Distribution), we obtain ` η → CdBϕ. But we also have ` T̂ → η (since T ∈ SBT ).

Putting these together, we obtain ` T̂ → CdBϕ, which implies that (CdBϕ) ∈ T (since
(CdBϕ) ∈ Σ and T is a maximally consistent subset of Σ), as desired.

Left-to-right : Assume that (CdBϕ) ∈ T . To prove that T |= CdBϕ, let W ∈ Sc be reachable by
some chain T = T 0 ∼B1 T 1 . . . ∼Bn Tn = W for some n ≥ 0 and B1, . . . , Bn ∈ B; it is enough
to show that W |= ϕ.

Claim: (CdBϕ) ∈ T k for all 1 ≤ k ≤ n.

Proof of Claim: Induction on k. For k = 1, the claim is true by the assumption that
(CdBϕ) ∈ T . For the inductive step: assume that (CdBϕ) ∈ T k. From this, using the the-
orem ` CdBϕ → DBkCdBϕ (which follows from the Cd-Fixed Point Axiom), together with
(DBkCdBϕ) ∈ Σ (by the closure conditions on Σ), we get that (DBkCdBϕ) ∈ T k (since T k is a
maximally consistent subset of Σ). From this and T k ∼Bk T k+1, we obtain (DBkCdBϕ) ∈ T k+1

(by the definition of ∼B), hence (CdBϕ) ∈ T k+1 (using the theorem ` DBkCdBϕ→ CdBϕ and
the fact that T k+1 is maximally consistent); so we proved the claim for k + 1, as desired.

Applying now the above Claim to k := n, we obtain that (CdBϕ) ∈ Tn = W , and hence
(by the theorem ` CdBϕ → ϕ and the fact that W is maximally consistent) we have ϕ ∈ W ,
which implies W |= ϕ (by the induction hypothesis), as desired.

Corollary 1.3. The axioms and rules of LCd � are sound and weakly complete with respect
to pseudo-models. Moreover, LCd � has the finite pseudo-model property: it is also complete
with respect to finite pseudo-models.

Proof. Soundness was established in Proposition 1.1. Given any consistent formula ϕ0, con-
struct the canonical pseudo-model Sc for ϕ0. By Lindenbaum Lemma, there exists some max-
imally consistent theory T0 ∈ Sc with ϕ0 ∈ T0. By the Truth Lemma 1.2, T0 satisfies ϕ0 in Sc.
Since Sc is finite, this gives us weak completeness wrt finite pseudo-models (and hence also wrt
all pseudo-models).

A.2 From pseudo-models to models

Given a pseudo-model S = (S,∼B , ‖ • ‖)B⊆A, we construct an associated model M = (H,∼a
, •)a∈A. The construction technique is a variation of modal unravelling, making infinitely many
copies of each state:

As new set of states we take the set H all ‘histories’, i.e. all finite sequences h =
(s0, B

1, s1, . . . , B
n, sn), with n ≥ 0, so, . . . , sn ∈ S and B1, . . . , Bn ⊆ A satisfying sk−1 ∼Bk sk
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for all k = 1, n. We denote by last(h) := sn the last state in history h, and by →B the nat-
ural one-step relation on histories, given by h →B h′ iff h′ = (h,B, s′) (with last(h) ∼B s′ =
last(h′)).

The one-step relations structure H in a tree-like manner (or more precisely, a “rootless
tree”, i.e. a forest, since there is no unique root): every two nodes h, h′ of this “rootless tree”
are connected by a unique non-redundant path.

To make this tree into a model for our language, we define first a new one-step relation
∼→B , incorporating all the one-step relations labeled by groups that are (locally) at least as
knowledgeable as B:

h
∼→B h′ iff h→B′ h′ for some B′ with last(h) |= B′ � B.

In particular, for B = {b} with b ∈ A, we obtain new one-step relations
∼→b for single agents,

and then we can go on to define our indistinguishability relations ∼b⊆ H ×H, by putting

∼b :=
(
∼→b ∪

∼←b

)∗
,

where
∼←b is the converse of

∼→b, and R∗ is the reflexive-transitive closure of R. The relation
∼b is the smallest equivalence relation that includes

∼→b.

Finally, we define our truth-assignment function, by putting:

h := {p ∈ Prop : last(h) |=S p} = {{p ∈ Prop : last(h) ∈ ‖p‖}

This gives us the associated model M = (H,∼b, •)b∈A. To compare it with the original
pseudo-model, we can consider this associated model as a pseudo-model M = (H,∼B , •)b⊆A,
when endowed with the distributed-knowledge relations ∼B (defined as usual by taking inter-
sections: ∼B :=

⋂
b∈B ∼b) and the additional comparative “atoms” B � C (whose valuation is

defined to fit the associated model definition: h ∈ ‖B � C‖ iff ∀h′ ∈ H(h ∼B h′ ⇒ h ∼C h′)).
It is obvious that the model-based semantics on M agrees with this pseudo-model semantics on
M. So we can now directly compare S and M as pseudo-models.

Before doing this, it is useful to give more concrete characterizations of the distributed-
knowledge relations ∼B in M.

Lemma 1.4. The following are equivalent, for all b ∈ A and histories h, h′ ∈ H:

1. h ∼b h′;

2. the non-redundant path from h to h′ consists only of steps of the form hn→Bnhn+1, or
hn←Bnhn+1, with last(hn) |= Bn � b.

Proof. This should be obvious, given the definition of ∼b on histories, and the uniqueness of
the non-redundant path from h to h′.

Lemma 1.5. The following are equivalent, for all B ⊆ A and histories h, h′ ∈ H:

1. h ∼B h′;

2. the non-redundant path from h to h′ consists only of steps of the form hn→Bnhn+1, or
hn←Bnhn+1, with last(hn) |= Bn � B.

115



Learning What Others Know Baltag and Smets

Proof. This follows immediately from the preceding result, using again the uniqueness of the
non-redundant path from h to h′ (and condition 5 in the definition of pseudo-models).

Here are some useful properties of the relations
∼→B on histories:

Lemma 1.6. If h
∼→B h′, then we have:

1. last(h) ∼B last(h′);

2. last(h) ∈ ‖B � C‖S iff last(h′) ∈ ‖B � C‖S;

3. if any of the two equivalent conditions in the previous part hold, then h
∼→C h′.

Proof. Assume h
∼→B h′. By the definition of

∼→B , this means that h →B′ h′ (i.e. h′ =
(h,B′, last(h′) with last(h) ∼B′ last(h′)) and last(h) |= B′ � B (i.e. last(h) ∈ ‖B′ � B‖S).
Putting together last(h) ∼B′ last(h′), last(h) ∈ ‖B′ � B‖S and condition 2 in the definition of
pseudo-models, we get that last(h) ∼B last(h′) and last(h′) ∈ ‖B′ � B‖S. The first of these
immediately yields part 1 of our Lemma.

As for part 2: it follows from the (already proven) part 1 (last(h) ∼B last(h′)) together
again with condition 2 in the definition of pseudo-models.

Finally, for part 3: by (the already proven) clause 2, if any of the two conditions in that
part holds, then the first one does, i.e. we have last(h) ∈ ‖B � C‖S. This together with
last(h) ∈ ‖B′ � B‖S gives us that last(h) ∈ ‖B′ � C‖S (by condition 5 in the definition of
pseudo-models). Combining this with the fact that h→B′ h′ (and using the definition of

∼→C),
we obtain that h

∼→C h′, as desired.

We can now extend these properties to the relation ∼B on histories:

Lemma 1.7. If h ∼B h′, then we have:

1. last(h) ∼B last(h′);

2. last(h) ∈ ‖B � C‖S iff last(h′) ∈ ‖B � C‖S;

3. if any of the two equivalent conditions in the previous part hold, then h ∼C h′.

Proof. We prove the three parts for all pairs of histories (h, h′) with h ∼B h′. The proof is by
induction on the length N of the non-redundant path from h to h′:

Base case: h = h′. All parts are trivial in this case (given that ∼B are equivalence relations).
Inductive case: Suppose the non-redundant path from h and h′ has length N + 1, and let

us look at the last transition on this path. Given Lemma 1.5, this transition can be either of
the form hN→BNhN+1 = h′, or of the form hN←BNhN+1 = h′, with last(hN ) |= Bn � B.
Hence, we have either hN

∼→B h′ or hN
∼←B h′. Note that the non-redundant path from h to

hN has length N . By the induction hypothesis, the pair (h, hN ) satisfies all three parts of our
Lemma (with h′ replaced by hN ). But (using either hN

∼→B h′ or hN
∼←B h′, and applying

Lemma 1.6), we can see that the pair (hN , h
′) also satisfies all three parts of our Lemma (with

h replaced by hN ). Putting these two together (and using the transitivity of respectively ∼B ,
logical equivalence and ∼C), we conclude that the pair (h, h′) also satisfies all three parts of
our Lemma.

Given that pseudo-models are just Kripke models (with relations ∼B that happen to be
indexed by groups, and having two kind of “atoms”: p ∈ Prop and B � C for B,C ⊆ A), it is
meaningful to ask if the pseudo-models S and M are bisimilar.
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Proposition 1.8. Every pseudo-model bS is a p-morphic image of its associated model M
(seen as a pseudo-model, as explained above). More precisely, the map last : H → S, mapping
every history h ∈ H to its last element last(h), is a surjective p-morphism22 from M to S (seen
as Kripke models with basic relations ∼B and atoms in Prop ∪ {B � C : B,C ⊆ A}).

Proof. It is clear that last is a well-defined function, and that it is surjective: for any s ∈ S,
if we just take the history hs = (s) of length 1 that has s itself as its root, then we obviously
have last(hs) = s. We check that last satisfies the conditions of a p-morphism:

Atomic preservation for basic atoms p ∈ Prop (i.e. h ∈ ‖p‖M iff last(h) ∈ ‖p‖S) is imme-
diate (given the way we defined the truth-assignment map in M).

Atomic preservation for comparative “atoms” B � C (i.e. h ∈ ‖B � C‖M iff last(h) ∈ ‖B �
C‖S): For the left-to-right implication, assume h ∈ ‖B � C‖M, i.e. h |=M B � C. Construct
now the history h′ := (h,B, last(h)), obtained by appending to h a final B-transition from
last(h) to last(h). We obviously have h →B h′, thus h

∼→B h′, hence h ∼B h′. From this
and h |=M B � C, we obtain that h ∼C h′ (since M is a “standard” model, not a pseudo-
model). By Lemma 1.5 and the structure of h′, this means we have h

∼→C h′. Given that
h′ = (h,B, last(h), this means that last(h) |= B � C, i.e. last(h) ∈ ‖B � C‖S, as desired.

For the right-to-left implication, assume last(h) ∈ ‖B � C‖S, i.e. last(h) |= B � C. To
prove that h ∈ ‖B � C‖M, let h′ ∈ H be s.t. h ∼B h′, and we have to show that h ∼C h′. But
h ∼B h′ implies last(h) ∼B h′ (by part 1 in Lemma 1.7), which together with last(h) |= B � C
gives us h ∼C h′ (by part 3 in in Lemma 1.7).

Forth condition: assume h ∼B h′, and we need to prove last(h) ∼B last(h′). This follows
by part 1 in Lemma 1.7.

Back condition: assume last(h) ∼B s′, and we need to show that there exists some h′ ∼B h
with last(h′) = s′. For this, we can just take h′ := (h,B, s′).

Corollary 1.9. The same formulas in LCd � are satisfiable in the pseudo-model S as in its
associated model M. More precisely, for every history h ∈ H and every formula ϕ of LCd �,
we have:

h |=M ϕ iff last(h) |=S ϕ

Proof. By Proposition 1.8, the map last : H → S is a bisimulation between S and M, seen
as Kripke models for the language with modalities DB and additional “atoms” B � C. Since
LD � is just the basic modal language for this vocabulary, formulas in LD � are preserved by
last (by the standard results on preservation of modal formulas under bisimulations, cf. [13]).
The fact that the addition of CdB to the language maintains this preservation under last follows
from the definition of CdB as a modality for the reflexive-transitive closure of the union of all
∼B ’s (which can be seen as an application of the PDL operations of union of relations and
reflexive-transitive closure) and the known result that PDL operations are safe for bisimulation
[8].

To finish now the proof of Proposition 5.3, we put together Corollaries 1.3 and 1.9, obtaining
(weak) completeness of LCd � for our (intended) models. The decidability of the logic LCd �
follows in the usual way from the fact (cf. Corollary 1.3) that its complete proof system LCd �
is also sound and complete for finite pseudo-models, together with the obvious fact that model-
checking for LCd � formulas on a finite model is a decidable task.

The completeness proofs for the sublogics LDC � and LD � (i.e. Proposition 3.3) can be
obtained by eliminating from the above proof the steps corresponding to the missing connectives.

22A p-morphism is a functional bisimulation, cf. [13].
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B Completeness and Reduction of Dynamic Logics

We prove this for the logic LD � E, and then sketch how the proof can be adapted to LCD �!
and LD �!.

Lemma 2.1. The axioms and rules of LD � E are sound.

Proof. This is an easy verification. The reduction laws reflect the construction of the product
update. We only give here the proof of soundness for the reduction for DB . We have the
following sequence of equivalencies

s |= [e]DBϕ iff (s, e) |= DBϕ iff ∀(s′, e′) ∼B (s, e) : (s′, e′) |= ϕ iff ∀e′ ∼B w ∀s′ ∼e(B) s :
s′ |= [e′]ϕ iff ∀e′ ∼B w : s |= De(B)[e

′]ϕ iff s |=
∧
{De(B)[e

′]ϕ : e′ ∼B e}.

Lemma 2.2. Let θ be any “static” formula in LD �. Then, for every event e ∈ E, there exists
some formula θe in the ‘static’ logic LD �, s.t.

` [e]θ ↔ θe

is provable in LD � E.

Proof. Induction on the subformula complexity of the static formula θ:
For θ := p, the Atomic Reduction Axiom gives us the appropriate formula θe := p.
For θ := (B � C), the corresponding Reduction Axiom gives us θe := (e)(B) � e(C).
For θ := ¬ψ, apply the induction hypothesis to ψ; so there exists some ‘static’ formula ψe,

such that ` [e]ψ ↔ ψe. Putting this together with the Reduction Axiom for negation, we get
` θ ↔ ¬ψe (so we can take θe := ¬ψe).

The case θ := φ ∧ ψ is similar.
For θ := DBψ, we apply the induction hypothesis to ψ; hence for every event f ∼B e, there

exists some static formula ψf such that ` [f ]ψ ↔ ψf . Putting this together with the Reduction
Axiom for DB , we get ` θ ↔

∧
f∼BeDe(B)ψf (so we can take θe :=

∧
f∼BeDe(B)ψf ).

Now we can prove the first part of Proposition 6.3: the provable co-expressivity of LD � E
and LD �.

Lemma 2.3. For every formula θ of the dynamic logic LD � E, there exists some formula θ′

of the static language LD �, s.t.
` θ ↔ θ′

is provable in LD � E.

Proof. Induction on the subformula complexity of the dynamic formula θ:
For θ := p, or θ := (B � C), we can take θ′ = θ (since this is already in LD �).
For θ := ¬ψ, apply the induction hypothesis to ψ; so there exists some ‘static’ formula ψ′,

such that ` ψ ↔ ψ′. But then we have ` θ ↔ ¬ψ′ (so we can take θ′ := ¬ψ′).
The cases θ := φ ∧ ψ is similar.
For θ := DBψ, apply the induction hypothesis to ψ; so there exists some ‘static’ formula ψ′,

such that ` ψ ↔ ψ′. By DB-Necessitation and DB-Distribution, we get that ` DBψ ↔ DBψ
′

(so we can take θ′ := DBψ
′).

For θ := [e]ψ, apply the induction hypothesis to ψ; so there exists some ‘static’ formula ψ′,
such that ` ψ ↔ ψ′. By [e]-Necessitation and [e]-Distribution, we get that ` [e]ψ ↔ [e]ψ′,
and by Lemma 2.2 we get another static formula ψ′e, s.t. we have ` [e]ψ′ ↔ ψ′e. Putting these
together, we get ` [e]ψ ↔ ψ′e (so we can take θ′ := ψ′e).
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Finally, we can now prove Proposition 6.3 (on completeness and co-expressivity of LD � E):

Proof of Proposition 6.3: The first part (provable co-expressivity) is already proven (Lemma
2.3). As for completeness: let θ be a consistent formula of LD � E. By Lemma 2.3, there
exists some θ′ in LD � s.t. ` θ ↔ θ′ is a theorem in LD � E. So θ′ must be consistent (wrt
LD � E, hence also) wrt LD �. By the completeness result for LD � (Proposition 3.3), θ′

must be satisfiable at some state s in some epistemic model S. But then, given the LD � E-
theorem ` θ ↔ θ′ (and the soundness of LD � E), θ is also satisfiable (at the same state s in
the same model).

The completeness and co-expressivity proof for LCd �! (Proposition 5.4) is similar: all the
above steps are almost identical, except for the reduction laws for [!α](B � C) and [!α]CdBϕ.
But these are in fact simpler than the corresponding reduction laws for [e](B � C) and [e]DBϕ,
and so both their soundness and the corresponding inductive cases (when proving the analogue
of Lemma 2.2) are easier to check.

Finally, the proof of the analogue results for LD �! (Proposition 4.6) is similar to the one
for LCd �!, and in fact even easier: all the steps are identical, except that the reduction law
for [!α]CdBϕ is replaced by the very similar reduction law for [!α]DBϕ.
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