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Abstract

Over the past decades, a number of calculi for automated reasoning have been proposed
that share some core features: 1. proofs are built in a tableau/sequent style as trees
where nodes are labeled with literals, and 2. these proofs are expanded by interpreting
the problem clause set as a set of rules, and requiring all negative literals in clauses to
present on a branch for expansion. This applies to hyper-tableaux [2], MGTP [8], coherent
logic [4, 5], and others. Existing implementations typically spend much of their time in
the process of matching branch literals with the negative literals of the input clauses.
We present an alternative to this matching process by applying a modified version of the
Rete algorithm [7]. The Rete algorithm was developed in the 1970s for production systems
in artificial intelligence. We exploit the similarities between the mentioned calculi and
production systems in order to make the Rete algorithm solve the matching problem. We
also investigate the effect of working on several independent branches present in tableau
proof search but not in production systems.

1 Introduction

The goal of this paper is to illustrate how the Rete1 algorithm [7] can be modified to fit the
matching problem of different first order procedures which share some characteristics. Proof
procedures that match an expanding set of atoms against a static set of negative clause literals
must have a way to store partial matches in order to redo as little as possible as the fact-
set expands. Literals that occur in multiple clauses can be exploited to minimize repeated
matching. The Rete algorithm handles many of these issues, although for a different problem
domain; production systems. Similarities between production systems and these logical calculi
will be illustrated, and we will show how the differences can be overcome in order to adapt the
Rete algorithm to build an automated reasoner. A type of Hyper-tableaux [2] referred to as
Coherent Logic (CL) [14, 4] or Geometric Logic [5], will be used to illustrate the process.2

1.1 Coherent Logic

Coherent Logic is a fragment of First Order Logic (FOL), where only closed formulas of the
following form are allowed:

∀ ~X [A1 ∧ . . . ∧An −→ ∃~Y (C1 ∨ . . . ∨ Ck)]

Formulas of such form are called coherent formulas or axioms. The Ai’s are atomic formulas
(predicates applied to a list of terms) and the Ci’s are conjunctions of atomic formulas. ~X and ~Y
are non-overlapping lists of variable names (without repetition). The left hand sides of coherent
formulas are sometimes referred to as the antecedent or the argument, and the right hand sides

1“Rete” is not an acronym, rather, it is inspired by the italian word for network.
2Coherent Logic is defined as the first-order fragment of Geometric Logic. Geometric logic is in topology

the fragment of higher-order logic describing toposes. Some authors also refer to the first-order fragment as
Geometric Logic. For an overview, see Chapter 1 of [12].

4 K. Korovin, S. Schulz, E. Ternovska (eds.), IWIL 2012 (EPiC Series, vol. 22), pp. 4–17
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as the succedent or conclusion. A coherent theory consists of a set of coherent formulas, where
each formula is referred to as an axiom or a rule. As usual, a term is a constant, a variable, or
a function applied to one or more terms. A formula without free variables is referred to as a
closed formula, a formula without variables is referred to as a ground formula, and an atomic
ground formula is referred to as a fact. The set of free variables occurring in a formula Φ, is
denoted vars(Φ). We use capital letters for variables (X,Y, Z), lowercase letters for constants
(a, b, c), functions (f, g, h), and predicates (p, q, r). The formulas considered in this paper are
all coherent formulas. There exist translations taking arbitrary FOL formulas to equisatisfiable
CL theories [4, 5].

The scope of the universal quantifier(s) is the entire formula; existential quantifiers are
limited to the conclusion. Both sides of the implication can be empty; an empty left hand side
is represented by > (since it is implicitly true), whereas an empty right hand side is represented
by ⊥ (since it is implicitly false). Fig. 1 shows an example of a coherent theory.

As is common, we will leave the universal quantifiers implicit, and only write the existential
quantifiers. Furthermore, we do not allow rigid universal variables, that is, universal variables
not occurring in the left hand side, but occurring in more than one disjunct on the right
hand side. It is well-known that any set of CL formulas can easily be transformed into an
equisatisfiable set with no rigid variables, by the introduction of a domain predicate.

> −→ p(a) (1)

p(X) −→ z(X,X) (2)

z(X,X) −→ ∃Y, Z : q(X,Y ) ∨ q(X,Z) (3)

q(X,Y ) −→ q(Y,X) (4)

q(X,Y ) ∧ q(Y,X) −→ ⊥ (5)

Figure 1: A coherent theory

The Rete algorithm has been successfully used for other types of reasoning in the past, in
[10, 15] they optimize the process of hyper-linking [9]. This is an instance-based method in
which first order formulas are instantiated in order to make them propositional, and a regular
propositional SAT-solver is used in rounds.

This paper is organized in the following sections. Section 2 gives a quick overview of produc-
tion systems, Section 3 shows the proof procedure/calculus, and Section 4 explains the basics of
the Rete algorithm. Section 5 presents optimizations and modifications of the algorithm, and
Section 6 displays some results. Conclusion and future work is in Section 7.

2 Production Systems

An overview of production systems will be given in this section to illustrate their characteristics.
A production can be seen as a set of requirements, with a belonging action, typically presented
as in (6).

R1 ∧R2 ∧ · · · ∧Rn → A (6)
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The intuition is that fulfilling the requirements (R1, . . . , Rn) justifies the action. A typical
production system will have more than one production, referred to as production-rules. The
term working memory relates to our current knowledge, in the sense that knowledge is what is
needed in order to satisfy requirements, i.e. production rules are satisfied based on knowledge
from our working memory. Performing an action typically generates new knowledge which
is added to the working memory. A production system can be as simple as a propositional
consequence relation, like the one shown in Fig. 2.

p, q ⇒ r (7)

r, p⇒ t (8)

t, q ⇒ goal (9)

Figure 2: Production System

All we need to fulfill requirements in a consequence relation, is propositions inside our working
memory satisfying the argument of a production. Assume that we initially have these elements:
{p, q}, inside our working memory. We can match the production-rules requirements with
the elements inside the working memory, Fig. 3 displays the situation after the first round of
matching.

p,q⇒ r (10)

r,p⇒ t (11)

t,q⇒ goal (12)

Figure 3: After 1 Round of Matching

The requirements written in bold are fulfilled, and the first production rule can be applied.
The first rule’s action adds the element: r to our working memory. Matching our new element r
against the production rules, fulfills the requirements of the second rule: r,p⇒ t, and its action
can be preformed, resulting in the new element: t. The term t fulfills the last requirement of
the third production-rule: t,q ⇒ goal. Assuming that we were trying to reach the goal -term,
we have succeeded. From this small example, some of the problems that the Rete algorithm
addresses become clear. Static production rules imply that we only have to process the working
memory elements once, i.e., the rules will always match the same working memory elements.
Production rules can share requirements, which can be pre-processed to fulfill them all in one
step. The process of matching (fulfilling requirements) will typically be more complex for a real
production system.

3 Automating Coherent Logic

We base our proof procedure on a type of ground forward chaining [4, 3]. We start out with
an initial set of facts containing closed first order predicates. The initial fact-set is constructed
from the right-hand sides of the axioms with empty left-hand side. (E.g. the first axiom in the
coherent theory presented in Fig. 1.) The axioms of a coherent theory play the role of rules in
a production system. An axiom/rule can be applied if one or more elements from the fact-set
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match the left hand side (argument/antecedent) of the rule. Matching in this context refers
to a regular first order unification [11], where variables can be substituted for terms in order
to make them syntactically identical. We use the term matching to indicate that our fact-set
contains closed terms or predicates, i.e. a simple unification scheme can be used, since there
are no shared values.

A match can lead to one or more substitutions that can be applied on the right hand side
of the implication in order to generate new facts.

Disjunctions on the right hand side of a rule or conclusion lead to forks in the proof tree,
where each disjunction becomes its own branch, that has to be closed individually. All the
branches contain the same set of facts as we branch out, and from that point on they extend
the fact-set in different ways.

Now we will give a formal definition of the proof search, after introducing some notation.

Definition 3.1 (Substitution and Instances). A (ground) substitution is a mapping from vari-
ables to (ground) terms. {X1 ← t1, . . . , Xn ← tn} denotes the substitution mapping variable Xi

to term ti for each i, 1 ≤ i ≤ n. For an atomic formula A and a substitution Σ, AΣ denotes
applying Σ to A in the usual manner. For a conjunction C = A1 ∧ · · · ∧ An, CΣ denotes the
set {A1Σ, . . . , AnΣ}.

Definition 3.2 (Instances of Formulas). A (ground) formula instance is a pair (φ,Σ) of a
formula φ and a (ground) substitution Σ of the universally quantified variables occurring in φ.

We call a formula instance (φ,Σ), where φ = ∀ ~X [C −→ ∃~Y (C1 ∨ · · · ∨ Cm)], applicable for a

set of facts F , if CΣ ⊆ F , and for all substitutions Σ′ with domain ~Y , and for all i ∈ {1, . . . ,m}:
(CiΣ)Σ′ 6⊆ F .

We will only be concerned with ground substitutions, and ground formula instances, hence
“ground” will be omitted.

The proof search is defined below, but we give first a more informal explanation: It maintains
a set of facts, which initially consists of the right-hand sides of all rules with empty left-hand
sides. At each step in the proof search, the prover chooses an instance of a rule such that the
left-hand side is in the fact-set, while the right-hand side is not completely covered by the fact-
set. If the right-hand side is a conjunction, this is added to the fact-set and the prover continues.
Otherwise, if there are several disjuncts in the right-hand side, the prover must treat each of
these separately. The prover ends a branch if there is no applicable rule instance, or if it can
infer a contradiction. The latter case includes the cases when there is an applicable rule instance
with empty right-hand side. When there is no applicable rule instance, the current fact-set is
immediately returned as a model of the theory. In the other case, a proof of contradiction of
the current branch can be built.

Definition 3.3 (Proof Search). [4, 5] The algorithm A(F, T ) takes as input a set of facts F ,
and a coherent theory T . The output of the algorithm is either a list of formula instances or a
set of facts.

If there is no formula instance applicable in F , the algorithm returns F . If there is an
applicable instance of a formula with empty consequent, the output of the algorithm is that
instance. Otherwise, an applicable instance (φ,Σ), where φ = ∀ ~X.(A1 ∧ · · · ∧ An ⇒ ∃~Y .(C1 ∨
· · · ∨ Cj)), is chosen. Assume ~Y = Y1, . . . , Yk are the existentially quantified variables. Let
c1, . . . , ck be fresh constants, and Σ′ = Σ ∪ {Y1 ← c1, . . . , Yk ← ck}. Now, for each i, 1 ≤ i ≤ j,
run recursively the algorithm A(F ∪ (CiΣ

′), T ). If any of these runs return a set of facts, return
one of these sets, otherwise, concatenate the lists of formula instances returned, prefix the list
with (φ,Σ), and return this list.
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If formula-instances are chosen in a fair manner, the algorithm is complete [4]. That is, A({}, T )
will either return a set of facts which is a model of T , or it will return a list of formula instances
representing a proof that the theory has no finite model. The latter proof is in the style of
natural deduction and will be a tree. The root is an instance of a formula with empty left-hand
side. The branching nodes are instances of formulas with disjunction on the right-hand side,
and the leaves are instances of formulas with empty right-hand sides. The remaining internal
nodes have only one disjunct in the right-hand side. The formula instance at each node has
only conjuncts on the left-hand side wich also appear in the right-hand side on nodes above it
in the tree.

The above proof procedure is intentionally underspecified: When several rules have applica-
ble instances, it does not define which rule to choose. We will call a system of choosing between
rules with applicable instances a strategy. (In our implementation we only use deterministic
strategies.) In addition, the algorithm for finding applicable rule instances is not specified.
The latter is what we will call matching. Both matching and strategy are crucial in terms of
increasing a prover’s efficiency. Lastly, we do not specify which instance to choose when a rule
has more than one applicable instance, except that this must be done in a fair manner.

In principle, improving the matching is orthogonal to improving the strategy; the choice
of which rule instance to apply should not depend on the algorithm used to find applicable
rule instances. It should though be noted that different algorithms for matching may list the
applicable instances of the same rule in different orders. Therefore, changing the matching
while keeping the strategy fixed, may change the steps taken when proving a theorem. (The
rules containing applicable instances must of course be the same for all correct matchers). We
have not seen any interesting strategy that differentiates between different instances of the same
formula, so this difference does not really interfere with the proper functioning of the strategy.

Note further that the prover spends almost all its time doing matching. The remainder of
the provers functionality takes comparatively little time, ca. 1%.3 A common implementation
of the matching is to search the fact-set for matching facts for the left-hand side. This process
loses information about partially fulfilled left-hand sides. The partial satisfaction must be
redone on every step until a full satisfaction is found. A solution to this problem could be to
add lemmas corresponding to the partially instantiated rules. But this is very costly in terms
of space and time.

Our goal in this paper is to investigate the usage of the Rete algorithm for the matching.
We will see that it eliminates the redoing of partially satisfied rules, while still not storing the
whole lemmas as suggested above. The intuition is that the fact-set is inserted into the Rete
network, which will output a list of rule instances where the left-hand side is satisfied by the
fact-set. The proof search will then use this list to look for applicable instances.

4 The Rete Algorithm

Rete is an algorithm for the ”Many Pattern/Many Object Pattern Match Problem” initially
developed for production systems [7]. As shown in Section 2 a production system consists of a
fixed set of productions, and a working memory. In the setting of coherent logic, the productions
are the axioms and the working memory is the fact-set. If there are elements in the working
memory matching consistently all patterns in the left-hand side of a production rule, the actions
in the right-hand side are executed. The types of actions are not closely specified in Rete, but
a consequent in coherent logic can be seen as actions of certain types. Hence, an axiom in

3We measured this on our own implementation (see Section 6) using gprof.
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coherent logic can be seen as a production rule in a production system. This correspondence
spurred use of the Rete algorithm for coherent logic.

The Rete algorithm can be used to find applicable rule instances, given a set of production
rules and a fact-set. More specifically, we will use Rete to find the rule instances (∀ ~X [C −→
∃~Y (C1 ∨ · · · ∨ Cn)],Σ) such that CΣ ⊆ F . Recall from Definition 3.3 that this is necessary, but
not sufficient for a rule instance to be applicable. The second condition for applicability is that
the right hand side is not true in the fact-set. Or, formally, that for all Σ′ with domain ~Y and
all i ∈ {1, . . . , n}, CiΣΣ′ 6⊆ F . The prover filters out these instances using a straight-forward
search of the fact-set.

The Rete algorithm consists of two steps, the first step is executed only once, while the
second is executed repeatedly. The first step, explained in Section 4.1, is to create the Rete-
network from the production rules. The second step, explained in Section 4.2 takes an element
from the working memory, inserts it into the Rete-network, and outputs 0 or more new instances
of productions that are now satisfied.

The main difference between a general production system, and our proof system is that
disjunctions in the conclusion create a fork, where each disjunct becomes its own branch, with
its own working memory.

4.1 Constructing the Rete-Network

The Rete-network consists of three types of nodes: α-nodes, β-nodes and rule-nodes. (In [7] α-
and β-nodes are called one-input and two-input nodes, respectively.) Links between nodes are
indicated by arrows, i.e. a→ b reads a has a pointer to b, they can be bidirectional; a↔ b.

4.1.1 The Rule-Specific Nodes

For each axiom, there is a corresponding rule node, which will construct the final output of
the Rete-network in the second step of the algorithm. There is one α-node for each atomic
formula occurring on the left-hand side of any rule. This node will store substitutions of the
corresponding atomic formula. There is one β-node corresponding to each atom/conjunct in the
left-hand side of each rule. A β-node will contain substitutions of the part of the left-hand side
to the left of the corresponding conjunct. Since the same atom may occur in several precedents,
each α-node may correspond to several β-nodes. Each α-node has one or more links to the
corresponding β-node(s). The β-nodes that represent the left hand side of a rule are linked
in a string, starting with a dummy-node, and ending with the last β-node being linked to a
rule-node. Each α-node has a store containing substitutions of the free variables occurring in
the atom that the α-node represents. Each β-node except the dummy-node has “input arrows”
from the α-node, and from its preceding β-node, and an “output arrow”. The output arrow
connects to the β-node representing the atom to its right, except for the rightmost β-node
which has an arrow to the rule-node.

We will now give a more formal description of the algorithm, after defining the necessary
data types.

Definition 4.1. A node in a Rete network is a data structure with fields as described in Table 1.
All fields are filled with values in part 1 of the algorithm and kept unchanged in part 2, with
exception of the store field. The store field is empty after part 1 and filled with values in part
2 of the Rete algorithm.

Example 4.2. In Fig. 4 the partial Rete-network constructed from a generic rule / axiom
is presented. Each atomic formula inside the premise gets its own α-node. (These can be
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Name Values Defined for nodes of type
type α, β, or rule all types
formula atomic or coherent formula α and rule
children list of links to a β α
child link to a β | rule-node β
betaParent null or link to a β β
alphaParent link to an α β
store substitutions all types
freeVars list of variables β and rule

Table 1: Fields of the nodes in a Rete network

shared between β-nodes as with axiom 4 and 5 from Fig 1). The β-nodes are linked together
with betaParent and child links; following the links from left to right we pass through nodes
representing all atoms in the premise of the axiom / rule. The leftmost betaParent is a null
reference (dummy-node), illustrated by a diamond (�) in the figures. The dummy-node indicates
that we have reached the first β-node. The formula field of the α-node links to the corresponding
atom, while the rule-node has a link to the entire formula.

α R1 R2 · · · Rn

β � · · ·

rule R1 ∧R2 ∧ · · · ∧Rn → A

store store store

store store store

store

alphaParent alphaParent alphaParent

betaParent

betaParent

children[0]

child

children[0] children[0]

child

Figure 4: From axioms / rules to Rete-networks

Example 4.3. Fig. 5 shows the Rete-network constructed for the theory shown in Fig. 1.

4.1.2 Representing the Rete-network

As can be seen in Figure 5 α-nodes can be shared by different axioms / rules, when their
requirements are syntactically identical, but this can be extended to all α-nodes that can be
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α β rule

p(X)

z(X,X)

q(X,Y )

q(Y,X)

�

�

�

�

p(X)

z(X,X)

q(X,Y )

q(X,Y ) q(Y,X)

(2)

(3)

(4)

(5)

Figure 5: Simplified Rete-network for the theory in Fig. 1

unified through renaming (p(X,Y ) and p(Y,X) for instance), since these terms will match
the same facts. Shared α-nodes of syntactically different nodes introduce more complex book-
keeping, since the prover must keep track of the mappings between the different substitutions.
Therefore we left this sharing out of the implementation. The numbers inside the rule-nodes
correspond to the axioms given in Fig. 1, i.e., the first axiom/rule which introduces the fact-set
(> −→ p(a)) is not part of the network. Each of the α-nodes holds a list of matching substitu-
tions, this is left out of Fig. 5 to simplify the presentation. See Fig. 6 for a more detailed look
at the substitution lists.

4.2 Inserting Facts into the Network

Recall that α nodes store substitutions of the corresponding atomic formulas. On the other
hand β nodes store substitutions of the part of the premiss to the left of the corresponding
atomic formula. When facts are inserted into the Rete-network, the first step is to find the
matching substitutions between the facts of the fact-set and the atoms in the α-nodes. The
fact is “inserted” into each α-node, in the following way: The α-node tries to unify the inserted
fact and the atom it represents. If no unifier is found, the α-node can safely ignore this fact.
Otherwise, the unifying substitution is added to the matching α-node’s store, and the β-
nodes connected to the α-node are notified. The β node will check whether any of the stored
substitutions do not have conflicting variable assignments with the inserted substitution. If that
is the case, the union will be passed on to the next β-node. The next β-node will check that it
has not seen the substitution before, and then tries to take the union with all the substitutions
in the store of the corresponding α-node. Any successful unions are passed on to the next
β-node. This process is repeated at the next node until no union is found, or till it reaches the
rule node. The rule node outputs the substitution as a rule instance on the queue.

Unification of terms and of sets of terms is done in the usual way, as defined in e.g. Martelli
& Montanari [11]. unify(, ) returns a most general unifier or “false”. In Listings 1 and 2 we
show the basic algorithm for inserting a fact into a Rete network.
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Listing 1: Inserting a fact f into a Rete network

foreach α−node a in the network

s = unify(a.formula, f);

if s 6= false;

foreach t ∈ a.store
if t = s

Exit algorithm;

put s on a.store;

foreach c ∈ a.children do

if c.betaParent == null

run Listing 2 on c.child, s;

else

foreach u ∈ c.store
if ( not conflicting variable assignments(u, s))

run Listing 2 on c.child, u ∪ s;

Listing 2: Insert substitution s into β- or rule-node n

if s 6∈ n.store
put s on n.store;

if n.type ==rule

push (n.formula, s) on queue;

else if n.type == β

foreach s′ ∈ n.alphaParent.store
if ( not conflicting variable assignments(s, s′))

run algorithm recursively on n.child, u|n.freeVars;

5 Optimizing the Algorithm

The algorithm shown in Sect. 4 is a rather direct application of Rete. In this section we will
explore and motivate some optimizations and modifications.

5.1 Computational Complexity

Theorem proving in first-order logic is undecidable. However, the fragment of first-order logic
containing only theorems is decidable, but still computationally hard. A main contributor to
the complexity of a coherent proof search is the exponential explosion of different ways to match
the premiss of (production) rules/axioms. For a rule with n requirements:

R1 ∧ . . . ∧Rn −→ A (13)

and m ways to match each requirement, we get mn possible ways to fulfill this rule’s left hand
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side. Many of these may lead to variable conflicts and cannot be applied, but the prover still
needs to figure that out.

The exponential number of possible matches is a problem both in terms of time complexity
and storage, and we need an algorithm for a lazy evaluation.

5.2 Matching

In Section 5.1 we saw that the number of possible matches for a rule is basically the cross-
product of all the requirement’s individual matches, so an eager evaluation of the possible
matches is not always practical, and a lazy approach is desirable.

By storing a list of each predicates’ matching substitutions, we get a structure similar to
the one displayed in Fig. 6.

p(X) ∧ p(Y ) ∧ q(Z) −→ r(X,Y, Z)

matching q(a)

X ← a

X ← b

Y ← a

Y ← b

Z ← c

Z ← a

Figure 6: Matching substitutions

Assume that q(a) is a new fact that we have matched against the left hand side of this rule,
and we would like to know whether or not this produced a match, and if so which matching
substitutions did it generate. The result is the cross product of the substitutions gathered by
matching facts against p(X) and p(Y ) with the new substitution generated by matching q(a)
against the last predicate q(Z), i.e. {Z ← a}. In this example there is no variable conflict, so
every substitution is valid. The set of substitutions obtained by matching the fact q(a) against
the axiom/rule can be seen in Fig. 7.

{X ← a, Y ← a, Z ← a} (14)

{X ← a, Y ← b, Z ← a} (15)

{X ← b, Y ← a, Z ← a} (16)

{X ← b, Y ← b, Z ← a} (17)

Figure 7: Matching substitutions

5.3 Laziness

The formulation of Rete we have given above outputs all new applicable rule instances. In
comparison, the standard approach for matching will only need to run until one instance is
found. Since we do not apply any strategies which make use of more than one instance of each
axiom, it is unnecessary to find more than one instance of each axiom at any step. In addition,
for some theories, so many instances may be generated of some rules, that the prover cannot
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generate all in the time available. It is therefore desirable to let the prover use the first rule
instance that is generated, rather than making it wait until all instances of each rule have been
output by the Rete network. This could be achieved by pausing or halting the Rete network
when it outputs a rule instance, and store the full state of the network.

Another option is to use a multithreaded/parallel solution; In addition to the main thread
for the prover, we run one separate thread for each axiom. Note that large parts of the Rete
network, including all beta-nodes, and most alpha-nodes, are specific for certain axioms. Each
axiom-specific thread takes care of the Rete algorithm from the point it enters a node specific
for the corresponding axiom. Instances are generated by the thread, and pushed to the queue
of rule instances, which the prover main-thread can then access. This approach eliminates the
need for generating all applicable rule instances, and in addition adds some parallelism to the
prover.

5.4 Sharing subterms

We use a fairly normal way to represent our terms, where each term consists of a tree where
identical constants or predicate symbols are shared among all terms in our fact-set and Rete
network. This lowers memory consumption and allows us to compare terms by comparing
references, since they will point to the same address only if they represent the same term.

5.5 Sharing Between Branches

Recall that the prover must split into branches when it is treating an instance of an axiom with a
disjunction on the right-hand side. The whole Rete-network, except the stores, can be shared or
reused between these branches, as the content does not change. The stores (lists of substitutions)
cannot be completely shared, as substitutions added in one branch, might not be added in
other branches. In a single-threaded prover this can be handled by removing substitutions
when backtracking. This would be analogous to the removal of facts from the fact-set done
during backtracking by other provers, e.g. CL.pl [4]. In a multi-threaded implementation this
approach is not applicable. However, the common parts can be shared by implementing the
stores with linked lists. Each branch must then maintain, for each α- and β-node, a separate
link to the topmost substitution in each store. Each substitution contains a link to the next
substitution, or a null-pointer. When branching, the links to the topmost substitutions are
copied. This way, a high degree of sharing is achieved.

The queue of rule instances output by the Rete network cannot be shared in a similar
manner in multi-threaded implementations. In a single-threaded implementation it is possible
to avoid copying the queue by taking the following steps: Maintain a separate queue for each
axiom, instead of a single queue with all instances. Note that in these queues, all elements are
inserted in one end, and deleted from the other end. We implement these with arrays, where
elements are not deleted, but instead, a pointer to the current location of each end is updated.
At branching points in the proof, we store the locations of the two ends of each queue. When
backtracking, we only need to use the stored locations of the ends of the queues.

Since our implementation does not use separate threads for each disjunct, but rather treats
each branch sequentially and then backtracks, we have not implemented this sharing.
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6 Results

We have implemented a version of the Rete algorithm with separate threads for each axiom, as
described in Section 5.3, in a prover for coherent logic.4 The prover takes coherent theories as
input, and uses the algorithm described to search for a proof of inconsistency. If it finds such a
proof, it can be output in a form readable by the Coq proof assistant. Otherwise, if the prover
finds a model of the theory, this can also be output.

We have compared the implementation with three exisiting provers for coherent logic, Geo
[5], CL.pl [4], and colog [6], and for reference, with three standard provers for first-order logic:
E5, Vampire6, and leanCop7. The test set was provided by M. Bezem, and contains in all 66
tests8. All the test formulas are written in the format of coherent logic, without functions and
equality, and performed using an Intel c© CoreTM i5-750 2.67GHz processor (with 4 processor
cores). We let each prover run up to 60 seconds on each test; in Table 3 the time used by
the different provers to solve the problems are given, a timeout indicates that no solution was
produced within 1 minute. Note that formulas from the test-set where all provers succeed
within a short time-frame are removed from Table 3. The complete coverage of the test-set can
be seen in Table 2. The intention is obviously not to rank the provers; but to illustrate that
the problems in the test-set are hard even for state of the art provers based on different calculi
(connection calculus and resolution). Furthermore, we wish to show that using Rete for the
matching (clp) can contribute to the speed of coherent provers on these tests.

Table 2: Comparison

Geo CL.pl clp Colog vampire Eprover leanCop

Successes 58 46 57 57 55 54 34

7 Related Work and Conclusion

7.1 Related Work

The Rete algorithm was introduced for production systems in artificial intelligence by Forgy [7].
The Rete algorithm has been applied in automated reasoning earlier, specifically with hyper-
linking, in Lee & Wu [10]. The original production systems would usually consist of a large
amount of rules, and saving space in the network is of importance. The number of axioms in a
typical theory is much smaller, so saving the number of nodes in the network is not so important
here. On the other hand, theorem provers may generate large amounts of facts, many more
than it can treat in the time given. This led to the “laziness” approach for our matcher, which
is not seen in [7] or [10]. The disjunctions and existential quantifiers in the right-hand side of
the rules / axioms require modifications to the Rete algorithm which have not previously been
investigated.

Identical atoms inside the premises of a coherent theory will collapse onto a single α-node,
which can be seen as a very primitive term indexing [13] scheme. For deep terms this would

4Available at http://code.google.com/p/clp
5Version 1.4 Namring, downloaded from http://www4.informatik.tu-muenchen.de/~schulz/E/E.html
6Version 0.6 (revision 903), downloaded from http://www.vprover.org
7Version 2.1, downloaded from http://leancop.de.
8Available at http://code.google.com/p/clp/source/browse/?repo=test.
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Table 3: Runtime and results for each prover on some of the tests. The fastest time for each
test is emphasized.

Problem Geo CL.pl clp Colog vampire Eprover leanCop

anl 0.653s timeout 0.014s 0.153s 12.240s 2.677s timeout

cdp 0.106s timeout 0.007s 0.126s 0.013s 0.011s timeout

cro 8 2 timeout 0.262s 2.355s 0.373s 12.883s 21.642s timeout

five 0.283s timeout 0.092s 0.287s timeout timeout timeout

latt timeout 0.170s 0.174s 1.634s timeout timeout timeout

len 0.676s timeout timeout 0.205s timeout timeout timeout

mb 0.064s 0.031s 0.016s 0.159s 0.007s 0.009s 1.019s

nl 0.891s 0.020s 0.014s 0.194s 12.233s 14.823s timeout

nnl 0.347s 47.661s 0.053s 0.253s 12.238s 15.295s timeout

p1p2 timeout timeout 2.515s 1.489s timeout timeout timeout

p2p1 timeout 0.105s 0.446s 0.476s timeout 30.995s timeout

pp timeout timeout 2.237s 3.239s timeout timeout timeout

qedf 0.007s timeout 0.005s 0.222s 0.006s 0.008s 1.019s

sd 43.444s timeout 0.421s timeout 45.691s timeout timeout

timeouts 5 8 1 1 6 6 12

fastest 0 2 8 3 1 0 0

not be very useful, but the coherent theories we have worked with so far have contained mostly
shallow terms. As described in [1], term indexing does not necessarily have positive effects
when operating on shallow terms. It should be noted however that the Rete algorithm does not
stand in the way of building a term index to improve matching, and it is certainly something
that should be investigated as a future improvement.

7.2 Conclusion

We have shown how the Rete algorithm can be modified for use in a forward chaining procedure.
We also describe some optimizations, namely lazyness and sharing of data between threads.
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