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Abstract 

We have developed a versatile Model Predictive Control (MPC) framework, which 

can handle real-time control of a large variety of water systems. The framework 

combines a fast-solvable optimisation model (a quadratic program) with evaluation and 

realignment by a detailed hydrological-hydrodynamic model. The flexibility of the 

MPC framework is highlighted by two case studies: (1) a large-scale river system with 

several weeks of travel time, and (2) an urban storm and wastewater system with a 

concentration time of about half an hour to one hour. Both case studies demonstrate a 

large potential for improving operations by system-wide real-time optimisation. 

1 Introduction 

Traditionally, real-time operation of water systems is carried out using rule-based regulation of 

individual or small groups of coordinated control structures. There is a large potential for improving 

operational efficiency by dynamic optimisation of the operation of all control structures within the 

water system. We have developed a Model Predictive Control (MPC) framework that uses a dynamic 

surrogate model of the system to optimise operations. The model predicts the change in the state of 

the system caused by changes in control actions and uncontrolled system forcing (e.g. meteorological 

forcing), and these predictions are used to optimise the control actions. 

There are two major challenges for application of MPC for real-time optimisation: (1) 

computational requirements of the dynamic model, and (2) large dimension of the optimisation 

problem for water systems with a large number of control structures. We make use of a 

computationally efficient surrogate model in the MPC. The surrogate model is formulated as a linear 

model because this allows optimisation of very large problems with thousands of optimisation 

variables within seconds or few minutes. 
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2  Model Predictive Control Framework 

A core element of MPC is the receding horizon principle. The control actions of the water system 

are optimised over a fixed control horizon based on a forecast of the system forcing. We use flow set 

points as control actions. The optimised set points are time varying, with a time resolution that 

depends on the system in question. Only the first part of the optimised operation is applied, then a 

new MPC optimisation is carried out with updated initial conditions and a new forecast of the 

uncontrolled system forcing. 

Our MPC framework combines a high-fidelity hydrological-hydrodynamic simulation model of 

the water system with a fast surrogate model. The surrogate model is a computational efficient 

emulator of the high-fidelity model and is used as the internal dynamic model in the MPC. In between 

two MPC optimisations, the high-fidelity model is advanced and updated with available sensor 

measurements from the water system using data assimilation. Prior to a new MPC optimisation, the 

surrogate model is updated with initial conditions that are inferred from the high-fidelity model. The 

dynamic interaction between the high-fidelity and surrogate models is important to ensure that the 

surrogate model is continuously kept close to the true state of the system. 

We have formulated a linear surrogate model, because in a linear model the future state of the 

system is an explicit (and linear) function of three factors: the initial conditions, the uncontrolled 

forcing, and the control (the regulated flows). The linearity is a key feature when defining bounds on 

the future states (e.g. future reservoir volumes). This forms the basis for defining an optimisation 

model that has purely linear constraints, and such optimisation models are very fast to solve. 

Specifically, we have chosen to formulate the optimisation as a quadratic program. 

The constraints include both physical constraints and operational goals. Physical constraints are 

implemented as hard constraints that cannot be violated, whereas operational goals typically are 

formulated as soft constraints that can be violated with an associated penalty. The objective function 

includes terms that measure: (i) deviations from the desired system state and output, (ii) violations of 

soft constraints, and (iii) control activity. 

We have developed a flexible modular framework for connecting network elements together to a 

surrogate model. Basic building blocks include: 

• A reach/pipe block that describes the flow of water in river reaches and drainage pipes. It is 

based on a linear routing model and accounts for inflows and outflows distributed along the 

reach/pipe. 

• A reservoir/basin block that describes the change of storage in reservoirs and detention 

basins as a function of inflows and outflows. 

• A linear reservoir block that transforms inflow to outflow according to linear reservoir 

theory. 

• A reservoir with overflow block that describes storage and overflow of a detention basin 

(Halvgaard and Falk, 2017). 

The different building blocks are calibrated to resemble the high-fidelity model. For each block a 

set of features are defined, including inflows and outflows (both controlled and uncontrolled), hard 

and soft constraints, and contribution to the objective function. When the building blocks have been 

configured and linked together, the MPC framework automatically generates the quadratic program. 
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3 Case studies 

We demonstrate the MPC framework of two real-time optimisation problems: (i) a large-scale 

river-reservoir system, and (ii) an urban storm and wastewater system. Spatial and temporal 

characteristics of the two systems are shown in Table 1. The table lists both physical characteristics 

(storage volume and total travel time) and MPC parameters (optimisation horizon, time step and how 

often the optimisation is repeated). 

The choice of MPC parameters ultimately determines the size of the optimisation model in terms 

of the total number of optimisation variables as listed in Table 2 and detailed in the following 

subsections. The total number of optimisation variables is the sum of the number of control actions 

and the number of slack variables. The control actions are related to the trajectories of optimised 

flows at the regulators, whereas the slack variables are related to penalties for violating constraint 

thresholds (soft constraints). 

Both case-studies are tested with perfect forecasts, which implies that there is no difference in the 

uncontrolled forcing of the dynamics of the MPC internal model and the high-fidelity model. 

 

 Storage volumes Total travel 

time 

Optimisation 

horizon 

Time 

step 

Re-

optimise 

every 

River-reservoir 0.7-12.3 mill. m3 3-4 weeks 2 weeks 3 hours 24 hours 

Urban drainage 2,000-16,000 m3 0.5-1 hour 2 hours 5 min 5 min 
Table 1: Key figures that highlight the different spatial and temporal scales of the two case studies. 

 

 Regulated 

flows 

Control 

actions 

Slack variables Total number of 

optimisation variables 

River-reservoir 9 1,008 3,024 4,032 

Urban drainage 6 144 144 288 
Table 2: Key figures that highlight the size of the optimisation models. 

3.1 River-reservoir system 

The MPC framework was applied for testing optimisation of storage operations of the 

Murrumbidgee River system in New South Wales, Australia (Falk et al., 2016). It is based on the 

Computer Aided River Management (CARM) project that was initiated by WaterNSW in 2011 with 

the aim to improve operational efficiency and reduce end-of-system surplus flows in the 

Murrumbidgee River system (van Kalken et al., 2012). The surrogate model is derived from the high-

fidelity hydrologic-hydrodynamic model developed for the CARM project, which is based on the 

MIKE 11 river modelling system. Schematisation of the surrogate model is shown in Figure 1. The 

regulated part of the river is about 1,300 km from Burrinjuck Dam to Balranald with a total travel 

time of three to four weeks. Water is supplied from two upstream dams and from natural inflows 

along the river. A number of inline reservoirs regulate the flow and divert water to major irrigation 

areas. Three major irrigation areas account for approximately 70% of the total irrigation demand, and 

the remaining part is extracted by about 700 individual users. 

Operation objectives include: (1) supply of ordered water to the major irrigation areas and 

individual users, (2) minimisation of spills at the end-of-system, and (3) keeping the river in a lean 

state to minimise evapotranspiration losses and make storage available for natural inflows. In the 

MPC optimisation model, the lean state is defined as either a target water level or an operational zone 

in the inline reservoirs. At the end-of-system at Balranald a target flow corresponding to 

environmental flow requirements is defined. 
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Figure 1: Surrogate model schematisation of the Murrumbidgee River system. The figure shows the river 

reaches (black lines), inline reservoirs (grey triangles), controllable gates (white arrows), and major offtakes 

(grey arrows). Tributary inflows and individual water users distributed along the river are not shown. 

Adapted from Falk et al. (2017). 

 

 
 
Figure 2: Test results for optimisation of the Murrumbidgee River system using the MPC framework: (i) 

release discharge [m3/s] at Burrinjuck Dam (upper left), (ii) offtake discharge [m3/s] at Bundidgerry Lake 

(upper right), (iii) water level [m] at Maude (lower left), and (iv) end-of-system flow [m3/s] at Balranald 

(lower right). The figure includes the high-fidelity model results forced with optimised MPC releases (red 

line), target levels/flows and irrigation water demands (green line), and upper and lower bounds (green 

dashed line). Adapted from Madsen et al. (2017). 
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The MPC optimises release hydrographs at Burrinjuck Dam, the six inline reservoirs, and Beavers 

gate (see positions of controllable gates in Figure 1). The control horizon of the MPC is set to 14 days 

with a 3-hour temporal resolution for each release hydrograph, which gives in total 1,008 control 

actions to be optimised. Furthermore, 3,024 slack variables enter the optimisation model as additional 

optimisation variables. The slack variables are related to soft constraints on minimum flow in river 

reaches and soft constraints on upper and lower bound on reservoir levels. With respect to 

computational requirements, the MPC is very efficient. It takes about 60 seconds for one MPC 

optimisation on a standard laptop, and additionally 1.5 minutes to advance the high-fidelity model for 

initialising the next MPC optimisation. 

The MPC was evaluated for a two-month test period (Madsen et al., 2017). Selected results from 

this test are shown in Figure 2. The figure shows the optimised release from Burrinjuck Dam (upper 

left). The MPC is able to meet all irrigation water demands at the major offtakes as well as individual 

water demands along the river for the entire test period. Water demand and offtake discharge for the 

Murumbidgee Irrigation (MI) area at Bundidgerry Lake are shown in Figure 2 (upper right). At all 

inline reservoirs, water levels are kept close to the defined target levels and operational zones (see 

results for Maude in Figure 2, lower left), thus keeping the river in the lean state. At the end-of-

system at Balranald the flow is kept very close to the target flow of 2 m3/s (Figure 2, lower right), and 

thereby essentially eliminating spills. 

3.2 Urban storm and wastewater system 

The MPC framework was set up and tested for control of an urban storm and wastewater system in 

Aarhus, Denmark with a concentration time of about half an hour to one hour (Halvgaard et al., 

2017). The surrogate model has been derived and calibrated from a detailed hydrological-

hydrodynamic model of the system, which is based on the MIKE URBAN modelling system. It 

models the major detention basins and the associated pipe network to flow set point locations as 

reservoir with overflow blocks. This means that each block represents the volume in a physical basin 

plus additional volume in surrounding pipes. Overflow occurs when this compound volume reaches a 

threshold. The schematisation of the surrogate model is shown in Figure 3. The main operation 

objective is to optimise use of the available storage in the detention basins under heavy rainfall in 

order to reduce combined sewer overflows. When the system is saturated, the control should be able 

to prioritise overflow between the different locations. 

The MPC optimises the flow set points for water that leaves each basin. Each set point is 

transferred to a PID controller in the existing coordinating control layer. The control horizon of the 

MPC is 2 hours and the optimisation is repeated every 5 min. The set-point time series have a time 

resolution of 5 min, which means that for each of the six set-point locations there are 24 control 

actions within the two-hour control horizon, in total 144 control actions. Additionally, 144 slack 

variables enter the optimisation model. The slack variables are related to soft upper bounds on the 

reservoir volumes. Overflow occurs when this threshold is exceeded. 

The MPC was evaluated for historical rain events that caused combined sewer overflows. Results 

for the largest of these rain events are shown in Figure 4. The MPC is tuned to prioritise overflow at 

the TB basin while minimising overflow at the MB basin. We achieved a total overflow volume 

reduction of 24.6% compared to the baseline MIKE URBAN model, which uses a rule-based control 

strategy. Overflow volumes are reduced at all detention basins: 10.7% at TB, 9.0% at HB, 35,6% at 

KB and 75.3% at JP. No overflows occur at the MB and CB basins for both the MPC solution and the 

baseline control. 
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Figure 3: Surrogate model schematisation for the Marselisborg Nord part of the Aarhus sewer system. The 

map to the left shows the location of the physical detention basins, the diagram to the right shows the 

reservoir with overflow blocks in the MPC model. Each arrow represents a location where the flow set point 

is optimised. 

 
Figure 4: MPC results for a rain event in July 2014. Each row shows results for a detention basin in terms of 

optimised set point (1st column), stored volume (2nd column), and overflow discharge (3rd column). The 

figure includes high-fidelity model results (red line), MPC results (blue line), and simulated results using a 

baseline control strategy (grey line). The dashed lines are constraints. Adapted from Halvgaard et al. (2017). 
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The results in Figure 4 show some discrepancies between the high-fidelity and MPC surrogate 

model results. There are different reasons for these. First, the MPC surrogate model does not account 

for backwater effects. In some situations, the MPC may suggest unrealistic high flow set points while 

downstream conditions constrain the controllable flow. Secondly, the MPC performance depends 

heavily on the design of the underlying coordinating control layer. In some parts of the system, there 

is a travel time between the actuator and the downstream sensor of 15-30 minutes. This time delay 

significantly reduces the performance of the PID controllers. 

4 Conclusions 

We have developed an MPC framework, which can be configured for different types of water 

systems with different spatial scales and temporal dynamics. Two case studies are presented that 

demonstrate the flexibility and scalability of the framework. The river-reservoir system shares some 

basic features with the urban storm and wastewater system, namely storage of water and water routing 

characterised by system travel time. Thus, no matter whether the storage is in millions of cubic meters 

or only in thousands, and no matter whether the travel time is measured in weeks or hours, these basic 

features have been exploited to create a common MPC framework for water networks. 

Both case studies demonstrate a large potential for improving real-time operation by system-wide 

optimisation using MPC. In the river-reservoir study all water demands are met, while at the same 

time the river is kept in a lean state and spills are essentially eliminated. The urban storm and 

wastewater case shows that even though there are some discrepancies between the surrogate model 

and the MIKE URBAN model, the MPC reduces the overflow volume significantly compared to the 

existing rule-based control. 

The MPC framework is computationally very efficient, thus facilitating optimisation of large-scale 

water systems that include thousands of optimisation variables. This is crucial for real-time 

implementation. In addition, it allows a thorough testing and tuning of the MPC before being 

deployed in an operational system. 
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