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Abstract

Hypnosis, or depth of unconsciousness, is one of the goals of general anesthesia. In
this brief paper we provide a differential equation model of how propofol, a commonly
used intravenous anesthetic drug, leads to hypnosis. The model has two components:
the pharmacokinetics (PK) describing how the drug is metabolized by the body, and the
pharmacodynamics (PD) describing how the drug effects the depth of hypnosis. This
standard PK/PD model is a compartmental model, and is linear except for an internal
time delay and a nonlinear output mapping. We discuss how this model can be simplified
and/or complexified so as to take best advantage of the capabilities of a particular analysis
method. One goal of developing such a model is to ensure patient safety during surgery, so
we describe an example safety verification problem. Finally, in order to demonstrate that
this benchmark is operational, we provide code to simulate one version of the system.

Category: academic. Difficulty: medium

1 Introduction

General anesthesia is a broad term encompassing the use of drugs to induce and maintain three
states during surgery: hypnosis (depth of unconsciousness), analgesia (absence of pain) and
areflexia (lack of movement). While most surgeries will involve the use of multiple anesthetic
drugs in order to manage all three states, in this brief paper we focus on the use of propofol [6],
an intravenous anesthetic commonly used to induce and maintain hypnosis. Measuring the level
of hypnosis is achieved by monitoring electroencephalography (EEG) signals to determine the
depth of anesthesia [2]. The intensity of surgical stimulation during a surgery, haemodynamic
effects of the drugs, underdosing due to equipment failure and overdosing due to inappropriate
titration of the hypnotic components, among other factors, often result in imbalances between
the amount of anesthetic required and the amount of anesthetic delivered [2, 4, 11]. Inappropri-
ate anesthetic delivery can have severe consequences. If not enough anesthetic is delivered, the
patient can remain conscious during a surgery which causes both trauma and anxiety [5, 12].
Too much anesthetic may have detrimental long term effects on the patient [10].
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Delivery of anesthetics during surgery has traditionally been done manually, but the push to
increase healthcare efficiency and reduce the number adverse incidents has driven improvements
in sensing and modeling to the point where automated control of anesthetics is on the cusp of
technological feasibility. That said, much work remains to be done in order to demonstrate the
safety and efficacy of such systems.
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Figure 1: Block diagram of the full PK/PD model (1)–(3).

With safety analysis in mind, this paper and its accompanying code gathers together the
following elements:
• A series of related models of the effect of propofol infusion on depth of hypnosis.
• A quantitative statement of the safety verification problem of ensuring suitable depth of

hypnosis and drug concentration levels.
• Matlab code to simulate trajectories for the core PK/PD model.
• Citations to the source literature for the models and parameters as well as some previously

completed verifications.

2 The Models

Most surgeries involve two phases of anesthesia delivery: induction and maintenance. The
induction phase begins with a bolus of anesthetic—a large dose delivered quickly—designed to
achieve sufficient depth of hypnosis. As the bolus is metabolized, a much smaller and time-
varying infusion of anesthetic is then used to maintain the hypnosis. Although models of the
types discussed below are sometimes used in both phases, here we will focus on the maintenance
phase and assume that the patient begins near the desired equilibrium of depth of hypnosis.

2.1 A PK/PD Model

Like many drugs, the pharmacologic effects of anesthesia are traditionally modelled in two
stages. The pharmacokinectics (PK) track how the concentration of the drug changes as the
body metabolizes it; in other words, what the body does to the drug. The pharmacodynamics
(PD) track how the concentration of the drug leads to desired (or undesired) effects; in other
words, what the drug does to the body. Figure 1 shows the components of the PK/PD model
described in more detail below.

We start with the PK model, which is traditionally a linear multi-compartment model that
describes drug concentrations between representative compartments of a patient. Anywhere
from one to four compartments have been used, but we choose a three compartment version [7]
here in order to push toward the more computationally challenging end of that spectrum and its
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suitability for describing propofol [13]. The state variables are the drug concentrations within
each compartment; in this case the plasma cp, the fast peripheral c1 and the slow peripheral c2
compartments, all measured in [µg / `]. The state space model is:ċp(t)ċ1(t)

ċ2(t)

 =

−(k10 + k12 + k13) k12 k13
k21 −k21 0
k31 0 −k31

cp(t)c1(t)
c2(t)

+

1/V1
0
0

u(t) (1)

The input to the PK model is the infusion rate of propofol u(t) [µg / min], while k10, k12, k13, k21
and k31 are first order rate constants between the compartments. Between one and twelve years
of age, these parameters are estimated as V1 = 458.4∗weight, k10 = 0.1527∗weight−0.3, k12 =
0.114, k13 = 0.0419, k21 = 0.055, k31 = 0.0033 [1], where weight is measured in [kg].

The PD model can take many forms [3], but here we choose a linear single compartment
version (the “effect” compartment) with input delay and a nonlinear output mapping. The
state variable ce measures the effect site concentration and its evolution is governed by

ċe(t) = kdcp(t− Td)− kdce(t) (2)

where cp(t) is the plasma concentration from the PK model, Td is a delay to account for the
lag associated with transport of the drug from the plasma to the effect site (the brain) and kd
is the rate constant between plasma and effect site. We use Td = 20s and kd = 40. The actual
anesthetic effect is described by mapping through the saturating Hill equation

E = E(ce) =
cγe

ECγ50 + cγe
(3)

where EC50 is the 50% effect concentration and γ is the cooperativity coefficient. This nor-
malized measure of effect E then ranges from E = 1 (awake) to E = 0 (deep coma). Values of
EC50 = 3 and γ = 2 are used. Note that (3) may be nonlinear, but it is a (strictly monotonic)
rational mapping and not a differential equation.

2.2 Simplifications

The PK/PD model described above is almost a four dimensional linear differential equation,
except for the delay between the PK and PD compartments and the nonlinear output mapping.
The latter is the easiest to deal with: Because (3) is strictly monotonic, we can map any
constraints on the output E through the inverse of (3)

ce(E) =

(
E

1− E

) 1
γ

EC50 (4)

to arrive at constraints on the state variable ce. In fact, in the maintenance phase the system
should be operating near ce = EC50 where (3) is essentially linear; consequently, if the safety
constraints are close enough to that operating point then the output mapping can be further
simplified to be linear:

E(ce) ≈
γ

4EC50
ce

The time delay in (2) is a little more delicate. One option is to introduce additional state
variables to model the delay; for example, additional compartments or a Padé approximation.
The PK/PD model described above is suitable only for relatively low frequency input anyway,
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so these approximations are not unreasonable. A complementary approach builds on the fact
that the PK concentrations are not observable in real-time and are independent of the PD state
ce, so we can shift the origin of time for the PK state variables by Td and effectively shift the
time delay all the way backward to the PK input u:

˙̃cp(t)
˙̃c1(t)
˙̃c2(t)
ċe(t)

 =


−(k10 + k12 + k13) k12 k13 0

k21 −k21 0 0
k31 0 −k31 0
kd 0 0 −kd



c̃p(t)
c̃1(t)
c̃2(t)
ce(t)

+


1/V1

0
0
0

u(t− Td) (5)

where c̃p(t) = cp(t + Td), c̃1(t) = c1(t + Td), and c̃2(t) = c2(t + Td) from (1). Whether this
time shifted model is useful will depend on whether the proposed analysis procedure has some
way of dealing with input delay; for example, it is much easier in Matlab to simulate with an
input delay (5) than with a delay in internal state feedback (1)–(2).

2.3 Complexifications

Traditional PK/PD modeling of anesthesia would stop at this point; however, if closed-loop
control is desired then a model of the sensor and actuator which close the loop may be required.
As one example, a second order linear model of the WAVCNS Monitor is derived in [14].

In a surgical setting, it may not be feasible to estimate the state or adjust the input in
continuous time, so it is natural to consider a discrete time model. Such a model is easily derived
from the continuous time models given above, but ignores the evolution (and hence safety) of the
system between sampling times. A more rigorous safety analysis can be accomplished through
a sampled data formulation, in which the continuous time evolution of the state is tracked but
the feedback loop is only closed at discrete times (see [9] and the citations therein).

The deterministic model discussed above ignores several sources of variability which could
be included. Depending on the degree of analgesia that has been achieved, surgical stimuli
may perturb the state evolution. Because they are generated by the surgeon’s actions, these
effects are probably best modeled as an additional input to the PD component: either as a
known function of time (for predictable stimuli) or as a disturbance (treated in a worst case
fashion). More generally, it is expected that there will be significant variability of the model
parameters between patients and even over time for a single patient. Ideally we would identify
these parameters for each patient at the beginning of the surgery, but for medical reasons
it is unlikely that a “model identification” phase will be permitted between induction and
maintenance anytime soon. An obvious approach to handle this uncertainty is then to include
stochastic parameter values or disturbance inputs in the model.

3 Safety Verification Challenge

The goal of verification in this anesthesia model is relatively straightforward: under constraints
on the input, compute the maximal controlled invariant set (or viability kernel) which lies within
a “safe” portion of the state space (the constraint set); in other words, the subset of states in
the constraint set for which there exist input signals which lead to trajectories which remain
inside the constraint set over the time horizon. Note that the maximal controlled invariant set
is complementary to the reachable set, although in many cases it is possible to use tools for one
to compute the other (for example, [8]). Ideally this set would be computed over an infinite
horizon, although in practical terms the length of a surgery is finite and can be estimated in
advance.
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For the PK/PD model discussed above, a typical set of constraints would be

cp ∈ [1, 6]

c1 ∈ [0, 10]

c2 ∈ [0, 10]

ce ∈ [1, 8]

all measured in [µg / `], and the input constraint is u ∈ [0, 200] [µg / kg / min].

As an example, an underapproximation of the viability kernel for the PK version of this
model (1) in discrete time with a three dimensional Padé approximation of the input de-
lay was calculated in [8] for a 90 minute surgery on an eleven year-old child weighing 35kg.
The constraint set was approximated by an ellipsoid contained within the box constraints
described above, and the underapproximation represented with support vectors. Code im-
plementing this calculation can be found at http://www.ece.ubc.ca/~jmaidens/viability_
supplement.zip.

For low dimensional models with only a single control input, the controlled invariant set can
be estimated relatively easily through simulation: for every state in a sampling of the constraint
set, search for an input signal (eg: through model predictive control) to see if one exists which
maintains safety. This brute force approach becomes less tractable as the state space dimension
rises; for example, the model analyzed in [8] was six dimensional once the Padé approximation
was included, and a sampling of a six dimensional space is coarse, large, or both. It is even less
feasible if disturbance inputs are included in the model, in which case the goal is computation
of the maximal robust controlled invariant set (or discriminating kernel): the set of states for
which there exist input signals that for all disturbances lead to trajectories which remain inside
the constraint set over the time horizon. In general, the combination of control and disturbance
inputs leads to a nonconvex optimization problem even for linear models, and hence the search
for suitable control signals for even a single initial state becomes computationally challenging.

4 Simulation Code

We provide Matlab code that simulates (for the eleven year old child weighing 35kg) trajecto-
ries of either (1) or (5) for sample initial states and a specific open-loop propofol administration
rate u(t). Trajectories from each initial state are numerically integrated up to a fixed time hori-
zon. Figure 2 shows the concentration response of (5) to a time-varying input u(t) for initial

states
[
c̃p(t) c̃1(t) c̃2(t) ce(t)

]T
=
[
1 8 8 1

]T
in dashed red and

[
3 3 3 3

]T
in solid

green. The code also produces a three dimensional phase space plot (not shown). Trajectories
are automatically displayed with dashed red or solid green curves depending on whether they
exit or stay inside the constraint set respectively.

5 Conclusions

We provided a four dimensional PK/PD model of the effect of propofol infusion on depth of
hypnosis during the anesthesia maintenance phase of a surgery, as well as discussing various
ways of simplifying or complexifying the model. The safety verification problem is to determine
the maximal controlled invariant subset of a box-like constraint set. Citations for the model
and an approximation of the maximal controlled invariant subset were given.
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Figure 2: Simulated trajectories of (5) for the input u shown at the top. Dashed red trajec-
tories exit the safety constraints defined in section 3, while solid green trajectories satisfy the
constraints.

We are continuing to investigate new models and safety verification algorithms with the goal
of developing and proving the safety of a closed-loop anesthesia delivery system.
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