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Abstract 

Installing an efficient monitoring and control sensor system provides the possibility 

to carry out main tasks on Water Distribution Networks (WDNs) management and 

protection. Given the WDNs complexity, efficient numerical techniques are needed to 

support optimal monitoring system design. Generally, it is appropriate to locate sensors 

at highly connected places in the WDN with water flow reaching several parts of the 

network. This paper introduces a general method to support water utilities on the 

decision making process for an efficient water system monitoring. The proposal is 

based on graph spectral techniques that take advantage on spectrum properties of the 

adjacency matrix of the water distribution network graph. It is consequently created a 

novel tool-set of graph spectral techniques adapted to improve the water monitoring 
tasks and consequently simplify further sensor placement. This is approached with no 

need of hydraulic simulation, as data availability is often limited or not suitable to face 

anomaly events changing assets and distribution performance. A real water distribution 

network serving a town near to Naples is used to analyze the proposed graph spectral 

methodology. In order to test the proposed procedure, a comparison was made with a 

sensor layout obtained through a bi-objective optimization, through some performance 

indicators. The results confirm the effectiveness of the proposed spectral procedure. 
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1 Introduction 

Cities prosperity strongly depends on multiple and interconnected infrastructures that provide 

several services to consumers and ultimately impact on their quality of life. Among others (gas and 

power utilities and public transport, e.g.), a water distribution network (WDN) is one of the most 

important urban infrastructures. WDNs are the keys to deliver industrial and drinking water to 

metropolitan areas, and so ensuring people activity and society welfare. In this regard, water 

distribution network protection (WDNP) strategies should be focused on the procedures for 

functioning recovery and risk mitigation in order to improve the water supply service. Installing an 

efficient monitoring and control sensor system provides the possibility to carry out main tasks on 
network management and protection. An optimal sensor placement for WDNs constitutes an arduous 

problem, since it depends on the monitoring purpose: as an example, pressure control, contamination 

event detection, or water loss recognition, among others. It represents a crucial aspect for the WDNs 

management; in particular, for the implementation of policies and strategies aimed at protecting water 

supply infrastructure in real time [1]. The general goal is to insert the minimum number of sensor  

stations (minimizing the investment cost), but simultaneously guarantee the maximum performance of 

the system monitoring with respect to detection likelihood, detection time, and extension of the 

influence area. According to these general design criteria, it is appropriate to place the sensors in 

central areas or important points that are crucial for the water flow distribution. In the last years, the 

problem of the optimal sensor location has been faced through single-objective [2, 3, 4, 5, 6, 7] and 

multi-objective [8, 9, 10, 11, 12] methodologies. Although many research works have been carried 
out in this field, the challenge of an optimal sensor placement is still open. In fact, the huge number of 

possible contamination events in a water utility network makes the problem computationally 

intractable (as each of these events is characterized by a different injection location, duration, mass 

rate and starting time). In order to make the problem less burdensome to solve, there is the necessity 

to set up a sampling method able to define the most representative events to consider [13]. Preis and 

Ostfeld [12] developed a heuristic procedure for sampling a set of contamination events, reducing the 

contamination matrix size through a statistical approach based on the geographical coordinates of the 

most representative events, few specific injection mass rates, injection starting times and injection 

durations. Perelman and Ostfeld [14] developed a graph theory connectivity based algorithm to 

simplify the system behaviour through the topological clustering of nodes, facilitating the sampling of 

nodes suitable for sensor locations.  

Based on the general design criteria for the optimal sensor placement and the necessity to provide 
efficient method to simply the issue, this paper develops a number of applications of Graph Spectral 

Techniques (GSTs) from the Complex Network Theory that provide the possibility to identify the 

“most influential” points on the base of the topological structure of the networks. These points are 

proposed for sensor placement in a WDN. The crucial point is the possibility to have a useful and 

easy to apply tool based only on topological and geometric characteristics without adopting hydraulic 

simulations and reducing the computation complexity of the problem, by limiting the set of nodes on 

which to focus the analysis. The identification of the most important nodes can also contribute as an 

initial guess for further refinements by specific device location algorithms. Ranking WDN nodes 

could be useful for locating optimal nodes in which locate several devices (i.e., chlorine stations, 

pressure regulation valves, quality sensors, flow meters, etc.). These challenging tasks can be 

approached through GSTs, even when no other information is available rather than the network 
topology and geometric information on pipes. Furthermore, GSTs use is supported by the fact that 

they can be efficiently approached by standard linear algebra methods. They have already been 

successfully applied in WDNs for other aims such as robustness and resilience analysis [15, 16] and 

water network partitioning [17, 18]. Finally, a sampling method is adopted to select a reduced, but 

representative, set of possible contamination events [13]. In order to validate the proposed procedure, 

a comparison is made with a sensor layout obtained through a bi-objective optimization, where the 
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sensor redundancy and the contaminated population are both minimized. In the following sections, the 

sampling method and the sensor location procedure are described.   

2 Methodology 

A brief survey of the principal matrices and spectra adopted in the paper is provided in this 

section. The proposed methodology is composed by two procedures, used for network clustering and 

sensor placement, respectively, described in the following subsections. 

2.1 Graph adjacency matrix and its spectrum 

Spectral graph theory is a mathematical theory in which linear algebra and graph theory match by 

exploiting a number of eigenvalue and eigenvector properties [19]. The main benefit of this theory is 

that for each graph matrix, M, any system can be studied only by its spectrum. The computational 

complexity to compute eigenvalues and eigenvectors of graph matrices is O(n3), where n is the 

number of nodes. The main advantage of this approach is that spectral graph parameters contain a lot 

of information about the graph structure [20]. This constitutes the reason why in the last twenty years, 

graph spectra theory has been applied in many topics: combinatorial optimization, complex networks 

and the internet topology, data mining, computer science, load balancing, multiprocessor 

interconnection networks, anti-virus protection, knowledge spread, statistical databases, social 

networks, quantum computing, bioinformatics, coding theory, control theory, etc. [21].   

Let G=(V, E) be an undirected graph with n nodes of set V and m edges of set E; a useful way to 

characterize a graph is to define its Adjacency matrix A, whose elements are aij=aji=1 if there is a link 
between nodes i and j and aij=aji=0 otherwise. In the case of the available of link information, it is 

possible to define the Weighted Adjacency matrix W; link weights represent the strength of the links 

between nodes, in terms of proximity and/or similarity. In this case, the non-negative weight is 

wij=wji≥0 if i and j are linked, wij=wji=0 otherwise. In this way, it is possible to define the Spectral 

Radius or Index λ1, the largest eigenvalue of the Adjacency graph matrix A (of the Weighted 

Adjacency matrix W in the case of weighted graph); it plays an important role in modelling a moving 

substance propagation in a network. In fact, the number of walks in a connected graph is proportional 

to λ1, and so, the greater the number of walks, the more intensive the spread of the moving substance 

is [22]. In this regard, the epidemic threshold in spreading of the viruses is proportional to 1/λ1. 

Related to λ1, it is consequently defined the Principal eigenvector v1 as the largest A-eigenvalue (W-

eigenvalue in the case of weighted graph) of a connected graph; it gives the possibility to rank graph 
vertices by its coordinates according to numbers of walks [23], the so called eigenvector centrality. In 

particular, nodes with connections to the high-connected vertices are more “important” for the 

communication with respect to equal connected nodes whose neighbors are less connected, taking into 

account not only immediate neighbours of vertices but also the neighbours of the neighbours [24]. An 

important application is the Web search engines that are based on principal eigenvector (the most 

known systems are PageRank used in Google). Another important matrix of the graph theory is the 

Laplacian Matrix L [25]. It is defined as the difference between Dk=diag(ki) (the diagonal matrix of 

the vertex connectivity degrees ki) and the Adjacency matrix A (or the weighted Adjacency matrix W 

if it is considered a weighted graph). The Normalized Laplacian Matrix Lrw, is useful for practical 

applications and more efficient than the straightforwardly use of L. This is closely related to a random 

walk representation. Lrw is defined multiplying the Laplacian matrix by the inverse of the diagonal 
matrix of the vertex connectivity degrees Dk, Lrw = Dk 

-1L [26]. It constitutes a powerful tool for the 

optimal clustering of a set of elements, ensuring for a balanced cluster layout with a minimum number 

of boundary elements.  
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2.2 Contamination event sampling 

A method for defining a set of contamination events, which is representative for the totality of the 

events, was set up. Each possible contamination event is characterized by certain values of injection 

location, starting time, mass rate, and duration. The following assumptions are made for the 

construction of the set S of contamination events: 

- all the nodes of the network were considered as potential locations for contaminant injection; 

- one possible contamination times in the day (hour 8a.m.), corresponding to the maximum water 

demand by users; 

- single value of the mass injection rate equal to 50 gr/min;  

- single value of the injection duration equal to 60 min.  
The values reported above for mass injection and duration were sampled from those proposed by 

Preis and Ostfeld [12], using the procedure of Tinelli et al. [13]. Due to the previous assumptions, the 

total number S of contamination events was 184×1×1×1=184. Identical relevance to all event is 

assigned. The water quality simulations were run for one day of WDN operation through the Software 

EPANET [27], using an unreactive contaminant as assumption, while the time for a warning to 

interrupt network service is set to 0 hr without loss of validity of the whole methodology.  

2.3 Clustering zones 

In order to simplify the system structure and facilitating the sampling of nodes for sensor 

locations, it is approached a topological clustering of network nodes, defining areas which have 

similar density of connections. The clustering layout is obtained by exploiting the properties of the 
normalized Laplacian matrix Lrw, which can solve a relaxed version of the mincut problem [26], 

through the first C smallest eigenvector of Lrw. The main spectral clustering steps in the case of a 

WDN are described in [28]. The graph of the WDN is considered un-weighted (Variant 1) and 

weighted (Variant 2), such as wij=wji=d/l where d and l are the diameter and the length of the generic 

pipe, in order to take into account, the hydraulic conductivity of the pipes. 

2.4 Sensor placement 

Let a set S of significant contamination events, each of which featuring a certain location, starting 

time, duration and total mass. Two methodologies for optimal sensor placement are described in the 

following. 
Eigenvector centrality: the core idea of the paper is to place sensor stations in the most important 

nodes according to the corresponding coordinates of the eigenvector v1, of the Adjacency matrix (or 

the weighted Adjacency matrix). Another important aspect studied in the paper is to identify a specific 

weight to assign to the graph associated with a WDN to use to optimize the positioning of sensor 

stations. In other terms, the aim is to better define the optimal sensor layout for the WDN protection 

against accidental or intentional attacks and so locate the water quality sensors in correspondence of 

the nodes with higher value of the weighted eigenvector centrality. In this way, the proposed method 

can support the actual heuristic optimization procedures of sensor placement or can be adopted as 

unique tool in the case of absence of hydraulic data of the WDN. The idea behind the network 

centrality concept is to identify which points are traversed by the greatest number of paths. The 

eigenvector centrality provides the most important node for each cluster, from a topological and 
connectivity point of view. The sensors for the WDN will be located according to this node ranking 

(or node importance). A crucial aspect of this approach is that central nodes may change their location 

depending on the weight attributed to the graph. In this regard, it is possible to choose a set of weights 

depending on the monitoring goal and the sensor functioning. The eigenvector centrality for the 

unweighted graph takes only into account the connectivity degree of the nodes and certain topological 
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information. In the case of weighted graphs, the information coming from the eigenvector centrality is 

enhanced by also considering graph geometric characteristics or other information of pipe 

characteristics, and taking into account the spatial variability in the network. In this last case, it could 

happen that nodes with lower number of connections are linked to most important pipes, according to 

the weight assigned to the graph, and largest network hubs are connected to lower importance pipes. 

Bi-objective optimization: in order to compare the proposed procedure to other ones, the sensor 

placement problem is also formulated as a bi-objective optimization problem BOP [13], minimizing 

the number of installed sensors Nsens (limiting the installation cost for WDN protection), and 
simultaneously the contaminated population popr before the first detection of a generic r-th 

contamination event (the sum of the inhabitants supplied by contaminated nodes), through the genetic 

algorithm GA. A population of 300 individuals and a total number of 300 generations for tuning this 

GA were set, where the number of genes is equal to the number of network nodes where sensors can 

be installed. Each gene can take on the two possible values 0 and 1, which stand for absence and 

presence of a sensor in the node associated with the gene, respectively.  

The applications aimed to explore the feasibility of use the eigenvector centrality as useful tool to 

simplify the arduous problem of sensor placement, and to investigate the possibility to limit the search 

for optimal sensor locations. In fact, besides the significant computational simplification induced by 

this possibility, due to the reduction of the solution space, these approach could be used in the case of 

the specific hydraulic information of the WDN are not available. The comparison between the two 

methodologies above described will be made in terms of effectiveness of the monitoring station, 
assessed through the detection time Tmin and the detection likelihood PS. 

3 Case study and results 

In order to test the effectiveness of the proposed procedure, GSTs methods are applied on the 

water distribution network serving the city of Parete [29].  

 

                         
 

Figure 1: Sensor placement for the WDN of Parete: a) according to the un-weighted eigenvector centrality 
(EvC-1); b) according to the d/l weighted eigenvector centrality (EvC-2); c) according to the bi-objective 

optimization (BOP) 

Parete is a small town located in a densely populated area southern of Caserta (Italy) with a 
population of 11,150 inhabitants. Its WDN has 182 demand nodes (with ground elevations ranging 

from 53 m a.s.l. to 79 m a.s.l.), 282 pipes (with a total length of 34.7 km) and 2 sources with fixed 
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head of 110 m a.s.l. Reference was made to the day of maximum consumption in the year with a total 

demand from the nodes ranges from 7.6 L/s (at night time) to 77.2 L/s (in the morning). It is fixed a 

total working number of 6 sensors to be placed in the water network. Three sensor layouts for Parete’s 

WDN are shown in Figure 1, corresponding to the un-weighted eigenvector centrality (EvC-1), d/l 

weighted eigenvector centrality (EvC-2), and the BOP approach. An important aspect to highlight is 

that both the solutions obtained with the eigenvector centrality locates more sensors in the bottom part 

of the network; it is due to the greater difference in connection density which has led to a greater 

number of clusters (four clusters) in that area and so a greater number of sensors (four sensors). It is 
worth to note that, for the EvC-2 and the BOP solutions, one of the six sensors is located in the same 

node and two of them are located in the same close areas. It is the reason why, the simulation results 

are quite similar also in terms of detection time and detection likelihood, as it is shown in Table 1. 

The time reporting step was set to 5 minutes in EPANET [27], and so, each event was detected in 

a time period multiple of 5 minutes. For each period, ranging from 5 to 120 minutes, the number of 

the detected contamination events is reported in Figure 2. In this regard, in Figure 2, the detection 

time for the all detected contamination events S and for the three procedures (respectively BOP, EvC-

1, and EvC-2) are shown. 

 

 
Figure 2: Detection time for all the detected events for the three sensor layouts, BOP, EvC-1, and EvC-2 

The trends of the EvC-1 are more uniform than that of the EvC-2 and BOP, for which it is possible 

to define a clear mean value. It is also evident that, while the maximum detection time for the BOP is 

Tmin,max=95 min, for both EvC-1 and EvC-2, Tmin,max=120 min. In this regard, that means that, a small 

percentage of contamination events were detected with a delay of maximum 25 min. 

Obviously the minimum detection time is Tmin,max=5 min for the three sensor layout, and it 

happens when the contamination event starts in correspondence of the nodes where the sensors are 

located. Regarding the mean value of the detection time, which more representative of the 

characteristic functioning of sensor system, for the EvC-1 Tmin,mean is equal to 42.4 min, for the EvC-2 

Tmin,mean is equal to 42.2 min and for BOP Tmin,mean is equal to 36.1 min, which means that on average, 

the solutions provided using the eigenvector centrality (both un-weighted and d/l weighted) detect the 
contamination events with a delay of just 6 min. Finally, an important aspect to take into account for 

the water quality sensor monitoring systems is the percentage of the events that can be detect with 

respect to the whole set S of the considered contamination events. It is important to note that, EvC-1 

allows to detect around a half of the contamination events, with a detection likelihood PS=56.1%. 

Meanwhile, both the EvC-2 and the BOP can detect a higher percentage of contamination events 

(except to some local events that affect small areas of the network and that would require a huge 

number of sensors to be detect), respectively with a PS=73.1% and PS=78.2%. The simulation results 
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confirm the efficiency of the proposed procedure in particular when the graph is weighted with d/l 

which is related to the hydraulic conductivity of the pipes. In this way, it is possible to take into 

account not only the most linked nodes, but also the most important nodes which are crossed by the 

most conductive pipes. 

 
Layout Tmin,min 

[min] 
Tmin,mean 

[min] 
Tmin,max 

[min] 
Ps 

[%] 

EvC-1 5.0 42.4 120.0 56.1 
EvC-1 5.0 42.2 120.0 73.1 

BOP 5.0 36.1 95.0 78.2 

Table 1: Minimum Tmin,min, mean Tmin,mean and maximum Tmin,max detection time and detection likelihood PS 
for the three sensor layouts of Parete’s WDN 

4 Conclusion 

The work described in this paper uses a novel method to solve the problem of finding the optimal 

location for placing sensors in a WDN. This is by understanding a monitoring system is more efficient 
as it maximizes the possibility to cover a great area while minimizes, i.e., any event detection time 

and the number of sensor stations. The proposal adapts Complex Network Theory to sensor location 

in correspondence to the most important WDN nodes. In this regard, by exploiting the properties of 

the spectrum of the Adjacency matrix (or the weighted Adjacency matrix if the geometric information 

of the network is available), it is possible to define the eigenvector centrality. This attributes to each 

node a score equal to the corresponding coordinates of the principal eigenvector. The main advantage 

of this procedure relies on that it is not necessary to carry out hydraulic simulation or heuristic 

algorithms to analyze all the possible sensor placement layouts. It is worth to highlight that, exploiting 

the spectral properties of the WDN Adjacency matrix, it is also possible to reduce the space solutions 

and, consequently, the computational complexity of the optimization procedures, focus investigating 

nodes to place sensors to only a set of the most central nodes defined by the eigenvector centrality. 

The overall procedure could be possibly being adapted to several aims by weighting the WDN 
graph with tailored weights according to each monitoring goal. Further work will investigate the 

possibility to define these weights to improve the results, testing the proposed procedure on larger 

WDNs and targeting other monitoring aims. 
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