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Abstract

We introduce the notion of strongly distributed structures and present a uniform approach to

incremental automated reasoning on them. The approach is based on a systematic use of two logical

reduction techniques: Feferman-Vaught reductions and syntactically defined translation schemes. The

distributed systems are presented as logical structures A’s. We propose a uniform template for methods,

which allow for a certain cost evaluation of formulae of logic L over A from values of formulae over

its components and values of formulae over the index structure I. Given logic L, structure A as a

composition of structures Ai, i ∈ I, index structure I and formula φ of the logic to be evaluated

on A, the question is: what is the reduction sequence for φ if any. We show that if we may prove

preservation theorems for L as well as if A is a strongly distributed composition of its components

then the corresponding reduction sequence for A may be effectively computed. We show that the

approach works for many extensions of FOL but not for all. The considered extensions of FOL are

suitable candidates for modeling languages for components and services, used in incremental automated

reasoning, data mining, decision making, planning and scheduling. A short complexity analysis of the

method is also provided.

1 Introduction

Every day, more than 2 quintillion bytes of data are created and and 90% of the data in the
world today was created within the past two years, cf. [20]. The maintenance and proceeding
of such amount of data requires ”massively parallel software running on tens, hundreds, or
even thousands of servers”, cf. [23]. Incremental automated reasoning, data mining, decision
making, planning and scheduling are hardly implemented on distributed systems. There are
two schools of thought on reasoning about distributed systems: one following interleaving based
semantics, and one following partial-order (or graph) based semantics, cf. [4]. The second one
seems to be more promising. One of the successful attempts to specify the distributed multi-
agent reasoning system (dMARS) is presented in [7]. However, to our best knowledge, no
general, logically based approach to incremental reasoning has been proposed.
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Figure 1: A system with 3 agents.

In this contribution, we systematically apply two logical reduction techniques to the field of
reasoning on distributed systems. The distributed systems are presented as logical structures
A. We propose a uniform template for methods, which allow for a certain cost evaluation of
formulae of logic L over A from values of formulae over its components and values of formulae
over the index structure I. The logical reduction techniques are:

1. Feferman-Vaught reduction sequences (or simply, reductions) were introduced in [14].
Given structure A as a composition of structures Ai, i ∈ I, and index structure I. A
reduction sequence is a set of formulae such that each such a formula can be evaluated
locally in some site or index set. Next, from the local answers, received from the sites, and
possibly some additional information about the sites, we compute the result (boolean or
even quantitative) for the given global formula. In the logical context, the reductions are
applied to a relational structure A distributed over different sites with structures Ai, i ∈ I.
The reductions allow the formulae overA to be computed from formulae over the structures
Ai’s and formulae over index structure I.

2. Translation schemes are the logical analogue to coordinate transformations in geometry.
The fundamental property of translation schemes describes how to compute transformed
formulae in the same way Leibniz’ Theorem describes how to compute transformed in-
tegrals. The fundamental property has a long history, but was first properly stated by
Rabin, cf. [38].

The paper is organized as follows. One of two already published motivating examples is
presented in Section 2, the second is moved to Appendices A. In Section 3, we discuss different
ways of obtaining structures from components. Section 4 introduces the notion of abstract
translation schemes. Section 5 is the main section of the paper, where we state and prove our
main Theorem 7. Short complexity analysis is presented in Section 6. Section 7 summarizes the
paper and gives an outlook to future studies. Appendices B and C provide the logical notations,
used in the contribution.

2 Motivating Example: Cooperation of Three Agents

This example is taken verbatim form [41] with few cosmetic changes. Assume we are given a
system with three agents, which may communicate according to predefined rules. Assume that
the AGENT1 may call both agents: the AGENT2 and the AGENT3, while the AGENT2
can not call any agent and the AGENT3 may call back the AGENT1; see Figure 1. We use
the following formalization: the runs of the agents are presented as weighted labeled trees: the
weights are put on the edges of the trees and the vertices may be labeled. Assume that a run
tree T of the system is presented on Figure 2. In the figure, we omit the weights, put on the
edges. The meaning of the labels on the vertices is as follows:
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Figure 2: Run tree T of a system with 3 agents.

• the gridded vertex in T1 corresponds to the call to the AGENT2 by the AGENT1 (the
bold edge goes to the root of T2);

• the filled vertex in T1 corresponds to the call to the AGENT3 by the AGENT1 (the
bold edge goes to the root of T3);

• the doted vertex in T3 corresponds to the call to the AGENT1 by the AGENT3 (the
bold edge does NOT go to the root of T1 but rather goes back to a vertex of T1 labeled
by strips).

Assume that we want to optimize (minimize) the runs in the tree. On the one hand, we may
use one of the optimization algorithm on the complete tree T that will give a quantitative result
<. On the other hand, we observe that we may receive the optimal result in the following way:

1. We find the optimal run <1 in T1.

2. We find ALL labeled runs Λi1 in T1: there are two such runs Λ11
and Λ21

.

3. We find the optimal run <2 in T2. For the optimization, we will use Λ11 + <2.

4. We find the optimal run <3 in T3. For the optimization, we will use Λ21
+ <3.

5. We find ALL labeled runs Λi3 in T3: there is one such a run Λ13
.

6. We find the optimal run <1back in T1back. We will use Λ21 + Λ13 + <1back .

7. Finally, we find min{<1,Λ11
+ <2,Λ21

+ <3,Λ21
+ Λ13

+ <1back}.
8. We observe that < = min{<1,Λ11

+ <2,Λ21
+ <3,Λ21

+ Λ13
+ <1back}.

In order to generalize the obtained observations of the example, we need:

1. The precise definition of the weighted labeled trees and computations on them as well as
the formal definition of a language that describes our optimization problems: Section C.

2. Tree T is NOT a disjoint union of its sub-trees. We need a formal framework to deal with
such objects: Section 5.

3. Let =old(N) denote the time to solve the problem directly (N denotes the size of the
coding of T ).

• EI denotes time to extract index structure I from T . We have four ordered numbers
to distinguish sub-trees in our example.
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• Eı denotes time to extract each Tı from T . We have four numbered sub-trees in our
example.

• Cı(nı) denotes time to compute values <1, Λ11 , Λ21 on T1; <2 on T2; <3, Λ13 on T3
and <1back on T1back (nı is the size of the coding of Tı).

• =F denotes time to build the sentence like min{<1,Λ11 + <2,Λ21 + <3,Λ21 + Λ13 +
<1back}.

• =comp denotes time to compute min{<1,Λ11 + <2,Λ21 + <3,Λ21 + Λ13 + <1back}.
The new computation time is: =new = EI + Σı∈IEı + Σı∈ICı +=F +=comp. The question
now is: When does hold =old > =new?

Moreover, we want the construction of our sentence like min{<1,Λ11 +<2,Λ21 +<3,Λ21 +Λ13 +
<1back} depends only upon the property to be optimized and the predefined ”communication”
rules, but NOT upon the given T .

3 Disjoint Union and Shuffling of Structures

The first reduction technique that we use is Feferman-Vaught reductions. Feferman-Vaught
reduction sequence (or simply, reduction) is a set of formulae such that each such a formula
can be evaluated locally in some component or index structure. Next, from the local values,
received from the components, and possibly some additional information about the components,
we compute the value for the given global formula. In the logical context, the reductions
are applied to a relational structure A distributed over different components with structures
Ai, i ∈ I. The reductions allow the formulae over A can be computed from formulae over the
structures Ai’s and formulae over the index structure I.

In this section, we start to discuss different ways of obtaining structures from components.
The Disjoint Union of a family of structures is the simplest example of juxtaposing structures
over an index structure I with universe I, where none of the components are linked to each
other.

Definition 1 (Disjoint Union).
Let τi = 〈Ri1, . . . , Riji〉 be a vocabulary of structure Ai. In the general case, the resulting structure

is A =
⊔̇
i∈IAi = 〈I ∪

⋃̇
i∈IAi, P (ı, v), Index(x), RIj (1 ≤ j ≤ jI), Riji(i ∈ I, 1 ≤ ji ≤ jı), 〉 for

all i ∈ I, where P (i, v) is true iff element a came from Ai, Index(x) is true iff x came from I.

Definition 2 (Partitioned Index Structure).
Let I be an index structure over τind. I is called finitely partitioned into ` parts if there are
unary predicates Iα, α < `, in the vocabulary τind of I such that their interpretation forms a
partition of the universe of I.

The following holds:

Theorem 1.
Let I be a finitely partitioned index structure. Let A =

⊔̇
i∈IAi be a τ–structure, where each Ai

is isomorphic to some B1, . . . ,B` over the vocabularies τ1, . . . , τ`, in accordance to the partition
(` is the number of the classes). For every φ ∈MSOL(τ) there are:

• a boolean function Fφ(b1,1, . . . , b1,j1 , . . . , b`,1, . . . , b`,j` , bI,1, . . . , bI,jI )

• MSOL–formulae ψ1,1, . . . , ψ1,j1 , . . . , ψ`,1, . . . , ψ`,j`

• MSOL–formulae ψI,1, . . . , ψI,jI
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such that for every A, I and Bi as above with Bi |= ψi,j iff bi,j = 1 and BI |= ψI,j iff bI,j = 1
we have

A |= φ iff Fφ(b1,1, . . . , b1,j1 , . . . , b`,1, . . . , b`,j` , bI,1, . . . , bI,jI ) = 1.

Moreover, Fφ and the ψi,j are computable from φ, ` and vocabularies alone, but are exponential
in the quantifier rank of φ.

Proof: The proof is classical; see, in particular [3].

Now, we introduce an abstract preservation property of XX-combination of logics L1,L2,
denoted by XX − PP (L1,L2). XX may mean, for example, Disjoint Union. The reason
why we look at this abstract property is that it can be proven for various logics using their
associated pebble games. The proofs usually depend upon the details of the particular pebble
games. However, the property XX−PP (L1,L2) and its variants play an important role in our
development of the Feferman-Vaught style theorems.

Definition 3 (Preservation Property with Fixed Index Set).
For two logics L1 and L2 we define Preservation Property for Disjoint Union

Input of operation: Indexed set of structures;

Preservation Property: if for each i ∈ I being the index set, Ai, Bi satisfy the same sen-
tences of L1, then the disjoint unions

⊔
i∈I Ai,

⊔
i∈I Bi satisfy the same sentences of L2.

Notation: DJ − PP (L1,L2)

The Disjoint Union of a family of structures is the simplest example of juxtaposing struc-
tures where none of the components are linked to each other. Another way of producing a
new structure from several given structures is by mixing (shuffling) structures according to a
(definable) prescribed way along the index structure.

Definition 4 (Shuffle over Partitioned Index Structure).
Let I be a partitioned index structure into β parts, using unary predicates Iα, α < β. Let
Ai, i ∈ I, be a family of structures such that for each i ∈ Iα it holds Ai ∼= Bα, according to
the partition. In this case, we say that

⊔
i∈I Ai is the shuffle of Bα along the partitioned index

structure I, and denote it by
⊎I
α<β Bα.

Note that the shuffle operation, as defined here, is a special case of the disjoint union, and
that the disjoint pair is a special case of the finite shuffle.

Definition 5 (Preservation Properties with Variable Index Structures).
For two logics L1 and L2 we define Preservation Properties for Shuffle

Input of operation: A family of structures Bα, α < β, and a (finitely) partitioned index struc-
ture I with Iα a partition.

Preservation Property: Assume that for each α < β the pair of structures Aα,Bα satisfy the
same sentences of L1, and I,J satisfy the same MSOL-sentences. Then, the schuffles⊎I
α<β Aα and

⊎J
α<β Bα satisfy the same sentences of L2.

Notation: Shu− PP (L1,L2) (FShu− PP (L1,L2))

Definition 6 (Reduction Sequence for Shuffling).
Let I be a finitely partitioned τind-index structure and L be logic.
Let A =

⊎I
α<β Bα be the τ–structure which is the finite shuffle of the τα-structures Bα over I.

A L1-reduction sequence for shuffling for φ ∈ L2(τshuffle) is given by
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1. a boolean function Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ , bI,1, . . . , bI,jI )

2. set Υ of L1–formulae Υ = {ψ1,1, . . . , ψ1,j1 , . . . , ψβ,1, . . . , ψβ,jβ}
3. MSOL–formulae ψI,1, . . . , ψI,jI

and has the property that for every A, I and Bα as above with Bα |= ψα,j iff bα,j = 1, and
BI |= ψI,j iff bI,j = 1, we have

A |= φ iff Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ , bI,1, . . . , bI,jI ) = 1.

Note that we require that Fφ and the formulae ψα,j depend only on φ, β and τ1, . . . , τβ, but not
on the structures involved.

We now list which Preservation Properties hold for which logics.

Theorem 2.
Let I be an index structure and L be any of FOL, FOLm,k, Lωω1,ω, Lkω1,ω, MSOLm, MTCm,

MLFPm, or FOL[Q]m,k (Lω1,ω[Q]k) with unary generalized quantifiers. Then DJ−PP (L,L)
and FShu−PP (L,L) hold. Note that this includes DJ −PP (FOLm,k, FOLm,k) and FShu−
PP (FOLm,k, FOLm,k) with the same bounds for both arguments, and, similarly, for the other
logics.

Proof: We first list the cases known from the literature.

FOL and FOLm,k: The proofs for FOL and MSOL are classical; see, in particular [3]. Ex-
tension for FOLm,k can be done directly from the proof for FOL.

MLFP and MLFPm: The proof for MLFP was given in [2].

Lω1,ω(Q)k: The proof was given in [5].

Our original proof for MTCm is explicitly provided in Appendix D.

Theorem 3.
Let L be any of FOL, FOLm,k, Lωω1,ω, Lkω1,ω MSOLm, MTCm, MLFPm, or FOL[Q]m,k

with unary generalized quantifiers. There is an algorithm, which produces for given L, τind,
τα, α < β, τshuffle and φ ∈ L(τshuffle), a reduction sequence for φ for (τind, τshuffle)-shuffling.
However, Fφ and the ψα,j are exponential in the quantifier rank of φ. Furthermore, F depends
on the MSOL–theory of the index structure restricted to the same quantifier rank as φ.

Proof: By analyzing the proof of Theorem 2. A special case was analyzed in Gurevich’s [18].
We finally show that our restriction to unary generalized quantifiers (MTC and MLFP ) is
necessary.

Proposition 1. Theorem 2 does not hold for 2-TC or 2-LFP .

Proof: Let I = {0, 1} and let the components be finite linear orders. Using a counting argument,
it is easy to produce arbitrary large pairs of linear orders A0, A1, which are 2-TC−m–equivalent,
but of different cardinalities. Now consider the structure B0 = A0 t A0 and B1 = A0 t A1.
The 2-TC–formula, which distinguishes B0 from B1 is the formula θ, which asserts that the two
components have the same cardinality. θ can be written as

2-TCx0, x1, y0, y1; first0, first1, last0, last1(succ0(x0, y0) ∧ succ1(x1, y1)),

where succi is the FOL formula, expressing the successor in the ith component, and firsti, lasti
are the constant symbols, which are interpreted by the first, respectively, the last element in the
ith component.
Now, we discuss various ways of obtaining weighted labeled trees from components, as intro-
duced in [41].
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Definition 7 (Finite Disjoint Union of Weighted Labeled Trees).
Let τi = 〈labelτai, edgeτi i〉, be a vocabulary of a weighted labeled tree Ti over Σ. In the general

case, the tree over Σ∪ I is T =
⊔̇
i∈ITi = 〈

⋃̇
i∈IBi, D; labeli(u)(i ∈ I), labelτai(i ∈ I), edgeτi ı(ı ∈

I)〉 for all i ∈ I, where labeli(u) is true iff u came from Bi, I is finite and each element in I is
of rank 1.

Now, the following Theorem 4 can be stated, cf. [41].

Theorem 4.
Let I be a finite index set with ` elements. Let T =

⊔̇
i∈ITi be a weighted labeled tree. Then for

every ϕ ∈WMSOL(τ) over boolean semi-rings, there are:

• a computation over weighted WMSOL formulae

Fϕ($1,1, . . . , $1,j1 , . . . , $`,1, . . . , $`,j`), and

• WMSOL–formulae ψ1,1, . . . , ψ1,j1 , . . . , ψ`,1, . . . , ψ`,j`

such that for every Ti and I as above with $i,j = %i,j iff [ψi,j ] = %i,j, we have

[ϕ] = % iff Fϕ($1,1, . . . , $1,j1 , . . . , $`,1, . . . , $`,j`) = %.

Moreover, Fϕ and the ψi,j are computable from ϕ, ` and vocabularies alone, but are expo-
nential in the quantifier rank of ϕ.

In Theorem 5, we also list some other options of commutative semi-rings to choose.

Theorem 5. In addition, the following semi-rings satisfy Theorem 4:

• Subset Semi-ring: (P (A),∩,∪, ∅, A). The proof by analyzing and extension of the proof in
[14].

• Fuzzy Semi-ring: ([0, 1],∨,∧, 0, 1). The proof by analyzing and extension of the proof in
[31].

• Extended natural number: (N ∪ {∞},+, ·, 0, 1). The proof by analyzing and extension of
the proof in [31].

• Tropical Semi-ring: (R+ ∪ {+∞},min,+,+∞, 0), cf. [41].

• Arctic Semi-ring: (R+ ∪ {−∞},max,+,−∞, 0). The proof by analyzing and extension of
the proof in [41].

4 Syntactically Defined Translation Schemes

The second logical reduction technique that we use is the syntactically defined translation
schemes, which describe transformations of logical structures. The notion of abstract transla-
tion schemes comes back to Rabin, cf. [38]. They give rise to two induced maps: translations
and transductions. Transductions describe the induced transformation of logical structures and
the translations describe the induced transformations of logical formulae.

Definition 8 (Translation Schemes Φ).
Let τ1 and τ2 be two vocabularies and L be a logic. Let τ2 = {R1, . . . , Rm} and let ρ(Ri) be
the arity of Ri. Let Φ = 〈ϕ,ψ1, . . . , ψm〉 be formulae of L(τ1). Φ is κ–feasible for τ2 over τ1
if ϕ has exactly κ distinct free variables and each ψi has κρ(Ri) distinct free variables. Such
a Φ = 〈ϕ,ψ1, . . . , ψm〉 is also called a κ–τ1–τ2–translation scheme or, shortly, a translation
scheme, if the parameters are clear in the context.
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The above definition as a rule assumes one sorted logical structures. However, if we deal
with weighted logics like WMSOL this is not a case. In general, if L is defined over particular
kinds of L-objects (like graphs, words, etc.), then the exact logical presentation of the objects
must be explicitly provided. WMSOL is defined over the weighted labeled trees and we present
them as logical structures in the following way:

Definition 9 (Weighted Labeled Tree over a ptv-monoid D).
Given a ptv-monoid D, the weighted labeled tree over D is the following logical many-sorted
structure T = 〈B, D; labela, edgei〉, where

Universe of T is many-sorted: B is the tree domain and D comes from the monoid.

Relations of T are defined as following. labela is a unary relation, which for each a ∈ Σ
means that u ∈ B is labeled by a, and edgei is a binary relation, which for each 1 ≤ i ≤
maxΣ and two u1, u2 ∈ B means that u2 is an immediate prefix of u1.

In the context of WMSOL, Definition 8 may be paraphrased as follows:

Definition 10 (Translation Schemes ΦD on Weighted Labeled Trees).
Let τ1 and τ2 be two vocabularies of weighted labeled trees. Let τ1 = 〈labelτ1a , edge

τ1
i 〉, over

ptv-monoid D. Let Φ = 〈φB, φD;ψlabela , ψedgei〉 be an almost boolean WMSOL formulae (for
each a ∈ Σ and 1 ≤ i ≤ maxΣ). We say that ΦD is feasible for τ2 over τ1 if

• φB has exactly 1 distinct free first order variable over B,

• φD is a tautology with exactly one free variable over D,

• each ψlabela has exactly 1 distinct free first order variable over B,

• each ψedgei has exactly 2 distinct free first order variables over B.

In general, Definition 8 must be adopted to the given logic L, if it is not straightforward.
For L like FOL, MSOL, MTC, MLFP or FOL with unary generalized quantifiers, with

a translation scheme Φ we can naturally associate a (partial) function Φ∗ from τ1–structures to
τ2–structures.

Definition 11 (Induced map Φ∗).
Let A be a τ1–structure with universe A and Φ be κ–feasible for τ2 over τ1. The structure AΦ

is defined as follows:

1. The universe of AΦ is the set AΦ = {ā ∈ Aκ : A |= ϕ(ā)}.
2. The interpretation of Ri in AΦ is the set

AΦ(Ri) = {ā ∈ AΦ
ρ(Ri)·κ : A |= ψi(ā)}.

Note that AΦ is a τ2–structure of cardinality at most | A |κ.

3. The partial function Φ∗ : Str(τ1) → Str(τ2) is defined by Φ∗(A) = AΦ. Note that Φ∗(A)
is defined iff A |= ∃x̄ϕ.

The case of WMSOL it is a bit more tricky. The (partial) function Φ∗D from τ1–trees to
τ2–trees is defined as follows:

Definition 12 (Induced map Φ∗D).
Let T τ1 be a τ1–tree and ΦD be feasible for τ2 over τ1. The structure T τ2ΦD

is defined as follows:

• The many-sorted universe B, D: are the sets:
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1. BΦD = {u ∈ Bτ1 : T τ1 |= φB(u)};
2. DΦD = D.

• Relations labelτ2a , edge
τ2
i : For each a ∈ Σ and 1 ≤ i ≤ maxΣ:

1. The interpretation of each labela in T τ2ΦD is the set

T τ2ΦD (labela) = {u ∈ Bτ1 : T τ1 |= ψlabela(u)};

2. The interpretation of each edgei in T τ2ΦD is the set of pairs

T τ2ΦD (edgei) = {(u1, u2) ∈ Bτ12 : T τ1 |= ψedgei(u1, u2)};

• ΦD
∗: The partial function ΦD

∗ : Trees(τ1)→ Trees(τ2) is defined by

ΦD
∗(T τ1) = T τ2ΦD .

Note that ΦD
∗(T τ1) is defined iff T τ1 |= φB(u).

Again, for L like FOL, MSOL, MTC, MLFP or FOL with unary generalized quantifiers,
with a translation scheme Φ we can also naturally associate a function Φ# from L(τ2)–formulae
to L(τ1)–formulae.

Definition 13 (Induced map Φ#).
Let θ be a τ2–formula and Φ be κ–feasible for τ2 over τ1. The formula θΦ is defined inductively
as follows:

1. For Ri ∈ τ2 and θ = R(x1, . . . , xm) let xj,h be new variables with i ≤ m and h ≤ κ and
denote by x̄i = 〈xi,1, . . . , xi,κ〉. We put θΦ = ψi(x̄1, . . . , x̄m).

2. For the boolean connectives the translation distributes, i.e., if θ = (θ1 ∨ θ2) then θΦ =
(θ1Φ ∨ θ1Φ) and if θ = ¬θ1 then θΦ = ¬θ1Φ, and similarly for ∧.

3. For the existential quantifier, we use relativization, i.e., if θ = ∃yθ1, let ȳ = 〈y1, . . . , yκ〉
be new variables. We put θΦ = ∃ȳ(ϕ(ȳ) ∧ θ1Φ).

4. For (monadic) second order variables U of arity ` (` = 1 for MSOL) and v̄ a vector of
length ` of first order variables or constants we translate U(v̄) by treating U like a relation
symbol above and put

θΦ = ∃V (∀v̄(V (v̄)→ (φ(v̄1) ∧ . . . φ(v̄`) ∧ (θ1)Φ))).

5. For generalized quantifiers, if θ = Qiv
1, v2, . . . , vmθ1(v1, v2, . . . , vm, . . .), then let v̄j =

〈vj1, . . . , v
j
k〉 be new variables for vj. We set

θΦ = Qiv̄
1, v̄2, . . . , v̄m(θ1(v̄1, v̄2, . . . , v̄m, . . .)Φ).

6. For infinitary logics, if θ =
∧

Ψ then θΦ =
∧

ΨΦ.

7. For LFP , if θ = n-LFPx̄, ȳ, ū, v̄θ1 then θΦ = (n · κ)-LFPx̄, ȳ, ū, v̄θ1Φ.

8. For TC, if θ = n-TCx̄, ȳ, ū, v̄θ1 then θΦ = (n · κ)-TCx̄, ȳ, ū, v̄θ1Φ.

9. For weighted formulae over ptv-monoid D:

(a) for d we do nothing;

(b) for a boolean formula β we put ζΦD = β;
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(c) for boolean connectives and quantifiers the translation distributes.

10. The function Φ# : L(τ2)→ L(τ1) is defined by Φ#(θ) = θΦ.

Note that the case of weighted formulae over ptv-monoid D is the most complicated in the
definition. In general, given L, Definition 13 must be adopted to all well-formed formulae of
this logic.

The following fundamental theorem is easily verified for correctly defined L translation
schemes. Its origins go back at least to the early years of modern logic, cf. [19, page 277 ff].

Theorem 6. Let Φ = 〈ϕ,ψ1, . . . , ψm〉 be a κ–τ1–τ2–translation scheme, A a τ1-structure and
θ a L(τ2)–formula. Then

A |= Φ#(θ) iff Φ∗(A) |= θ.

5 Strongly Distributed Structures

The disjoint union and shuffles as such are not very interesting. However, combining it with
translation schemes gives as a rich repertoire of composition techniques. Now, we generalize
the disjoint union or shuffling of structures to strongly distributed structures in the following
way:

Definition 14 (Strongly Distributed Structures).
Let I be a finitely partitioned index structure and L be any like FOL, MSOL, WMSOL,
MTC, MLFP , or FOL with unary generalized quantifiers. Let A =

⊔
i∈IAi be a τ–structure,

where each Ai is isomorphic to some B1, . . . ,Bβ over the vocabularies τ1, . . . , τβ, in accordance
with the partition. For a scalar (non–vectorized) τ1–τ2 L–translation scheme Φ, the Φ–Strongly
Distributed Structure, which is composed from B1, . . . ,Bβ over I, is the structure Φ∗(A), or
rather any structure isomorphic to it.

Now, our main theorem can be formulated as follows:

Theorem 7.
Let I be a finitely partitioned index structure, L be any of FOL, MSOL, MTC, MLFP ,
MSOL or FOL with unary generalized quantifiers. Let S be a Φ–Strongly Distributed Structure,
composed from B1,. . . ,Bβ over I, as above. For every φ ∈ L(τ) there are

1. a boolean function FΦ,φ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ , bI,1, . . . , bI,jI ),

2. L–formulae ψ1,1,. . . ,ψ1,j1 , . . . ,ψβ,1,. . . ,ψβ,jβ and

3. MSOL–formulae ψI,1,. . . ,ψI,jI

such that for every S, I and Bi as above with Bi |= ψi,j iff bi,j = 1 and I |= ψI,j iff bI,j = 1
we have

S |= φ iff FΦ,φ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ , bI,1, . . . , bI,jI ) = 1.

FΦ,φ and ψi,j are computable from Φ# and φ, but they are exponential in the quantifier rank of
φ.

Proof: By analyzing the proof of Theorem 3 and using Theorem 6.
Moreover, in [41], the following was proven for WMSOL:
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Theorem 8.
Let I be a finite index structure and let T be Φ-Strongly Distributed over T1,. . .,T` over I, as
above. For every ϕ ∈WMSOL(τ) that satisfies Theorem 4 there are:

• a computation over weighted formulae FΦ,ϕ($1,1, . . . , $1,j1 , . . . , $`,1, . . . , $`,j`), and

• WMSOL–formulae ψ1,1, . . . , ψ1,j1 , . . . , ψ`,1, . . . , ψ`,j`

such that for every Ti and I as above with $i,j = %i,j iff [ψi,j ] = %i,j we have

[ϕ] = % iff FΦ,ϕ($1,1, . . . , $1,j1 , . . . , $`,1, . . . , $`,j`) = %.

Moreover, FΦ,ϕ and ψi,j are computable from Φ# and ϕ, but they are exponential in the quan-
tifier rank of ϕ.

6 Complexity Analysis

In this section, we discuss under what conditions our approach improves the complexity of
computations, when measured in the size of the composed structures only. A strongly dis-
tributed structure (weighted tree) is now submitted to a computation unit and we want to
know: how long does it take to check whether φ is true on the structure. Now, we give the
general complexity analysis of the computation on strongly distributed structures.

Assume that A is a strongly distributed structure. Its components are Aı with index
structure I (i ∈ I), and we want to check whether φ is true in A. Assume that:

• T (N) or Told(N) denotes the time to solve the problem by the traditional sequential way
(here, N denotes the size of the coding of A);

• EI denotes the time to extract index structure I from A;

• Eı denotes the time to extract each Aı from G;

• CI(nI) denotes the time to compute all values of bI,, where nI is the size of I;

• Cı(nı) denotes the time to compute all values of bı,, where nı is the size of Aı;

• TFΦ,φ
denotes the time to build FΦ,φ;

• TS denotes the time to achieve one result of FΦ,φ.

According to these symbols, the new computation time is:

Tnew = EI + Σı∈IEı + CI + Σı∈ICı + TFΦ,φ
+ TS

and the question to answer is: When does hold Told > Tnew? For more details, cf. [39].

7 Conclusion and Outlook

In this contribution, we introduced the notion of strongly distributed structures and presented
a uniform approach to incremental automated reasoning on such structures. The approach is
based on a systematic use of two logical reduction techniques: Feferman-Vaught reductions and
the syntactically defined translation schemes.

Our general scenario is as follows: given logic L, structure A as a composition of structures
Ai, i ∈ I, index structure I and formula φ of the logic to be evaluated on A. The question
is: What is the reduction sequence of φ, if any? We propose a general approach to try to
answer the question and to investigate the computation gain of the incremental evaluations.
The general template is defined as follows:

239



Incremental Reasoning E.V. Ravve, Z. Volkovich and G.-W. Weber

1. Prove preservation theorems
Given logic L.

(a) Define disjoint union of L-structures The logic may be defined for arbitrary
structures or rather for a class of structures like graphs, (directed) acyclic graphs,
trees, words, (Mazurkiewicz) traces, cf. [6], or (lossy) message sequence charts, etc.
In the general case, we use Definition 1 that provides a logical definition of disjoint
union of the components: A =

⊔̇
i∈IAi. An adaptation of Definition 1 to the case of

Weighted Monadic Second Order Logic (WMSOL), which is introduced over trees,
is presented in Definition 7. If logic L is introduced over another class of structures,
then Definition 1 must be aligned accordingly.

(b) Define a preservation property XX−PP for L After we defined the appropriate
disjoint union of structures, we define the notion of a (XX) preservation property (PP)
for logics; see Definitions 3 and 4.

(c) Prove the preservation property XX − PP for L Now, we try to prove the
corresponding preservation property for L. As a rule, such preservation theorem can
be proven by suitable Pebble games, which are generalizations of Ehrenfeucht-Fräıssé
games. This gives usually a version of XX − PP (Lm1,k1

1 ,Lm2,k2

2 ) for suitable chosen
definitions of quantifier rank (m) and counting of variables (k). Our Theorem 2
shows that the preservation theorems hold for FOL, FOLm,k, Lωω1,ω, Lkω1,ω, MSOLm,

MTCm, MLFPm, or FOL[Q]m,k (Lω1,ω[Q]k) with unary generalized quantifiers.
However, theorems like Theorem 2 are not always true. In Proposition 1, we show
that our restriction to unary generalized quantifiers (MTC and MLFP ) is necessary.
In fact, Theorem 2 do not hold for 2-TC or 2-LFP . Moreover, Theorem 5 shows for
which semi-rings WMSOL guaranties the preservation property.

2. Define Translation Schemes
Given logic L.
Definitions 8 introduces the classical syntactically defined translation schemes. Definition
9 is an adaption of Definitions 8 to the case of a many-sorted structures. In general, Defi-
nitions 8 must be adopted in the similar way to the given logic L. Definitions 8 gives rise
to two induced maps, translations and transductions. Transductions describe the induced
transformation of L-structures and the translations describe the induced transformations
of L-formulae: see Definitions 11, 12 and 13. Again, the presented adaptation of the
definitions to the case of WMSOL is a bit tricky. If the L-translation scheme is defined
correctly then the proof of the corresponding variation of Theorem 6 is easily verified.

3. Strongly Distributed Structures
Given L-structure A.
In this step, we defined disjoint unions (and shuffles) of L-structures. However, as such they
are not very interesting. On the other hand, combining them with translation schemes
gives as a rich repertoire of composition techniques. Using translation scheme Φ, we
introduce the notion of strongly distributed structures. If the given L-structure A is a
Φ-strongly distributed composition of its components then we may apply L-variation of
our main Theorem 7 to it. Theorem 7 shows how to effectively compute the reduction
sequences for different logics, under investigation, for the strongly distributed structures.

Finally, we derive a method for evaluating L-formula φ on A, which is a Φ-strongly distributed
composition of its components. The method proceeds as follows:

Preprocessing: Given φ and Φ, but not a A, we construct a sequence of formulas ψi,j and an
evaluation function FΦ,φ as in Theorem 7.
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Incremental Computation: We compute the local values bi,j for each component of the A.

Solution: Theorem 7 now states that φ, expressible in the corresponding logic L, on A may
be effectively computed from bi,j , using FΦ,φ.

We showed that the approach works for lots of extensions of FOL but not all. The con-
sidered extensions of FOL are suitable candidates for modeling languages for components and
services, used in incremental automated reasoning, data mining, decision making, planning and
scheduling.

We plan to apply the proposed methodology to the incremental reasoning, based on the
promising variations of WMSOL as introduced recently in [25], [26], [36].
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A Motivating Example: Airlines of Two Countries

The example is taken verbatim from [40]. We are given two countries A1 and A2 with their
local airline connections. These are represented by two disjoint undirected graphs, with the
AIRPORTS as vertices VA1

and VA2
, and (possibly labeled) edges for the connections (where

the labels indicate AIRLINE, DAY, etc.). The sets of edges are denoted by EA1 and EA2 (using
several edge relations in the labeled case such as EAIRLINEAi

and EDAYAi
, etc). Each of these

graphs is stored in a different place. If we add now different unary predicates in each country
to mark the International Airports (PA1

and PA2
) and we stipulate that all A1 International

Airports be connected with all A2 International Airports, then we get the situation, abstractly
described below, see Figure 3.

Now, we discuss how the properties connectivity and existence of cycles can be reduced to
properties of the two labeled graphs and the the definition of the connections between them
(via a translation scheme). We note that the properties connectivity and existence of cycles are
not First Order Logic (FOL) definable.

Assume we are given two undirected finite graphs A1 = 〈VA1
, EA1

, PA1
〉 and A2 =

〈VA2
, EA2

, PA2
〉, where VAi denotes a set of vertices, EAi denotes a set of edges and PA1

, PA2
are

one place relations (labels, vertex colourings), respectively. Let A be the disjoint union of A1

and A2 with additional edges forming a complete bipartite graph on the coloured vertices. We
define this composition of two coloured graphs formally as follows: A = A1

⊕
A2 = 〈A1∪̇A2, E〉,

where A1∪̇A2 denotes disjoint union of sets of vertices, and two vertices x and y of A belongs
to E iff ΦE(x, y) holds, where

ΦE(x, y) = ((x, y) ∈ EA1
∨ (x, y) ∈ EA2

)
∨

((x ∈ PA1
∧ y ∈ PA2

) ∨ (x ∈ PA2
∧ y ∈ PA1

)).

The result is a graph with two kinds of labels. Clearly ΦE(x, y) can be rewritten as a FOL
formula in the vocabulary of labeled graphs. Assume that we want to check whether A is
connected or has cycles.
Connectivity: The following property is easily seen:
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Figure 3: Composition of two graphs: A1 and A2.

(*) A is connected iff both in A1 and A2 it is true that every connected component
has at least one coloured vertex.

We observe the following:

• Connectivity can be expressed by a formula of Monadic Second Order Logic (MSOL)
ϕconn.

• The property that every connected component has at least one coloured vertex can be
expressed by formula of MSOL ψ.

• ΦE can be expressed by a formula ofMSOL over the disjoint union ofA1 andA2. Actually,
in this example, ΦE(x, y) is a quantifier free FOL formula.

• To check whether A is connected (A |= ϕconn) it suffices to check, using (*), that A1 |= ψ
and A2 |= ψ.

• Moreover, by defining boolean values bi = 1 iff Ai |= ψ there is a boolean function F such
that A |= ϕconn iff F (b1, b2) = 1.

• To check whether A is not connected (A |= ¬ϕconn) it suffices to evaluate F again and to
check that F (b1, b2) = 0.

• The formula ψ and the boolean function F depend only on the syntactic structure of ΦE
and ϕconn, but not on the structures Ai.

• If we have checked the connectivity of A and now wish to check the connectivity of A′ =
A′1

⊕
A2 for a different A′1 we just have to recompute A′1 |= ψ, and F (b′1, b2) for b′1 = 1 iff

A′1 |= ψ, but we do not have to recompute b2.

Cyclicity: To check whether A has cycles we observe that

(†) A has a cycle iff A1 has a cycle, or A2 has a cycle, or there are at least two
connected coloured vertices in A2−i and at least one coloured vertex in Ai+1, where
i ∈ {0, 1},

and proceed similarly as follows.

• We first write the property as a formula ϕcycle in MSOL.

• Then, using (†), which depends only on ϕcycle and ΦE , we look for formulas ψ1,1, . . . , ψ1,n1

and ψ2,1, . . . , ψ2,n2
in MSOL, which will give us the properties to be checked in A1 and

A2, respectively.
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• Then, again using (†), we look for a boolean function F in n1+n2 arguments b1,1, . . . , b2,n2 .

• Now, we put bi,j = 1 iff Ai |= ψi,j and hope to conclude that A |= ϕcycle iff
F (b1,1, . . . , b2,n2

) = 1.

Observations

1. In the above example, the construction has three inputs: the two coloured graphs and
the formula ΦE , which defines the new edge relation on the disjoint union. The formula
ΦE can be viewed as a parameter in the definition of a binary operation

⊕
Φ(A1,A2) on

coloured graphs. The general case is obtained, using Translation Schemes, as described in
Section 4.

2. In the example above, we have the index set I = {1, 2}, and the properties ϕconn, which
says that the graph is connected, and ψ, which says that every connected component has
at least one coloured vertex. Then the connectivity condition (*) can be rephrased as: the
set b of indices, where ψ is true, comprises all of I. So we have a distribution sequence for
ϕconn with ςconn(b) =def (b = I) and ψ.

3. For ϕcycle, which says that there is a cycle in the graph, the cyclicity condition (†) can be
rephrased as a distribution sequence with

ςcycle(b1, b2, b3) =def (b1 6= ∅)
∨

(∃X(X 6= ∅ ∧ I −X 6= ∅ ∧ b2 = X ∧ b3 = I −X))

and ψ1 says that there is a cycle, ψ2 says that there are two coloured connected vertices,
and ψ3 says that there is at least one coloured vertex, and bj (j ∈ {1, 2, 3}) is the set of
indices i (i ∈ I) of the structures, such that Ai |= ψj .

4. Both considered properties, connectivity and the existence of cycles, are expressible already
in FOL augmented by a unary Transitive Closure operator TC1 or in (Least) Fixed Point
Logic (LFP).

Our main theorem 7 shows that the method can be mechanized, even if (*) and (†) are not
given in advance.

B Extensions of First Order Logic

In this section, we consider several extensions of First Order Logic (FOL). FOL is not powerful
enough to express many useful properties. This obstacle can be overcome by adding different
operators as well as by richer quantification. In our further considerations, we will need some
additional logical tools and notations. For all logics we define:

Definition 15 (Quantifier Rank of Formulae).
Quantifier rank of formula ϕ (rank(ϕ)) can be defined as follows:

• for ϕ without quantifiers rank(ϕ) = 0;

• if ϕ = ¬ϕ1 and rank(ϕ1) = n1, then rank(ϕ) = n1;

• if ϕ = ϕ1 · ϕ2, where · ∈ {∨,∧,→}, and rank(ϕ1) = n1, rank(ϕ2) = n2, then rank(ϕ) =
max{n1, n2};
• if ϕ = Qϕ1, where Q is a quantifier, and rank(ϕ1) = n1, then rank(ϕ) = n1 + 1.
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It is well known that the expressive power of FOL is very limited. For example, the transitive
closure is not defined in this logic. The source of this defect is the lack of counting or recursion
mechanism in this logic. Several attempts to augment the expressive power of FOL were done
in this direction. For example, Immerman, cf. [21], introduced the counting quantifier ∃ix,
that can be read as: ”there are at lest i elements x such that ...”. On the other hand, these
attempts were inspired by the work by Mostowski, cf. [37], when he introduced the notion of
cardinality quantifiers (for example: ”there are infinitely many elements”), and Tarski, cf. [42],
who studied the infinitary languages. The next development of this subject was done in the
works by Linström, cf. [27, 28], which introduced generalized quantifiers. In this contribution,
we mostly follow [24]. We use the notation K (or Q) for an arbitrary class of structures. If τ is
a vocabulary, K(τ) is the class of structures over τ that are in K.

Definition 16 (Simple Unary Generalized Quantifier).
A simple unary generalized quantifier is a class Q of structure over the vocabulary consisting of
a unary relation symbol P , such that Q is closed under isomorphism, i.e., if U = 〈U ,PU 〉 is a
structure in Q and U ′ = 〈U ′,PU ′〉 is a structure that is isomorphic to U , then U ′ is also in Q.

The existential quantifier is the class of all structures U = 〈U ,PU 〉 with PU a non-empty
subset of U , while the universal quantifier consists of all structures of the form U = 〈U ,U〉.
Numerous natural examples of simple unary generalized quantifiers on class of finite struc-
tures arise from properties that are not FOL definable on finite structures, such as ”there
is an even number of elements”, ”there are at least log(n) many elements”, etc. In par-
ticular, the quantifier ”there is an even number of elements” can be viewed as the class:
Qeven = {〈U,PU 〉 : U is a finite set, PU ⊆ U, and |PU | is even}. We may expend definition
16 to the n-ary generalized quantifier.

Definition 17 (Lindström Quantifiers).
Let us (n1, n2, ..., n`) be a sequence of positive integers. A Lindström Quantifier of type
(n1, n2, ..., n`) is in a class Q of structure over the vocabulary consisting of relation symbols
(P1, P2, ..., P`) such that Pi is ni−ary for 1 ≤ i ≤ ` and Q is closed under isomorphisms.

One of the most known examples of non-simple quantifiers is the equicardinality or Härtig
quantifier I. This is a Lindström Quantifier of type (1, 1) which comprises all structures U =
〈U ,X ,Y〉 when |X| = |Y |. Another example is the Rescher quantifier whose mean is more.

Another way to extend FOL is to allow countable disjunctions and conjunctions:

Definition 18 (Infinitary Logics).

• Lω1ω is the logic, which allows countable disjunctions and conjunctions;

• Lkω1ω is the logic, which allows countable disjunctions and conjunctions, but has only a
total of k distinct variables;

• Lk∞ω, k ≥ 1, is the logic, which allows infinite disjunctions and conjunctions, but has only
a total of k distinct variables;

• Lω∞ω =
⋃
Lk∞ω.

We assume that only variables involved , are v0, . . . , vk−1.
Now, we introduce the syntax and the semantics of the logic Lk∞ω that contains simple unary

generalized quantifiers.

Definition 19.
Let Q = {Qi : i ∈ I} be a family of simple unary generalized quantifiers and let k be a positive
integer. The infinitary logic Lk∞ω(Q) with k variables and the generalized quantifiers Q has the
following syntax (for any vocabulary τ):
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• the variables of Lk∞ω(Q) are v1, ..., vk;

• Lk∞ω(Q)contains all FOL formulae over τ with variables among v1, ..., vk;

• if ϕ is a formulae of Lk∞ω(Q), then so is ¬ϕ;

• if Ψ is a set of formulae of Lk∞ω(Q), then
∨

Ψ and
∧

Ψ are also formulae of Lk∞ω(Q);

• if ϕ is a formulae of Lk∞ω(Q), then each of the expressions ∃vjϕ,∀vjϕ,Qivjϕ is also a
formulae of Lk∞ω(Q) for every j such that 1 ≤ j ≤ k and for every i ∈ I.

The semantic of Lk∞ω(Q) is defined by induction on the construction of the formulae. So,∨
Ψ is interpreted as a disjunction over all formulae in Ψ and

∧
Ψ is interpreted as a conjunction.

Finally, if U is the structure having U as its universe and ϕ(vj , ȳ) is a formulae of Lk∞ω(Q)
with free variables among the variables of vj and the variables in the sequence ȳ, and ū is
a sequence of elements from the universe of U , then: U, ū |= Qivjϕ(vj , ȳ) iff the structure
〈U, {a : U, a, ū |= ϕ(vj , ȳ)}〉 is in the quantifier Qi.

We may also enrich the expressive power of FOL by allowing quantification over relation
symbols. Second Order Logic (SOL) is like FOL, but allows also variables and quantification
over relation variables of various but fixed arities. Monadic Second Order Logic (MSOL) is
the sublogic of SOL where relation variables are restricted to be unary. The meaning function
of formulae is explained for arbitrary τ–structures, where τ is the vocabulary, i.e., a finite set
of relation and constant symbols. Fixed Point Logic (LFP ) can be viewed as a fragment of
SOL, where the second order variables only occur positively and in the fixed point construction.
Similarly MLFP corresponds to the case where the arity of the relation variables is restricted
to 1. The semantics of the fixed point is given by the least fixed point, which does always exist
because of the positivity assumption on the set variable. The Logic LFP is defined similarly
with operators k-LFP for every k ∈ N which bind 2k variables. On ordered structures LFP
expresses exactly the polynomially recognizable classes of finite structures. Without order, every
formula in LFP has a polynomial model checker. For transition systems, MLFP corresponds
exactly to µ-calculus, cf. [43].

The logic MTC (Monadic Transitive Closure) is defined inductively, like FOL. For a
thorough discussion of it, cf. [22]. Atomic formulae are as usual. The inductive clauses include
closure under the boolean operations, existential and universal quantification and one more
clause: If φ(x, y, ū) is a MTC–formula with x, y and ū = u1, . . . , un its free variables, s, t
are terms, then MTCx, y, s, tφ(x, y, ū) is a MTC–formula with x, y bound and ū free. The
formula MTCx, y, s, tφ(x, y, ū) holds in a structure U under an assignment of variables z if
sz, tz ∈ TrCl(φU ). The logic TC is defined similarly with operators k-TC for every k ∈ N
which bind 2k variables. For more detailed exposition, cf. [12, 17].

In [17], E. Grädel introduced a generalization of Ehrenfeucht–Fräıssé Games for TC. As we
need this game in the proof of Theorem 2, we give Grädel’s definition and Theorem 9 concerning
Pebble Games for TC verbatim as in [17].

Definition 20 (Ehrenfeucht–Fräıssé Games for TC).
Suppose we have two structures U and V of the same vocabulary σ. Let c1, . . . , cs and d1, . . . , ds
be the interpretation of the constants of σ in U and V, respectively. The k–pebble game on the
pair (U ,V) is played by Players I and II as follows: There are k pairs (u1, v1), . . . , (uk, vk) of
pebbles. Each round of the game consists of either an ∃–move, ∀–move or TC–move:
∃–move: Player I places a yet unused pebbles ui on an element of U . Player II answers by
putting the corresponding pebble vi on V.
∀–move: Similarly but with ”reversed board”: Player I places vi on V. Player II responds with
ui on U .
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TC–move: Suppose that r pairs of pebbles are already on the board. For some l ≤ (k − r)/2,
Player I selects a sequence x̄0, . . . , x̄m of l–tuples in U such that x̄0 and x̄m consist only of
sets of constants and already pebbled elements. Player II indicates a similar sequences (not
necessary of the same length) of l–tuples ȳ0, . . . , ȳn in V where ȳ0 = f(x̄0), . . . , ȳn = f(x̄m) .
Player I then selects some i ≤ n and places 2l (yet unused) pebbles on ȳi and ȳi+1. Player II
selects some a j ≤ m and places the corresponding pebbles on x̄j and x̄j+1.
¬TC–move: is like TC–move, but with structures A and V interchanged.
When all pebbles are placed, Player I wins if the pebbles determine a local isomorphism from
U to V. More precisely: Let a1, . . . , ak and b1, . . . , bk be the elements carrying the pebbles
u1, . . . , uk and v1, . . . , vk. If the mapping f with f(ai) = bi for i = 1, . . . , k, and f(ci) = di for
i = 1, . . . , s, is an isomorphism between the substructures of A and V that are generated by the
pebbles elements and the constants, then Player II wins; otherwise, Player I wins.

Theorem 9 (Grädel, [17]).
For all structures U and V and all k ∈ N , the following are equivalent: Player II has a winning
strategy for the TC–game with k pebbles on (U ,V) and U ≡kTC V.

B.1 Complexity of Computation for Extensions of First Order Logic

Computation for FOL is polynomial (even in logarithmic space), whereas computation for
MSOL is likely to be non–polynomial, as it sits fully in the polynomial hierarchy.

More precisely, the complexity of computation (in the size of the structure) of Second Order
Logic expressible properties can be described as follows. The class NP of non-deterministic
polynomial-time problems is the set of properties, which are expressible by Existential Second
Order Logic on finite structures, cf. [13]. Computation for SOL definable properties is in the
polynomial hierarchy, cf. [16]. Moreover, for every level of the polynomial hierarchy there is a
problem, expressible in SOL, that belongs to this class. The same fact hold for MSOL, too,
as observed in [30].

Computation for properties, definable in Fixed Point Logic, is polynomial, cf. [43]. The
relation between FOL with generalized quantifiers and computations with oracles is investigated
in [29]. Most properties, which appears in real life applications, are stronger than FOL but
weaker than MSOL, and their computational complexity is polynomial.

C Weighted Monadic Second Order Logic and Weighted
Tree Automata

In this section, we follow [9] almost verbatim. Let N = {1, 2, . . . } be the set of natural numbers
and let N0 = N ∪ {0}. A ranked alphabet is a pair (Σ, rkΣ) consisting of a finite alphabet
Σ and a mapping rkΣ : Σ → N0, which assigns to each symbol of Σ its rank. By Σ(m)

we denote the set of all symbols with rank m ∈ N0 and a(m) denotes that a ∈ Σ(m). Let
maxΣ = max{rkΣ(a) | a ∈ Σ}, the maximal rank of Σ. Let N∗ be the set of all finite words
over N. A tree domain B is a finite, non-empty subset of N∗ such that for all u ∈ N∗ and
i ∈ N, u.i is the prefix of u of length i. Moreover, u.i ∈ B implies u.1, . . . , u.(i − 1) ∈ B,
u.1, . . . , u.(i− 1) is called immediate prefix of u.i; the immediate prefix of u.1 is the empty set
ε. Note that the tree domain of B is prefix-closed. A tree over a set L (of labels) is a mapping
t : B → L, such that dom(t) = B is a tree domain, im(t) is the image of t. The elements of
dom(t) are called positions of t and t(u) is called label of t at u ∈ dom(t). The set of all trees
over L is denoted by TL.
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Definition 21 (Tree Valuation Monoid).
A tv-monoid is a quadruple D = (D,+, V al,0) such that (D,+,0) is a commutative monoid
and V al : TD → D is a function with V al(d) = d for every tree d ∈ TD and V al(t) = 0,
whenever 0 ∈ im(t) for t ∈ TD.

V al is called a (tree) valuation function.

Definition 22 (Product Tree Valuation Monoid).
A ptv-monoid D = (D,+, V al,♦,0,1) consists of a tree valuation monoid, a constant 1 ∈ D
with V al(t) = 1, whenever im(t) = {1} for t ∈ TD, and an operation ♦ : D2 → D with
0♦d = d♦0 = 0 and 1♦d = d♦1 = 1.

Note that the operation ♦, in general, has to be neither commutative nor associative.

C.1 Weighted Monadic Second Order Logic

Given a ptv-monoid D, the syntax of WMSOL over D is defined by the following way:

Boolean formulae:

• labela(x) and edgei(x, y) for a ∈ Σ and 1 ≤ i ≤ maxΣ;

• x ∈ X, ¬β1, β1 ∧ β2, ∀xβ1, ∀Xβ1 for first order variable x and second order variable
X.

Weighted formulae:

• d for d ∈ D;

• β for boolean formula β;

• φ1 ∨ φ2, φ1 ∧ φ2, ∃xφ1, ∀xφ1, ∃Xφ1, ∀Xφ1.

The set free(φ) of free variables occurring in φ is defined as usual. Semantics of WMSOL
valuates trees by elements of D. There is no change in semantics of boolean formulae. 0
defines the semantics of the truth value ”false”. 1 defines the semantics of the truth value
”true”. The monoid operation ”+” is used to define semantics of disjunction and existential
quantifier. The monoid V al function is used to define the semantics of the first order universal
quantification. If, for example, we use the max-plus-semiring the semantical interpretation of
∀xφ is the sum of all weights (rewards or time) defined by φ for all different positions x. More
precisely, for a (V, t)-assignment that maps σ̃ : V → dom(t) ∪ PS(dom(t)), with σ̃(x) ∈ dom(t)
and σ̃(X) ⊆ dom(t), and s ∈ TΣV . The formal definition of the semantics of WMSOL can be
seen in [9].

C.2 Expressive Power of Weighted Monadic Second Order Logic

WMSOL and its fragments have a considerable expressive power. In [35], the coincidence of
recognizable trace series with those, which are definable by restricted formulae from a weighted
logics over traces, was proved. In [15], a notion of a WMSOL logics over pictures was intro-
duced, weighted 2-dimensional on-line tessellation automata (W2OTA) was defined and it was
proved that for commutative semirings, the class of picture series defined by sentences of the
weighted logics coincides with the family of picture series that are computable by W2OTA.
In [33], quantitative models for texts were investigated, an algebraic notion of recognizability
was defined and it was shown that recognizable text series coincide with text series definable
in weighted logics. Nested words are a model for recursive programs. In [34], quantitative
extensions of nested word series were considered and it was shown that regular nested word
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series coincide with series definable in weighted logics. Moreover, lots of optimization problems
and counting problems are expressible in WMSOL, cf. [8, 11, 32, 1, 10]. The logic may be
used in order to describe data mining problems, decision making, planning and scheduling.

Additionally, in [9], a strong relationship between WTA over ptv-monoids and the fragments
of the WMSOL was established. Let Σ be a ranked alphabet and (D,+, V al,0) a tv-monoid.

Definition 23 (Weighted Bottom-up Tree Automaton).
A WTA over a tv-monoid D is a quadruple M = 〈Q; Σ, µ, F 〉, where Q is a non-empty finite
set of states, Σ is a ranked alphabet, µ = (µm)0≤m≤max Σ is a family of transition mappings µm
: Σ(m) → DQm×Q, and F ⊆ Q is a set of final states.

However, the larger the particular fragment gets, the more restrictions on the underlying
ptv-monoid we need. The main theorem of [9] states (cf. the exact definitions in the paper):

Theorem 10. Let S : TΣ → D be a tree series.

1. If D is regular, then S is recognizable iff S is definable by a ∀-restricted and strongly
∧-restricted WMSOL sentence φ.

2. If D is left-distributive, then S is recognizable iff S is definable by a ∀-restricted and
∧-restricted WMSOL sentence φ.

3. If D is a cctv-semiring, then S is recognizable iff S is definable by a ∀-restricted and
commutatively ∧-restricted WMSOL sentence φ.

D Proof of Theorem 2 for MTCm

In this part of the Appendices, we give our original proof of the following part of Theorem 2:

Theorem 11. Let I be an index structure. Then DJ − PP (MTCm,MTCm) and FShu −
PP (MTCm,MTCm) hold.

Proof: We use pebble game for MTC as introduced in [17].
∃–move: If Player I puts pebble u on some element a of structure Ai for some i ∈ I, Player
II now places her pebble v on b of structure Bi using the winning strategy of the components.
∀–move is proved similarly.
MTC–move: If Player I selects a sequence x0,. . .,xm in A, we divide the sequence into seg-
ments xm0,0 ,. . .,xm0,1 ,xm1,0 ,. . .,xm1,1 , . . .,xmp,0 ,. . . , xmp,1 with m0,0 = 0, mp,1 = m and such
that each subsequence xmq,0 , . . . , xmq,1 lies in the same component Aiq .
Player II now constructs her sequence y0, . . . , yn in B segment-wise as follows: She uses two
auxiliary pebbles U0, U1 and V0, V1 on each structure. For the segment xmq,0 , . . . , xmq,1 she puts
U0 on xmq,0 and U1 on xmq,1 . Using the winning strategy on components iq she places the peb-
bles V0 and V1 on elements ymq,0 and ymq,1 and chooses the intermediate elements according to
the winning strategy of the MTC–move. The auxiliary pebbles are reused after every segment.
If Player I now pebbles two neighboring elements in the sequence y0, . . . , yn in B, two cases can
occur:

1. If both pebbled elements are in the same component, Player II just follows her winning
strategy on the corresponding component on A.

2. If the two pebbled elements are in different components, then she plays accordingly.

It is now easy to verify that this is indeed a winning strategy. The auxiliary pebbles are only
used temporarily to mark the beginning and the end of the segments.
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Note that the index set is part of the structures A and B, and is treated itself like a component.
However, in this component Player II copies faithfully the moves of Player I.
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