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Abstract

The prediction and recognition models of driving behaviors are often based on ma-
chine learning approaches. These models are required for the growth of advanced driving
assistance systems. The performance of the model depends on the optimal parameters, hy-
perparameters, and model structure. In the present study, hyperparameters of a previously
developed model (neural network-based state machine model) are optimized for the lane
changing recognition. Two methods are considered for the hyperparameter optimization:
Bayesian optimization and Genetic algorithm (GA). Three lane changing behaviors are
estimated. Real human driving data generated using a driving simulator are used for the
parameterization. The aim is to compare the model’s recognition performance based on
the two methods. Furthermore, comparisons between the models with optimized hyper-
parameters and the original model (without hyperparameter optimization) are performed.
The results show that the performance based on the Bayesian optimization is better than
GA, while the original model still outperforms others.

1 Introduction

In recent years, the use of Advanced Driving Assistance Systems (ADAS) have increased due
to the systems’ ability to realize potential driving behaviors and provide hints in different
situations. In situations where hints are not sufficient, a complete takeover by the system is
performed to maneuver safely. The driving behavior prediction and recognition models play
an integral role in the development of ADAS. Many research contributions have addressed the
development of these models and their integration to ADAS [28]. Most models are developed
using machine learning (ML)-based methods, such as Artificial Neural Network (ANN) [25] and
Support Vector Machine (SVM) [27]. However, developing an optimal model is challenging due
to the difficulty of selecting optimal parameters.

A common solution to tackle this issue is by combining two or more ML-based algorithms to
develop a prediction and recognition model, as in [20], whereby SVM is combined with ANN to
develop a lane changing prediction model. The ANN predicts the trajectory of the vehicle ahead,
while the SVM predicts if a lane change will occur based on the predictions of the ANN. Feature
selection is another method to tackle this issue. Behavior estimations are dependent on features
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like environmental features, as driving behaviors are influenced by the driver’s characteristics
and environmental conditions [11], [8]. Hence, appropriate selection of features is important for
developing an optimal model. Optimization of model parameters during the training process,
such as using Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [11] is also done to
improve the performance. Optimization of hyperparameters in ML-based approaches is also
another method [31]. Hyperparameters are parameters that control the learning process of
an ML algorithm, thus impacting the selection of optimal model parameters and estimations.
Hyperparameter optimization reduces efforts to develop suitable hyperparameters manually and
it makes models reproducible [31]. Various methods are used to optimize the hyperparameters,
such as Bayesian optimization [17] and random search [15]. In [17], hyperparameters of a Long
short-term memory (LSTM) model are optimized using Bayesian optimization for the prediction
of aggressive driving behavior, while in [15], hyperparameters of different ML-based models are
optimized using random search for the classification of drowsy behavior. Nevertheless, only
a few research contributions have considered hyperparameter tuning in the development of
driving behavior estimation models, particularly for lane changing behavior estimations.

In this work, an ANN-based state machine model developed in [6] for lane changing behavior
recognition is used for the application of the hyperparameter optimization. Two hyperparameter
optimization methods are considered: Bayesian optimization and a Genetic algorithm (GA).
The objective is to compare the recognition performance between the models developed based
on both methods. Comparison to the model without hyperparameter optimization is performed
as well. In Section 2, the methodology of the recognition model and the optimization techniques
are described. The application of the methods are described in Section 3. In Section 4, the
estimation performance based on different hyperparameter optimization methods are presented.
Finally, a conclusion is given in Section 5.

2 Methodology

2.1 Artificial Neural Network-Based State Machine Model

In recent years, state machines have been used in various applications for modeling behaviors
using discrete states [16]. The state machine can define the switching of system states from
one state to another or remain in the same state based on a set of conditions and inputs. In
this work, the transition between states or remaining in the same state describes the output
of the model. In addition, designers determine the parameters, transition conditions, input,
and output variables in this specific model. State machine models posses many benefits such
as its flexibility, non-complicated design process, and quick state reachability [9], [1]. Exist-
ing literature uses the state machine to model degradation behavior of technical systems [4],
plant growth control [23], and driving behaviors [7], [6]. The ANN-based state machine model
developed in [6] (as a new ML-based model) is utilized here to realize lane changing behavior
recognition. Three lane changing behaviors are defined: lane change to the right (LCR), lane
keeping (LK), and lane change to the left (LCL)[11].

The model has three states which represent the different lane changing maneuvers: LCR
(State 1), LK (State 2), and LCL (State 3). Each state transitions between each other or remain
in the same state for the estimation of lane changing behaviors. Transitions between states or
remaining in the same state are based on specific conditions defined using the estimations of
individual ANN models (Fig. 1). Thus for each behavior, an ANN model is developed: ANN
(right), ANN (keep), and ANN (left) [6]. The estimation of the ANN corresponding to the
current estimated state is used to define the transitioning or remaining conditions (Fig. 1).

34



Hyperparameter optimization methods comparison David and Soffker

ANN (keep) = LK

ANN (right) = LCR ANN (left) = LCL

Figure 1: ANN-based state machine topology [6]

Each ANN model has one hidden layer of ten neurons and an output layer of three neurons
representing the behaviors. Based on Fig. 1, LK transitions to LCR or LCL, if the estimation
of ANN (keep) is LCR or LCL respectively, to estimate the next behavior. While LCR or LCL
transitions to LK, if the estimation of ANN (right) and ANN (left) is LK [6]. The state remains
in the same state if the estimation of ANN is same as the current state. In Table 1, the possible
estimations of the ANN models are presented.

ANN models Estimations
ANN(right) LCR, LK
ANN(keep) | LCR, LK, and LCL
ANN(left) LK, LCL

Table 1: Estimations of different ANN models

3 Model Parameters and Hyperparameter Optimization

Hyperparameters are parameters that control the training process, while model parameters are
unknown parameters that affect the prediction and recognition of a model directly. In general,
hyperparameters are distinguished into two types: model and algorithm hyperparameters [12].
The model hyperparameters are related to the structure of the model, while the algorithm
hyperparameters are related to the way the model is trained [12]. Hyperparameters are used
by the training algorithm to develop design parameter values, thus affecting the lane changing
behavior recognition performance. Therefore, optimization of the hyperparameters is required
to find the optimal configuration of the ML-based model for training. The optimization of
model parameters is also required to develop optimal estimations and improved performance.
Usually, hyperparameters are optimized prior to training, unlike the model parameters which
are optimized during the training process.
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In this contribution, the Bayesian optimization and Genetic algorithm (GA) are used for
the hyperparameter optimization of the ANN models. The ANN model structure (based on
hyperparameter optimization) is then combined with the state machine to develop the proposed
model. Subsequently, the Non-dominated Sorting Genetic Algorithm-IT (NSGA-II) is employed
to optimize model parameters, which are used for the recognition of behaviors.

3.1 Bayesian Optimization

Bayesian optimization is an iterative approach for optimizing parameters of an objective func-
tion fi. This technique considers the past evaluations to select the next set of hyperparameter
values defined by the acquisition function [29], [24], Bayesian optimization optimizes the ac-
quisition function (cheap function) to develop an optimal f; (expensive function). Generally,
there are two types of acquisition functions: confident-based criteria and improvement-based
criteria [21],[24]. Here, an improvement-based criteria known as 'expected-improvement-per-
second-plus’ function is chosen. Selecting parameter combinations based on past evaluations,
allows the optimization to focus on the parameter space which generates the most accurate
validation. Exploration (space of high uncertainty) and exploitation (space with high objec-
tive values- area of current best hyperparameter values) are considered when searching the
parameter space for the next point [24]. One of the main benefits of this method is it requires
less iterations to reach the optimal parameter set [24], [29]. The objective function for this
optimization technique shows the measure of loss and is given as

1 .
f1:Zﬁ(yﬁéyi), (1)

whereby n is the total number of observations, y; is the actual lane changing behavior, and
7; is the estimated behavior. The hyperparameters optimized are the number of hidden layer
neurons, activation function of the ANN’s first layer, learning rate, and number of epochs.
These variables are selected as they are known to affect the selection of model parameters [31].

3.2 Genetic Algorithm

The Genetic algorithm is a heuristic optimization method. This technique is a stochastic global
search optimization technique that changes the population of individual solutions repeatedly
[18]. The solutions are the hyperparameters to be optimized. Two existing solutions can be
combined to develop a new solution (known as crossover) [18]. A new solution can also be
obtained by making random changes to an individual existing solution (known as mutation)
[18]. A similar objective function (known as fitness function) as used in Bayesian optimization
is selected here. The fitness function describes how well a solution fits the optimal solution [19],
[5]. Thus, the GA process can be described as follows [14]:

1. Initialize the population and generation.

2. Calculate the fitness function for each individual solution.
3. Select individual solutions based on the fitness function.
4. Perform the crossover or mutation between the solutions.

5. Repeat steps (2) to (4) until convergence (or the iteration limit has been reached).
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To generate an optimal ANN model, the same hyperparameters used in the Bayesian op-
timization are considered. Some of the benefits of this method include good parallelization
properties, the use of probabilistic rules instead deterministic rules as well as its ability to work
with discrete and continuous problems [2], [22].

3.3 Model Parameter Optimization

In the ANN-based state machine model, the design parameters (bias and weights of ANN) affect
the recognition performance of the model. Hence, these parameters are defined by optimization
during the training process using NSGA-II [10]. The NSGA-II is a well-known method for
solving multi-objective problems and for its quick convergence [10]. Three suitable objective
functions, each representing the different maneuvers, are minimized through the selection of
parameters. Metrics well-known for the evaluation of driving behavior estimations such as
accuracy (ACC), detection rate (DR), and false alarm rate (FAR) are used to evaluate the
model’s performance [26]. The metrics are based on comparisons between the actual and
estimated behavior. Hence, the parameter values are optimized such that the model achieves
high ACC, DR, and low FAR. In addition, the objective functions are defined using the metrics
[7], [6], given as

f2 = (1 — DRTighi) + FARrighta
f3=(1— DRyeep) + FARyeep, and
f4 = (1 — DRleft) + FARleft~

—~ o~
=W N
— O =

4 Application of the Techniques

4.1 Design of experiment

To collect the driving data, a driving simulator (SCANeRTM [3]) is utilized in a laboratory
environment at the University of Duisburg-Essen. Real human driving are performed by seven
drivers. Each driver performed a manual drive of 40 minutes to generate data for the training
process and another 10 minute drive for the test process [11]. A highway environment-based
scenario with four lanes in two directions is simulated. The interactive scenario consists of both
the ego vehicle and other vehicles. The drivers are able to perform different maneuvers like
driving straight and overtaking[11].

4.2 Selection of Data and Data Processing

The input variables for the models (individual neural networks and developed model) only con-
sist of environmental variables. Environmental variables show the relationship between the ego
vehicle and surrounding vehicles. While some contributions have considered eye-tracking or
physiological variables, previous contributions such as [13] state that environmental variables
have a greater impact on the estimation abilities as the driver’s decisions mainly depend on en-
vironmental factors. There are two groups of environmental variables: state of ego/surrounding
vehicles and driver’s operational information [11]. Here, variables in the first group are the time
to collision to the vehicle in the front TT'CY, back TT'Ch, left TT'CYyy, front right TTCY,, back
left TT'C;, and back right TTCy,.. On the other hand, the later are the angle of steering wheel
ast, accelerator pedal position aq.., brake pedal position aprqre, indicator ¢, and current lane
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Lane keeping | Lane change I Lane keeping

tangle tiane

Figure 2: Complete lane change [11]

[ [11]. These specific variables are selected as they represent the relationship between vehicles
precisely.

The current lane [ is defined using the ego vehicle’s center point. A lane change is defined
when the value of [ changes, such that an increase in [ indicates LCL, while a decrease indicates
LCR. If the value of [ remains constant, then LK is denoted [11]. Based on Fig. 2, the interval
between the time a lane change occurs (¢jqne) (when the vehicle crosses over the white lines)
and the time of the last significant change in the steering wheel angle (tqngic) is defined as the
duration of a lane change (tguration) [11]-

tduration = tlane - tangle~ (5)

4.3 Application of Hyperparameter Optimization Methods

As previously mentioned, the number of hidden layer neurons, the activation function of first
layer, learning rates, and the number of epochs are the hyperparameters considered for opti-
mization using both methods to develop the ANN model. The selection ranges of the hyper-
parameter values for the techniques are detailed in Table 2. Also, the number of iterations
used for the Bayesian algorithm is 30 (as it requires fewer number of iterations), while the
population and generation sizes for GA are 25 and 100, respectively. Only the training data
set is considered for the optimization, thus producing different optimal values for each set. The
ANN model structure is based on the optimal number of hidden neurons and the activation
function. In contrast, the learning rate and number of epochs only aids the selection of other
hyperparameters (in terms of speed). For each data set, the three ANN models are based on
the same optimized hyperparameter.

Selected hyperparameters Ranges
Hidden layer neurons 1-30
Activation functions Hyperbolic tangent

sigmoid (tansig),
Log-sigmoid (logsig)
Learning rates 0.001-1
Epochs 100-10000

Table 2: Hyperparameter optimized using both methods
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4.4 Training and Test

After the hyperparameter optimization of ANN, the training and test procedures of the proposed
model are done in the following manner:

1. Training: Input variables and actual lane changing behaviors are given to the developed
model for the recognition of lane changing behaviors. Here, the NSGA-IT is used to
develop optimized weight and bias values of the three ANN models (with optimized hy-
perparameters) for generating estimations. The estimations are then used as transition
conditions for the development of final estimations of the overall model. The ACC, DR,
and FAR are calculated based on the actual and estimated behaviors, which are then
used to generate the objective functions. The process is repeated until iteration limits are
reached (generation and population sizes: 150 and 90).

2. Test: Based on the optimized parameters, the trained model of a specific driver is tested
using the driver’s test data to evaluate the model’s recognition ability in terms of ACC,
DR, and FAR.

5 Results

In this section, the results based on the Bayesian optimization and GA are presented. The
optimal hyperparameter values for each individual ANN model for the different data sets are
given. Consequently, the lane changing behavior recognition performances of the ANN-based
state machine models (based on Bayesian optimization and GA) are given. Finally, comparisons
between both models as well as with the model without hyperparameter optimization [6] are
presented.

5.1 Hyperparameter Optimization Results

Based on the results of the Bayesian optimization and GA, the hyperparameter values obtained
for each data sets are given in Table 3 and Table 4. As mentioned, the data sets used are the
training data set of each driver.

Data sets | Hidden layer | Activation functions | Learning | Epochs
neurons (first layer) rates
1 18 tansig 0.0211 2812
2 18 tansig 0.0039 2961
3 14 logsig 0.0020 9971
4 13 tansig 0.24218 3167
5 20 logsig 0.0014 | 2028
6 18 tansig 0.0148 4797
7 20 logisg 0.0272 852

Table 3: Optimal hyperparameter values (Bayesian optimization)

The number of hidden neurons are higher than or equal to 18 based on the Bayesian op-
timization for most of the data sets, while GA selects values between 11 to 19. The tansig is
generally selected as the optimal activation function in both methods, with a few exceptions.
High (higher than 1) learning rates averts convergence as the objective function displays diver-
gent behavior (faster training) or it converges faster to a sub optimal solution. Conversely, low
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Data sets | Hidden layer | Activation functions | Learning | Epochs
neurons (first layer) rates
1 18 logsig 0.2609 | 7192
2 18 tansig 0.3298 2718
3 19 tansig 0.8791 1725
4 15 tansig 0.1390 8136
5 17 logsig 0.0531 4402
6 11 tansig 0.6680 6776
7 18 tansig 0.2562 5260

Table 4: Optimal hyperparameter values (Genetic Algorithm)

learning rates (lower 0.001) cause slow convergence (slow training) [30]. The obtained results
show that the learning rates are generally optimal for all data sets in both methods. Nev-
ertheless, the learning rates are much larger based on GA than Bayesian optimization. The
optimal number of epochs required are higher than 800 for both methods. In addition, the
computational times to run the Bayesian optimization and GA do not differ by much, whereby
the former requires less than 400 seconds, while the latter requires more than 470 seconds
(on a standard office PC (2.6 GHz)) . A possible reason the Bayesian optimization is slightly
faster is because the Bayesian optimization only updates the posterior causing it to be less
computationally expensive.

5.2 Lane Changing Recognition Evaluations

In Table 5, the ACC, DR, and FAR of the recognition models based on both methods and the
original model (without hyperparameter optimization) [6] are presented and compared. The
original model consists of a hidden layer of 10 neurons, uses the tansig activation function
(first layer), 100-200 epochs, and a learning rate of 0.01. The metrics based on three different
maneuvers are used to evaluate the models. Here, the average performance based on the test
data of seven drivers are presented. For each metric, the model that achieved the highest value

and lowest value are highlighted in

and red, respectively.

States | Metrics Developed models
Bayesian [%] | GA [%] | Original [%)]
Overall ACC 71.27 68.38
Right ACC 80.18 82.30
DR 85.71 78.63
FAR 20.49 17.75
Keep ACC 71.59 68.62
DR 68.89 65.76
FAR 16.74 36.99
Left ACC 90.77 85.84
DR 74.78 42.58
FAR 8.44 13.82

Table 5: Average metric values of different models based on seven test data sets
The average lane changing recognition based on both optimization methods shows moderate

(60 %-69 %) to high (higher than 80 %) ACC, DR, and low FAR for all maneuvers. The model
based on Bayesian optimization generates rather high ACC and DR except for DRjyecp, with
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a value of 68.89 %. High ACC and DR are generated based on GA as well, with the excep-
tion of ACCoverait, ACCreep, and DRyeep. The results show that the model with optimized
hyperparameters based on Bayesian optimization outperforms the model based on the GA in
most metrics, with the exception of ACC,ignt, F AR ight, ' ARkeep, and DRjeps. A possible
reason for this is because the Bayesian optimization takes past evaluations of hyperparameters
into consideration, which enables the method to focus on a specific search space to develop the
next set of hyperparameter values accurately. Nevertheless, the metric values obtained based
on both techniques do not differ significantly. The original model produces high ACC, DR, and
low FAR in all the maneuvers as well [6]. Furthermore, the original model outperforms the
model based on Bayesian optimization and GA in most metrics, with the exception of DRyignt,
FARyeep, and DRy (for both). This could be due to the non-optimal search region for both
optimization techniques. The original model has the most highlighted values (highest
values), while the GA-based model has the most red highlighted values (lowest values).

6 Conclusion

In this contribution, the aim is to compare different hyperparameter techniques on the perfor-
mance of an ANN-based state machine model [6] for lane changing estimations. The model is
described using three states (representing the different maneuvers) that transition between each
other or remain in the same state to develop the lane changing estimation. Estimations of three
ANN models (representing the different maneuvers) are used as transition conditions in the state
machine model to generate the final lane changing estimation. Two methods are considered
for the hyperparameter optimization: Bayesian optimization and GA. The hyperparameters
optimized are related to the ANN, such as the number of hidden layer neurons, activation
function (first layer), learning rate, and epoch number. The obtained hyperparameter values
are applied to develop the ANN models in the state machine-based model. The ANN-based
state machine is trained with NSGA-II to optimize the model parameters and generate optimal
lane changing estimations. Data sets from seven drivers are used to evaluate recognition per-
formance. The results show that the developed model has a better performance with optimized
hyperparameters generated by Bayesian optimization than GA for most metrics. Nevertheless,
the previously developed model without hyperparameter optimization outperforms the models
with hyperparameter optimization. In future, using other optimization methods could improve
the model’s recognition performance.
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