
Optimizing Time Complexity: A Comparative
Analysis of Techniques in Recursive Algorithms -
A Case Study with Path Sum Algorithm in Graphs

and Binary Trees
Jonathan Shields and Thitima Srivatanakul

York College, City University of New York, New York, U.S.A.
jonathan.shields@yorkmail.cuny.edu, tsrivatanakul@york.cuny.edu

Abstract
Programming infrastructures commonly employ graphs and binary trees to model
systems and networks. Efficient operations on trees and graphs are pivotal in enhancing
software performance and reducing computational costs, particularly for data-dependent
tasks during runtime. This paper analyzes the optimization techniques for recursive
algorithms, focusing on the widely used Path Sum algorithm designed for identifying
cumulative value sequences that equal a specified target. Employing three distinct
techniques—recursion, tabulation, and memoization—this study evaluates their
computation time on two prominent data structures: trees and graphs. Results indicate
that the memoization approach is completed in less computational time than the regular
approach. In contrast, the tabular approach completes in significantly increased
computational time, suggesting its inadequacy for traversal optimization. The findings
affirm that optimization techniques, particularly memoization, effectively reduce
traversal computation time, offering valuable insights for educators and developers
working with recursive algorithms in graph and tree-based systems.

1 Introduction
The integration of graphs and binary trees in various programming infrastructures is

ubiquitous. Graphs are in various real-world applications, including navigation systems, route
optimization, social networking, and recommendation systems. Similarly, binary trees find applications
in scenarios like hierarchical data representation. Efficient operations on both graphs and binary trees
are crucial for improving software performance and minimizing computational expenses. Graph and
binary tree algorithms can be implemented through different approaches, including recursion and
dynamic programming, to address specific challenges within these structures. Recursion, a fundamental

EPiC Series in Computing

Volume 98, 2024, Pages 129–139

Proceedings of 39th International Confer-
ence on Computers and Their Applications

A. Bandi, M. Hossain and Y. Jin (eds.), CATA2024 (EPiC Series in Computing, vol. 98), pp. 129–139

programming technique, involves a function defining its own process by calling itself, with each call
until a base case is met. While the use of recursion reduces the need for complex tabular approaches
promotes the development of concise code, and enhances overall readability, it does come with
computational setbacks [1]. The recursion process of repeated function calls can become
computationally intensive, increasing time complexity with each call. The successive self-function calls
are managed within the call stack, an internal data structure responsible for organizing and managing
function calls. However, this call stack has a predetermined allocation size, and exceeding this limit
leads to a stack overflow error, resulting in an abrupt interruption of program execution [2].

Scholarly attention has been directed towards optimization techniques using dynamic

programming methods [3], demonstrating their potential to significantly improve resourcefulness over
recursive algorithms [2]. The two optimization techniques of focus are memoization [3] and tabulation
[4]. These are dynamic programming techniques that reduce time complexity via efficient methods. The
memoization approach is a top-down approach that caches computed results. When a repeated function
is called the cache can recall the stored output instead of reevaluating the function, saving computational
resources [5]. The tabular approach is a bottom-up approach that breaks down the problem into smaller
subproblems and builds up solutions incrementally. It utilizes a container, such as array, for all possible
values, avoiding the complexity that comes with recursion [6].

The paper seeks to provide educators and developers with insights into the application of

optimization techniques to a recursive algorithm. The recursive algorithm used for the study is the Path
Sum algorithm. The Path Sum algorithm is designed to identify a sequence of values that cumulatively
sum up to a specified target value. This study implements two distinct techniques – tabulation and
memoization – for implementing the Path Sum Algorithm on two different data structures: trees and
graphs. In analyzing how the time complexity changes with these optimizations in graph and binary
tree structures, the research aims to explore the connection between theoretical concepts and their
practical implementations. Through this exploration, valuable insights can be for both theoretical
understanding and real-world implementation.

The paper is organized as follows: Section 2 on Literature Review discusses prior studies on this

topic. Section 3 discusses the methodology to explain the procedure and components used for the test.
Section 4 outlines the results and discussion. Section 5 concludes the paper.

2 Literature Review
The field of graph optimization is an area of study active with ongoing research. Many of these

studies were conducted by researchers interested in multifaceted distributed systems. These systems
find application in a wide array of scenarios requiring quick dynamic storage and retrieval of data. In
such cases, enhancements in optimization effectiveness can result in compounding increases in
computational efficiency in these distributed systems, allowing the reallocation of computational
resources to uphold overall system performance [7].

The work by Lee et al. [8] discusses utilizing dynamic tracing to identify points in data

processing in a distributed system that could be optimized with memoization. With the use of dynamic
tracing, the scaling performance of distributed systems can improve computational efficiency by an
average of 4.9 times its usual ability after performing traversal through ~ 256 nodes within a model
representation of the graph [8]. The study covered both the application of memoization and the
utilization of graph structures. It effectively illustrates how memoization functions as an optimization

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

130

technique within real-world services that integrate graph structures into the application schema. The
study by Gong et al. [9], conducted in collaboration with Alibaba Group, a multinational conglomerate
operating diverse Cloud Computing and E-commerce Platforms, proposes a potential solution for
dynamic data handling. The authors recommend using an automated system for incremental graph
processing known as Ingress [9]. Described as "an automated incrementalization framework," Ingress
strategically applies varying degrees of memoization to support diverse computational resources,
optimizing memory usage. The study asserts that their developed Ingress algorithm outperforms modern
incremental graph systems by an average of 15.93 times. This research further emphasizes memoization
as a vital technique for maintaining efficient systems under dynamic conditions. Although the paper
introduces the use of four different levels of memoization, the rationale behind this approach is not
extensively elaborated.

Papers addressing the tabular approach concerning graphs were limited, yet a few discussed

the advantages of employing a tabular approach in handling computationally intensive processes. Lue
& Pope [10] explored into the utilization of an adaptive tabulation algorithm called ISAT, where
tabulation represents a specific form of a tabular approach. Their work aimed to enhance the ISAT
tabulation by incorporating "table-searching strategies" and introducing "error checking and correcting
algorithms" [10]. This paper offers valuable insights into the detailed explanation of tabulation, playing
a pivotal role in data retrieval as memoization reduces computational time. Studies comparing
optimization techniques for both graphs and trees are limited. This paper aims to provide additional
insights into one of the recursive algorithms.

3 Methodology
The Path Sum algorithm is an algorithm that implements the use of recursion to find a sequence of

values that collectively sum up to a specified target value. In a binary tree, the algorithm moves through
an unsorted binary tree from the root of the tree down to adjacent paths, traversing the entire tree to find
instances of the target value in the tree. With graphs, a traversal algorithm is used to visit distinct nodes.
The traversal algorithm of choice was depth first search (DFS) due to its memory efficient nature in
comparison to other traversal algorithms such as breath first search (BFS). In this study Path Sum
algorithms that were unoptomized, utilizing memoization, and utilizing tabulation were tested on binary
trees and graphs of various node sizes.

Figure 1. An Example of a Binary Tree

Figure 2. An Example of a Graph

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

131

In Figure 1, the red arrows line out a potential path for a target sum. The total number of paths that
equal the target sum will be returned. For example, this figure shows an accepted path if the target sum
was 25. Figure 2, the red arrows show the direction of search. The figure shows a multidirectional
search to return the total number of paths that equal the target sum. The Path Sum algorithms used in
the study were written in C++ and compiled using gcc version 11.4.0 on a stand-alone personal
computer utilizing an Intel i5-825OU with 8 cores clocked at 3.4 GHz.

3.1 Dynamic programming using Memoization and Tabulation
Dynamic programming remains a highly active area of study in computer science and is only

projected to increase due to its applicability in diverse domains. Its relevance is based on the need for
various computational processes to solve complex problems efficiently. Dynamic programming
involves taking a whole complex problem and dividing it into parts of simpler subproblems. The
solution to these simpler subproblems is then stored in a container. When an identical problem needs to
be solved, instead of spending resources recalculating the values the result can be referenced from the
container. Dynamic programming can be implemented using two different approaches: the top-down
approach with memoization and the bottom-up approach with tabulation.

Memoization is a recursive approach to solving complex problems. It addresses problems by

initially tackling the entire problem and then recursively solving smaller subproblems, storing the
solutions in an array or hash map along the way. When encountering a problem that has already been
solved and stored, the stored solution is retrieved. Otherwise, the solution is computed and stored. This
ensures that identical problems are only computed once, with subsequent occurrences retrieving the
precomputed answer. Memoization provides significant improvements for problems involving
repetitive calculations and nested subproblems. As a result, it reduces program execution time and
enhances system performance.

Tabulation is an iterative approach to solving complex problems. Instead of solving the most

complex form of a problem and solving subsequent subproblems with memoization, tabulation takes a
bottom-up approach. Tabulation begins with the smallest form of a complex problem and gradually
builds up on top of the solution to the original problem. Starting from the base case of the problem,
computed values from a table data structure such as a 2-dimensional array. Once this array is filled, an
iterative approach is used to go through the object and retrieve the correct solution. This allows solutions
to be extracted from the table instead of through repetitive computations, which leads to improved
algorithm performance.

3.2 Path Sum Algorithms on Binary Trees
For binary trees, we tested plain Path Sum algorithm using recursion, along with optimized Path

Sum algorithms employing memoization and tabulation. The algorithms were evaluated on binary trees
of different sizes, specifically 10-node, 100-node, 1000-node, 10,000, and 100,000 trees. The values
for each node were randomly populated. The execution times (μs) were then compared across 10 runs
and averaged. The Path Sum algorithm recursively explores paths, subtracting node values from a
target sum and checking if leaf nodes satisfy the sum condition. The approach utilizes a depth-first
search, efficiently examining left and right subtrees.

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

132

The pseudocode of each algorithm is shown below:

Algorithm Recursion(node,k):

Input: A node “node” in the binary tree, integer k storing target
value
Output: An integer that is the number of paths that equal k.

if n == 1 then

return 0;
return (k == node.data ? 1:0) + Recursion(node.left,k –
node.data) +
Recursion(node.right, k – node.data);

Figure 3. The pseudocode for Recursion Algorithm without optimization.

Algorithm memoization(node,k,sum,map):
 Input: A node “node” in the binary tree, integer k stores target
value, sum is an integer values to keep track of sum, map is unordered
list contains integer values for key and value.
 Output: An integer that is the number of paths that equal k.

if(node == nullptr) then

return 0;

sum = sum + node.data
map[sum] = map[sum] + 1
int count = map[sum – k] ￼
int result = count + memoization (node.left,k, sum, map)
map[sum] = map[sum] -1
return result

Figure 4. The pseudocode for Recursion Algorithm using memoization.

Algorithm tabulation(node,k):

Input: A node “node” in the binary tree, integer k stores target
value.
Output: A integer that is the number of paths that equal k.

2D_array matrix
// Populating the matrix
result = 0
for each row in matrix do
for each sum in row do
if sum in row then

if sum == k then
result = result + 1

return result

Figure 5. The pseudocode for Recursion Algorithm using tabulation.

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

133

In Figure 3, it depicts the pseudocode for the algorithm searching for a target value in a binary tree
without any optimization modifications, in which case each path in a tree will be visited regardless of
the path has been visited previously. In Figure 4, the recursive algorithm for searching a target value in
a binary tree is shown, incorporating memoization to cache visited paths. Finally, Figure 5 illustrates
the use of tabulation to populate a matrix from the nodes in a binary tree, utilizing iteration directly
instead of recursion to determine the total number of paths equaling a target value.

3.3 Path Sum Algorithms on Graphs
As opposed to binary trees, graphs are a generic structure that has vertices connected by edges.

While a binary tree can have a maximum of two edges to a node, a graph vertex can have any number
of edges and therefore makes them a preferred structure to model more complex relationships. Since
graphs can have multiple edges to a vertex, a more complex traversal algorithm is needed. The traversal
algorithm of choice was the depth first search algorithm. This algorithm traverses through a graph
starting at any node and moves to as far as it can before backtracking to other nodes.

The Path Sum algorithm works by traversing paths within the graph structure, deducting node

values from a sum, and finding whether any path satisfies the given sum condition. Using a recursive
approach like depth-first search (DFS), the algorithm explores different paths in the graph. It looks to
find if the cumulative sum matches the target sum criteria along the explored path. Unlike trees that
have left and right subtrees, in graphs, the algorithm navigates through nodes that are interconnected,
exploring potential paths until it finds a valid path fulfilling the sum condition. The use of the efficient
DFS-based search enables it to traverse the graph, analyzing various potential paths to determine the
cumulative values identify any path that satisfies the required sum condition

Algorithm recursion(graph, nodeValue, sum, totalSum):

Input: graph represents the graph object, nodeValue is the value
of a node and the totalSum is the total value of the node.

Output: Returns the total sum of paths

sum = sum + nodeValue;
if (graph is empty)

totalSum = totalSum + sum;
return;

for (v in graph)
recursion(graph,v,sum,totalSum);

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

134

Figure 6. Pseudocode for Recursion Algorithm without optimization

Algorithm memoization(graph, nodeValue, sum, totalSum, memo):

Input: Graph represents the graph object, nodeValue is the value
of a node, sum is the target value the totalSum is the total value of
the node, memo is the map.

Output: Returns the total sum of paths

sum = sum + nodeValue;
if (graph is empty)
totalSum = totalSum + sum;
return;

for (v in graph)

recursion(graph,nodeValue,sum,totalSum);
memo[nodeValue] = sum;

Figure 7. Pseudocode for Recursion Algorithm with memoization

Algorithm tabulation(graph, nodeValue)

Input: Graph represents the graph object and the nodeValue is a
variable that holds the total value at a node.

Output: Returns the total sum of paths

totalSum = 0;
Stack stk;
Array visited;

for (i = 0; i < nodeValue; ++i)
stk.push({i,0})

while(not stk.empty())
curr = stk.top();
stk.pop();

nodeValue = curr.first;
sum = curr.second + nodeValue;

if (not visited[nodeValue].empty())
totalSum = totalSum + sum;

if(graph[nodeValue].empty())
totalSum = totalsum + sum;

else
 for (v in graph[nodeValue])

 stk.push({v,sum]);

Figure 8. Pseudocode for Resursion Algorithm with Tabulation

In Figure 6, it illustrates the recursive algorithm that implements a search through the graph
using recursive DFS where the traversal is performed without any recursive optimizations. In Figure 7,

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

135

memoization is implemented to store repeated value of paths by the map object labeled memo to avoid
visited paths. Finally, Figure 8 demonstrates the implementation of tabulation, in which a table is
created and used to perform a search in a matrix, utilizing a stack for traversal of each row.

The study was conducted on 5 graphs, each containing various amounts of vertices. Each graph
consists of the following sizes: 10, 100, 1,000, 10,000, and 100,000 vertices respectively. The objective
is to use three different algorithms to return the total sum of values in an Undirected Graph. As stated
earlier, the differentiation between the algorithms is the methods used to traverse through the graph.
There is traversal through recursion without any formulated optimization techniques, then traversal
using memoization technique and lastly traversal through tabulation technique. Each of the three Path
Sum algorithms will traverse through 5 differently sized graphs. The ten trials will be conducted for
each path sum algorithm on each graph and the average time of the ten will be recorded for analysis.

4 Results and Discussion
In the tables below, we present the results of a comparative analysis of the Path Sum algorithm on

binary trees and graphs for various node sizes. The three techniques considered for evaluation are
recursion, tabulation, and memoization, utilizing the algorithms discussed in the previous section. The
execution times, measured in microseconds, offer insights into the efficiency of each approach in
addressing the Path Sum problem.

Node size Average Time for
Recursion (μs)

Average Time for
Memoization (μs)

Average Time
for Tabulation

(μs)
10 3 16 13
100 12 152 20706

1,000 1550 1036 N/A
10,000 4856 3370 N/A
100,000 11496 7412 N/A

Table 1. Comparison of Average Execution Times (in μs) for Binary Tree (varying node size) with Recursion,

Memoization, and Tabulation Techniques

Node size Average Time for
Recursion

Average Time for
Memoization

Average Time for
Tabulation

10 0 1.5 11
100 13 17.2 205

1,000 205 188 1143
10,000 596 483 N/A
100,000 5483 3891 N/A

Table 2. Comparison of Average Execution Times (in μs) for Graph (varying node size) with Recursion,

Memoization, and Tabulation Techniques

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

136

Figure 9. Plot of the average execution times of recursion without optimization, memoization and tabulation

 utilizing a binary tree on a logarithmic scale performing the Path Sum algorithm.

Figure 10: Plot of the average execution times of recursion without optimization, memoization and tabulation

 utilizing a Graph on a logarithmic scale performing the Path Sum algorithm.
The results obtained from the comparative analysis of the Path Sum algorithm on binary trees

using recursion, memoization, and tabulation as presented in Table 1. The table highlights a
fundamental difference between memoization and recursion without optimization techniques,
influenced by the inherent characteristics of the binary tree structure. Recursion, while efficient for
smaller node sizes, experiences notable increases in execution time as the tree size grows. On the other
hand, with memoization, completion time was initially greater for smaller trees compared to
unoptimized recursion. However, as the number of nodes in the tree grew, the rate of computation

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

137

became smaller in comparison. This is evident when comparing the completion time between a tree of
size 100 and a tree of size 1000. Tabulation demonstrates the worst performance with the greatest
completion time compared to the other algorithms. It also failed to perform during the third test, which
yielded inconclusive results (in this case, N/A).

The results obtained from the comparative analysis of the Path Sum algorithm on graphs using

recursion, memoization, and tabulation as presented in Table 2. Regarding the graph data structure,
similar trends were observed, with memoization eventually outperforming other methods in the long
term. The tabulation, once again, performed poorly, providing inconclusive results for higher trees. This
may be attributed to the algorithm's design, as tabulation typically excels in static problems that can be
subdivided into smaller, manageable problems.

A similar outcome that was apparent in both data structures was how object initialization

makes up the bulk of the time complexity for the tabular approach. This is evident from the observed
values from the tabulation data for both binary trees and graphs. For both, tabulation was unable to
finish the tests in the experiment. For the binary trees, that occurred when the tree size reached 1,000
nodes, and when the size reached 10,000 node size for the graph. However, the same results were also
demonstrated using memoization were evidence suggested a decrease in the overall computational time
in relation to recursion without optimization. This is in harmony with the work by Gong et al. [9] in
which the use of memoization was a key feature in the implementation of high performing incremental
graph processing. The implications of these results demonstrate that memoization seems to be a more
efficient technique when working with large datasets. Based on the results, it seems that for graphs with
fewer vertices, the path sum algorithm traversed the entire graph more quickly compared to the process
of memoization. This is especially clear in the traversal of the graph with 10 vertices where the regular
non optimized approach traversed in < 0 μs. However, when the number of vertices reaches 1000 the
memoization tends to complete quicker than the regular counterpart. This is a phenomenon that only
increases as the number of vertices grows.

 Overall, the results do seem to resonate with other papers that explore this topic in more detail,

however there are some parts of the testing process that may have been overlooked. For one, the path
sum algorithm could have been optimized further with the use of specific optimization flags accepted
by the gcc compiler. Though not a major issue, it could have returned more exaggerated times that more
explicitly identified the computational savings of each algorithm. Another potential shortcoming is the
lack of consistent garbage collection within the program. Due to the nature of C++, the lack of an
autonomous garbage collection means that space demanding data structures such as the graphs can
interfere with the efficiency of programs in runtime. Though in testing they may not serve as much of
an influence in production it can be more of an issue that programmers need to be mindful of. Lastly in
memoization, hash collisions can significantly impact lookup time, potentially undermining the
efficiency gains of caching computed values.

5 Conclusion
In conclusion, the results gathered show that the tabular approach is not a proper technique to

optimize traversal given that it takes over five times more computational time on average than the
regular approach. The memoization approach yielded results that signify quicker computational time
compared to the regular approach. The rate of computational time between each graph in ascending
order was on average 1100 μs while memoization was on average 778 μs per graph, a growth rate that

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

138

is about two thirds of regular recursion. Therefore, the study still stands that with the use of optimization
techniques traversal computation time can be reduced, specifically with the use of memoization.

These results can have a broad implication on various programming systems that rely on graph

structures for data storage/retrieval and as a performance layer leading to the utilization of programs
that query quicker and consume less computational resources. For future research directions, we would
investigate the potential for parallel computing for optimizing traversal algorithms or adaptive
algorithms that can dynamically switch between different optimization techniques based on the size of
the graph and other factors.

References

[1] Wiedenbeck, S. (1988). Learning recursion as a concept and as a programming
technique. ACM SIGCSE Bulletin, 20(1), 275-278.
[2] Liu, Y. A., & Stoller, S. D. (1999, November). From recursion to iteration: what are the
optimizations?. In Proceedings of the 2000 ACM SIGPLAN workshop on Partial evaluation
and semantics-based program manipulation (pp. 73-82)
[3] Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34-37.
[4] Bird, R. S. (1980). Tabulation techniques for recursive programs. ACM Computing
Surveys (CSUR), 12(4), 403-417.
[5] Blelloch, G. E., & Harper, R. (2015). Cache efficient functional algorithms.
Communications of the ACM, 58(7), 101-108.
[6] Zhou, N. F., Sato, T., & Shen, Y. D. (2008). Linear tabling strategies and optimizations.
Theory and Practice of Logic programming, 8(1), 81-109.
[7] Ventryshia, A., & Wirawan, I. (2020). Analysis of Fibonacci Numbers Calculations
Using Static Programming and Dynamic Programming Algorithms to Get Optimal Time
Efficiency. International Journal of Open Information Technologies, 8(12), 19-22.
[8] Lee, W., Slaughter, E., Bauer, M., Treichler, S., Warszawski, T., Garland, M., & Aiken,
A. (2018, November). Dynamic tracing: Memoization of task graphs for dynamic task-
based runtimes. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis (pp. 441-453). IEEE
[9] Gong, S., Tian, C., Yin, Q., Yu, W., Zhang, Y., Geng, L., ... & Zhou, J. (2021).
Automating incremental graph processing with flexible memoization. Proceedings of the
VLDB Endowment, 14(9), 1613-1625.
[10] Lu, L., & Pope, S. B. (2009). An improved algorithm for in situ adaptive tabulation.
Journal of Computational Physics, 228(2), 361-386.

A Comparative Analysis of Techniques in Recursive Algorithms ... J. Shields and T. Srivatanakul

139

