
EPiC Series in Computer Science
Volume 34, 2015, Pages 207–212

ARCH14-15. 1st and 2nd International Workshop on
Applied veRification for Continuous and Hybrid Systems

Progress on powertrain verification challenge with
C2E2∗

Chuchu Fan, Parasara Sridhar Duggirala,
Sayan Mitra, and Mahesh Viswanathan

University of Illinois, Urbana-Champaign
{cfan10,duggira3,mitras,vmahesh}@illinois.edu

Abstract

In this paper, we present the progress we have made in verifying a benchmark powertrain control
system. We implemented the on-the-fly algorithm for computing discrepancy of nonlinear dynamical
systems in the C2E2 verification tool. We created Stateflow translations of the original models to aid
the processing using C2E2 tool and we encoded the different driver behaviors in the form of state ma-
chines. With these customizations, we have been successful in verifying one of the benchmarks from the
powertrain suite. In this paper, we discuss the engineering challenges and the lessons learned from the
process.

1 The powertrain benchmarks

The benchmark suite of powertrain control systems were published in [11, 10] as challenge
problems for hybrid system verification. The suite has a set of SimulinkTM models with in-
creasing levels of sophistication and fidelity. At a high-level, all the models take inputs from
a driver (throttle angle) and the environment (sensor failures), and define the dynamics of
the engine. The key controlled quantity is the air to fuel ratio which in turn influences the
emissions, the fuel efficiency, and torque generated.

The first model (model 1) is the most complex. It has look-up tables, delayed differential
equations, and switches. Models 2 and 3 are simpler but still complicated enough for most
hybrid verifcation tools. Model 3 is a hybrid automaton with polynomial differential equa-
tions and continuously computed control inputs, and Model 2 is similar but with nonlinear
differential equations and both continuous and discretely sampled variables. The require-
ments for the system are stated in signal temporal logic (STL). A typical property, for example,
3t(x ∈ [xeq − ε, xeq + ε]), states that after t units of time, the continuous variable x is within
the range xeq ± ε.

∗We thank Jim Kapinski, Jyotirmoy Deshmukh, and Xiaoqing Jin of Toyota for several useful discussions on the
powertrain models. This research is funded by research grants from the National Science Foundation (grant: CAR
1054247 and NSF CSR 1016791) and the Air Force Office of Scientific Research (AFOSR YIP FA9550-12-1-0336).

G.Frehse and M.Althoff (eds.), ARCH15 (EPiC Series in Computer Science, vol. 34), pp. 207–212 207



Progress on powertrain verification Fan, Duggirala, Mitra and Viswanathan

Breach [2] and STaliro [1] have been used for finding counterexamples (or falsifying) mod-
els in [13, 11, 12, 3]. Our main verification results for this benchmark have been reported in [4].
In this companion paper we report on several technical details, including the model transfor-
mation, and our experience in performing verification using C2E2 [6, 5].

2 Background on C2E2

C2E2 implements a generic, simulation-based, algorithm for bounded time verification of in-
variant and temporal precedence properties of nonlinear hybrid models (see [5, 6, 7] for de-
tails). The algorithm iteratively computes increasingly precise over-approximations of the
reachable states of the system until it either proves the property (the requirement) or finds
a counter-example.

Although, the benchmark models are hybrid systems, C2E2 does not use hybrid simula-
tions. Instead, it generates over-approximations for each location, finds the intersection of the
reachtube with the out-going guards from that location, and continues with these intersec-
tions as the initial sets in the next location. The key step in the algorithm is to compute and
refine reach set over-approximations for ODEs for a given location. This step uses validated
simulations and discrepancy functions that give a bound on the convergence (divergence) of
trajectories starting from neighboring states [5].

Finding discrepancy functions for nonlinear models can be challenging. One of the main
developments that enabled this verification, is the implementation of a new algorithm in C2E2
(presented in detail in [9]) for automatic computation of local discrepancy along trajectories of
the system. Using this improved C2E2, we were not only able to find counterexamples, but
also verify the key STL requirements of the powertrain benchmark in the order of minutes.

In this paper, we use the algorithm presented in [9] for computing local discrepancy func-
tions on-the-fly along validated simulations. This algorithm requires the Jacobian Jf and a
Lipschitz constant Lf of the ODE. First it computes a coarse over-approximation S(xi) of the
reach set from a simulation point for a short duration. Then it computes an exponential (pos-
sibly negative) bound on the divergence rate of trajectories over S(x0) by finding a bound on
the maximum eigenvalue of the symmetric part of the Jacobian Jf over the region S(x0). We
refer the reader to the technical report [9] for the details of this algorithm.

For verifying the powertrain system, we implemented the local discrepancy algorithm in
C2E21. This modified implementation only requires the user to supply the Jacobian matrix
of the system. The eigenvalues of the symmetric parts of the Jacobian are computed using
Eigen library [8]. For maximizing the norm of error matrices our implementation uses interval
arithmetic.

3 Model transformation

We manually transform the SimulinkTM diagram of the benchmarks with switching blocks, to
a Stateflow model which essentially captures the hybrid automaton. Models 2 and 3 of [11]
translate to hybrid automata with 4 locations and 5 continuous variables. The locations are
startup, normal, power, and sensor fail. The continuous variables are: (a) intake manifold pres-
sure (p), (b) intake manifold pressure estimate (pe), (c) air-fuel ratio (λ), (d) integrator state (i),

1The modified tool and related files are available from http://publish.illinois.edu/c2e2-tool/
powertrain-challenge/

208

http://publish.illinois.edu/c2e2-tool/powertrain-challenge/
http://publish.illinois.edu/c2e2-tool/powertrain-challenge/


Progress on powertrain verification Fan, Duggirala, Mitra and Viswanathan

(e) throttle angle (thetain). These translated Stateflow models are made available as part of
this paper.

This transformation is relatively straightforward and has been described in [14]. The Simu-
link model uses several function blocks connected by feedback lines. While the Stateflow
model uses differential equations and transitions. The transitions are decided by the boolean
operation of several user inputs like throttle angle and sensor failure. Keeping these input
signals constant, we rewrite the differential equations of the four discrete modes in Stateflow
blocks, and then replace the function block Switch in Simulink with Transitions.

Model 2 (the second model in [11]) differs in two aspects: (1) the right-hand side of the
system equations are general nonlinear functions instead of polynomial functions; (2) only
two of the four variables are continuous, other two are discrete variables updated periodically.
Only the differential equations of the two continuous variables would appear in the Stateflow
modes. We introduce the third variable t with the dynamic ṫ = 1. Initially t = 0, whenever t =
discrete sample time, there will be a transition to the mode itself with transition action t = 0
and the update of the two discrete variables.

Figure 1: Transformed stateflow model of powertrain control system.

C2E2 currently handles only closed automaton models. Therefore, for every driver behav-
ior of interest, we explicitly construct a family of switching signals that determine the timing
of the mode switches. As the resulting transformed model cannot be parsed by the current
C2E2 parser, we had to directly encode this mode in the intermediate form used by the C2E2
verification engine.

The initial set of the automaton is a ball in the state space which corresponds to the mea-
surement uncertainty in state components. The goal of the powertrain control system is to
maintain the air-fuel ratio at a desired value for optimal functioning of internal combustion
engine under different driving behaviors and conditions. These control objectives or require-
ments are stated in [11] using STL formulas. An example requirement for the normal mode of

209



Progress on powertrain verification Fan, Duggirala, Mitra and Viswanathan

operation is the following:

rise ⇒ �(η,ζ)(0.98λref ≤ λ ≤ 1.02λref ), (1)

which can be read as “If the throttle angle θin changes from 0 to 60, denoted by the event rise ,
then the air-fuel ratio λ should be in the range [0.98λref , 1.02λref ] after η time units and stay in
that region until ζ time units. Here λref is the desired value of air-fuel ratio and η and ζ are
parameters of the property. We note that this type of requirements can also be expressed as
bounded time invariants— the class of properties currently handled by C2E2. We simply need
to introduce a timer variable that keeps track of time elapsed since the last occurrence of the
relevant events like rise in the above example.

4 Experience using C2E2 on the powertrain models

Encoding drivers and properties. The C2E2 parser currently does not support parameters
that are specified in a table (for example, the various coefficients in the polynomial differen-
tial equations). For this reason, we had to partially hand-code the C++ simulation files2 for
these models that are otherwise generated automatically. Modifying these C++ files, one can
also verify different driver behaviors. The file simulator.cpp models the ODEs of different
modes in the model, the file guard.cpp models the guard conditions for enabling the tran-
sitions between the modes, and invariant.cpp models the invariants for each mode. We
have considered two sets of driver behaviors in this paper. In the first set, the system starts in
the startup’ mode, and after [9.00,9.01] time units, it switches to normal mode. In the second set,
the system starts in the startup mode, switches to normal mode, then switches to power mode,
and finally returns again to the normal mode. The property that can be verified in the given
version of C2E2 are invariants such as the air-fuel ratio always being in a given range. The
initial set for the behaviors and the unsafe set are specified as polytope in Configuration file
given as input to C2E2.

Coordinate transformation. An important technical detail that makes the implementation
scale is the coordinate transformation proposed in [9]. For Jacobian matrices with complex
eigenvalues the local discrepancy computed directly using the above algorithm can be a pos-
itive exponential even though the actual trajectories are not diverging. This problem can be
avoided by first computing a local coordinate transformation and then applying the algorithm.
Coordinate transformation provides better convergence, but comes with a multiplicative cost
in given by the condition number of the matrix. This trade-off between the exponential diver-
gence rate and the multiplicative error has be tuned by choosing the time horizon over which
the coordinate transformation is computed.

In our experiments, we have observed that the condition number for startup mode is 20
and for all other modes are of the order of 200. Thus, one cannot perform this coordinate
transformation over small periods as this would lead to large errors in the overapproxima-
tions. Thus, the number of steps for which coordinate transformation should be applied is
an engineering decision based on the condition number and the exponential rate of conver-
gence. For verifying the powertrain control system, we have analyzed different possibilities
and observed that coordinate transformation after every 3000 steps (i.e. 3 time units) provides
overapproximation that is adequate for verification.

2These files are also made available as part of this submission.

210



Progress on powertrain verification Fan, Duggirala, Mitra and Viswanathan

Property Mode Sat. Sim. Time

�Ts,Tλ ∈ [0.8λref , 1.2λref ] all modes yes 53 11m58s

�[0,Ts]λ ∈ [0.8λref , 1.2λref ] startup yes 50 10m21s

�[Ts,T ]λ ∈ [0.95λref , 1.05λref ] normal yes 50 10m28s

�[Ts,T ]λ ∈ [0.8λpwrref , 1.2λ
pwr
ref ] power yes 53 11m12s

�[0,Ts]λ ∈ [0.98λref , 1.02λref ] startup no 2 0m24s

�[Ts,T ]λ ∈ [0.9λpwrref , 1.1λ
pwr
ref ] power no 4 0m43s

rise ⇒ �(η,ζ)λ ∈ [0.9λref , 1.1λref ] startup yes 50 10m40s

rise ⇒ �(η,ζ)λ ∈ [0.98λref , 1.02λref ] normal yes 50 10m15s

(` = power)⇒ �(ηpwr,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power yes 53 11m35s

(` = power)⇒ �(ηs,ζ)λ ∈ [0.95λpwrref , 1.05λ
pwr
ref ] power no 4 0m45s

Table 1: Table showing the result and the time taken for verifying STL specification of the
powertrain control system. Sat: Satisfied, Sim: Number of simulations performed. All the
experiments are performed on Intel Quad-Core i7 processor, with 8 GB ram, on Ubuntu 11.10.

Verification results. Table 1 provides the results of verifying different STL properties. The
first six properties provided in Table 1 are invariant properties. These invariant properties can
be global (i.e. correspond to all modes) or could be restricted to a certain mode of operation
provided in the Mode column. The invariants assert that the air-fuel ratio should not go out of
the specified bounds. Observe that C2E2 could not only prove that the given specification is
satisfied, but also that a stricter version of invariants for startup and power modes is violated.
The next four properties are about the settling time requirements. These requirements enforce
that in a given mode, whenever an action is triggered, the fuel air ratio should be in the given
range provided after η (or ηpwr for power mode) time units. Similar to the invariant properties,
C2E2 could also find counterexample for a stricter version of the settling time requirement
(ηs settling time instead of η) in power mode. When C2E2 finds an overapproximation that
violates a given property, it immediately terminates and hence C2E2 takes less time when it
finds counterexamples. The parameters used for verification are η = ηpwr = 1, ηs = 0.5,
Ts = 9, T = 20, λref = 14.7, λpwrref = 12.5, and ζ = 4.

5 Conclusion

In [4] we reported that with some additional engineering, it is possible to tackle the problem
of verifying a challenging powertrain control system benchmark using the C2E2 tool with the
local discrepancy method. In this paper, we provide additional details about that verification
process including model tranformation and tool usage. In future, we wish to extend these
techniques to handle higher fidelity models in the powertrain verification challenge that in-
volve discrete updates and delayed differential equations.

211



Progress on powertrain verification Fan, Duggirala, Mitra and Viswanathan

References
[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-taliro: A

tool for temporal logic falsification for hybrid systems. Springer, 2011.
[2] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In

Computer Aided Verification, pages 167–170. Springer, 2010.
[3] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Jyotirmoy V Deshmukh, and

Xiaoqing Jin. Efficient guiding strategies for testing of temporal properties of hybrid systems. In
Proceedings of NASA Formal Methods Conference (to appear)., 2015.

[4] Parasara Sridhar Duggirala, Chuchu Fan, Sayan Mitra, and Mahesh Viswanathan. Meeting a pow-
ertrain verification challenge. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, volume 9206 of LNCS, pages 536–543. Springer, 2015.

[5] Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. Verification of annotated mod-
els from executions. In Proceedings of the International Conference on Embedded Software, EMSOFT 2013,
Montreal, QC, Canada, September 29 - Oct. 4, 2013, pages 1–10. IEEE, 2013.

[6] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew Potok. C2e2: A
verification tool for stateflow models. In 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2015), 2015.

[7] Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh Viswanathan, and César Muñoz. Tem-
poral precedence checking for switched models and its application to a parallel landing protocol.
In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of Lecture Notes in Computer Science, pages 215–229. Springer, 2014.

[8] Eigen. a C++ template library for linear algebra, (accessed February, 2015). http://eigen.
tuxfamily.org.

[9] Chuchu Fan and Sayan Mitra. Bounded verification using on-the-fly discrepancy computation.
In Automated Technology for Verification and Analysis (ATVA 2015), Shanghai, China, LNCS. Springer,
October 2015.

[10] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Benchmarks
for model transformations and conformance checking. In 1st International Workshop on Applied Veri-
fication for Continuous and Hybrid Systems (ARCH), 2014.

[11] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
control verification benchmark. In Proceedings of the 17th international conference on Hybrid systems:
computation and control, pages 253–262. ACM, 2014.

[12] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Mining requirements
from closed-loop control models. In IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (to appear). IEEE.

[13] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Mining requirements
from closed-loop control models. In Proceedings of the 16th international conference on Hybrid systems:
computation and control, pages 43–52. ACM, 2013.

[14] Karthik Manamcheri Sukumar and Sayan Mitra. A step towards verification and synthesis from
simulink/stateflow models. In Tools paper in Hybrid Systems: Computation and Control (HSCC 2011),
2011.

212

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	The powertrain benchmarks
	Background on C2E2
	Model transformation
	Experience using C2E2 on the powertrain models
	Conclusion

