
Towards a Simply Typed CALculus for Semantic

Knowledge Bases∗

Michael Mendler, Stephan Scheele
Informatics Theory Group

University of Bamberg, Germany
{michael.mendler,stephan.scheele}@uni-bamberg.de

Abstract

This paper demonstrates how a constructive version of the description logic ALC can
serve as a semantic type system for an extension of the simply typed λ-calculus to express
computations in knowledge bases. This cALculus embodies a functional core language
which provides static type checking of semantic information processing of data whose
structure is organised under a relational data model as used in description logics. The
cALculus arises from a natural interpretation of the tableau rules for constructive ALC
following the Curry-Howard-Isomorphism.

1 Introduction

Description logics (DL) are specification formalisms, which have found numerous applications
in the semantic processing of data. DLs [2] are a family of knowledge representation languages
that can be used to specify the terminological knowledge of a specific domain in a structured
and formally well-understood way. DLs are used in the field of semantic data bases, in appli-
cations of the Semantic Web and as formal grounding for the W3C-endorsed Web Ontology
Language (OWL). Knowledge is expressed in terms of a set of concepts and roles which specify
a terminological component called TBox, i.e., a controlled vocabulary about a specific domain.
This vocabulary can be associated with a set of facts/assertions which is called ABox, combined
they build up a knowledge base.

A fairly recent idea is to employ DLs as programming language type systems [15, 17, 23].
Our work is aimed at programming with/in ABoxes as data structures. Usual ABox reasoning
corresponds to type checking and TBox reasoning is programming. In this way, DLs may be
used as a static specification formalism for programming in knowledge bases. In this paper we
look at the use of DLs as a programming type system (see e.g., [20]) which naturally requires
a constructive setting in contrast to the standard classical semantics of DLs. Specifically, we
show how the constructive description logic cALC, introduced in [15], may be turned into a
type system for ABox data streams much in the spirit of typed functional programming. The
general benefits of the Curry-Howard Isomorphism (proofs-as-computations) in DLs have been
argued in [5, 4].

2 Syntax and Semantics of cALC Types

The main syntactic building blocks of description logics are concepts (classes), representing a
class of objects, roles (properties) that are relating objects and entities (individuals) which rep-
resent specific objects. From atomic concepts like Frog composite concepts can be constructed

∗Research project funded by the German Research Foundation (DFG) under ME 1427/4-1.

Berndt Farwer (ed.); LAM’10; Volume 1, issue: 1, pp. 51–66 51

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

using concept constructors, e.g. Frog u ∃hasColor.Green specifies an object which is in Frog
and that is related through the hasColor role with an object from the concept Green. A sub-
sumption relationship represents that a concept is more general than another one, e.g. Frog
is subsumed by the concept Animal. A DL knowledge base usually consists of a TBox and an
ABox. The TBox is a set of axioms stating general properties of concepts and roles which form
the structure of allowed worlds. In the most general case terminological axioms are formed by
inclusions C v D and equivalences C ≡ D, where C and D are concepts. The ABox comprises
assertions on individual objects and thereby defines the structure of a particular world, for
instance the statement that Kermit is a Frog that has the color Lime can be stated by the
assertions Frog(Kermit) and hasColor(Kermit, Lime).

Just like the types nat or bool specify the structure and semantical meaning of data
structures in ordinary programming languages, the logic ALC may be used as a type language
for programming in structured, entity relationship-alike semantic knowledge bases. At the
outset this implies two extensions in relation to standard ALC [2]. First, the classical two-
valued semantics need to be replaced by an intuitionistic many-valued interpretation. Second
subsumption, which types functional computations, becomes a first-order binary operator of
the language, to give a higher-order functional programming language. Such an extension of
ALC, called cALC has been introduced in [15, 16].

Concept descriptions in cALC are based on sets of role names NR and concept names NC and
formed as follows, where A ∈ NC and R ∈ NR:

C,D → A | ⊥ | C uD | C tD | C v D | ∃R.C | ∀R.C.

Being a first class operator, subsumption can be nested arbitrarily as in ((A v C) v B) v D,
which is crucial to type higher-order programs. We use C ≡ D as an abbreviation of (C v
D) u (D v C). Constructive negation can be coded ¬C = C v ⊥.

Perhaps not surprisingly, negation plays a secondary role for programming type systems and
will not be discussed much in this paper other than as a modifier of atomic concept descrip-
tions. The computational meaning of general negated types can be related to continuation-style
programming [1] or backtracking [11]. It is likely to be complex to carry this over to DL-
programming, however, and deserves its own technical development that we will not attempt
to tackle here.

To begin with, we recall the definition of a constructive ALC interpretation from [15]:

Definition 1. A constructive interpretation or constructive model of cALC is a structure I =
(∆I ,�I ,⊥I , ·I) consisting of

• a non-empty set ∆I of entities, the universe of discourse in which each entity represents a
partially defined, or abstract individual;

• a refinement pre-ordering �I on ∆I , i.e., a reflexive and transitive relation;

• an interpretation function ·I mapping each role name R ∈ NR to a binary relation RI ⊆
∆I ×∆I and each atomic concept A ∈ NC to a set ⊥I ⊆ AI ⊆ ∆I which is closed under
refinement, i.e., x ∈ AI and x �I y implies y ∈ AI . If xRI z then z is called filler of R for
x. We also write (x, z) ∈ RI or in fact xR z if I is understood;

• finally a subset ⊥I ⊆ ∆I of fallible entities closed under refinement and role filling, i.e.,
x ∈ ⊥I and x �I y implies y ∈ ⊥I , for every fallible entity x exists a fallible filler, i.e.,
∀R. ∃z. xRI z & z ∈ ⊥I and all fillers of a fallible entity x are fallible, i.e. ∀R. ∀z. xRI z ⇒
z ∈ ⊥I .

52

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

Constructive models I extend the classical models for ALC by a pre–ordering �I for capturing
possible refinement between entities and by a notion of fallible entities ⊥I for interpreting empty
computations. The refinement relation x � y may be used to capture a number of important
special semantical dimensions uniformly without invoking additional syntactic overhead:

• x is a stream of objects arising by serialisation of a data base table or from other continuous
data production processes, e.g. sensor networks. In this case, x = x1 · x2 · . . . may be a
finite or an infinite stream where x � y is the suffix ordering. E.g., x may be an object
about which information only arrives peu a peu or that is available only in a cumulative
way through repeated accesses.

• x is an abstraction of data records. Each refinement y of x has all the attributes of x and
on those the same values, but possibly also additional attribute dimensions. E.g., x may be
the result of suppressing information in an attempt to optimise calculations on a large data
base. Every application of a projection on a data base table creates an abstraction in this
sense.

Fallible elements b ∈ ⊥I may be thought of as over-constrained tokens of information, self-
contradictory objects of evidence or undefined computations. E.g., they may be used to model
the situation in which computing a role-filler for an abstract individual fails.

We obtain the standard classical models of ALC whenever �I is the identity relation and
⊥I is empty. Generally speaking, � internalises the Open World Assumption locally for every
object of an interpretation. Therefore, we can identify a constructive model with an ABox. A
constructive model is a network of structurally interrelated data contexts which may be very
large and distributed. Concept descriptions express structural invariants in these semantical
networks. They can be used as type specifications for a programming language to manipu-
late and compute such data coherently. The following definition establishes the basic validity
relationship between data and types:

Definition 2. Let I = (∆I ,�I ,⊥I , ·I) be a constructive model. The interpretation I is
lifted from atomic ⊥, A to arbitrary concepts as follows, where ∆Ic =df ∆I \ ⊥I is the set of
non-fallible elements in I:

>I =df ∆I

(¬C)I =df {x | ∀y ∈ ∆Ic . x �I y ⇒ y 6∈ CI}
(C uD)I =df CI ∩DI
(C tD)I =df CI ∪DI
(C v D)I =df {x | ∀y ∈ ∆Ic . (x �I y & y ∈ CI)⇒ y ∈ DI}

(∃R.C)I =df {x | ∀y ∈ ∆Ic . x �I y ⇒ ∃z ∈ ∆I . (y, z) ∈ RI & z ∈ CI}
(∀R.C)I =df {x | ∀y ∈ ∆Ic . x �I y ⇒ ∀z ∈ ∆I . (y, z) ∈ RI ⇒ z ∈ CI}.

We will write I;x |= C as an abbreviation for x ∈ CI .

Example 1. The recursive concept definition Tree ≡ (∃leaf .nat) t ∃node.Tree u Tree
specifies an ABox data structure of binary trees with natural numbers stored in leaves.

Example 2. As mentioned before, cALC can be used to specify the type of potentially infinite
streams x = x1 · x2 · Under interpretation I let nat and bool be the atomic concepts of
natural numbers and booleans, i.e., such that natI = N and boolI = B. We assume there is
an indicated (functional) role val that relates a stream with its first data entity considered as
an infinite constant stream, if such exists and the empty stream (ε) otherwise. More concretely

53

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

val(ε, ε) and val(v · s, v∞), and for instance with concrete streams, val((2, T) · T · F, (2, T)∞) and
val(T · F, T∞).

Let s0 = (0, T) · (1, T) · (1, F) · . . . be a stream of pairs of naturals and booleans. Then, s0
satisfies the concept ∃val .(nat u bool). De-multiplexing of s0 is a function that is flattening
the pairs of naturals and booleans into a stream which is oscillating between values of type nat
and those of type bool. This function applied to s0 results in the stream s1 = 0 ·T ·1 ·T ·1 ·F · · · .
The oscillation between nat and bool can be specified by the concept Osc =df ¬∃val .nat u
¬∃val .bool u ∀val .(nat t bool) which is only possible in constructive logic. The classical
meaning of Osc, in classical ALC, is the empty set. Under the Curry-Howard Isomorphism
[26, 25] the product type C × D is the constructive interpretation of conjunction C u D and
function spaces C → D are the constructive reading of subsumptions C v D.
In this regard, multiplexing and de-multiplexing of the above described data streams would be
different constructive realisations of the following subsumptions:

∃val .(nat u bool) v ∃val .(nat t bool) ∃val .(nat t bool) v ∃val .(nat u bool).

Note for ∃val .(natt bool) that the use of ∃val performs the segmentation of the stream such
that the concept nat t bool is executed element-wise rather than globally. This illustrates
that the classical principle distribution of existential ∃ over disjunction t, i.e., the equivalence
∃val .(nattbool) ≡ ∃val .natt∃val .bool does not hold in cALC. The stream s1 satisfies the
concept ∃val .(nat t bool) saying that the first element of each suffix sequence is of type nat
or bool. But s1 does not satisfy the concept ∃val .nat t ∃val .bool since this would require
that all elements of s1 are either nat or all are bool.

The language cALC is related to the constructive modal logic CK [14, 27, 3, 13] as ALC
is related to the classical modal logic K. cALC is the multimodal version of CK where ∀R is
the multimodal (or indexed) version of the box modality 2 and ∃R is the indexed version of
the diamond 3. Note that CK is not the intuitionistic analogue to classical K in the sense of
Fischer-Servi and Simpson [24], i.e. adding of the axiom of the Excluded Middle C ∨ ¬C ≡ >
does not collapse the theory to classical K. Instead CK can be seen as a generalisation of the
logical system of intuitionistic K. We discuss their relation as follows.

It is traditional in intuitionistic modal logics to dualise 2 as a monotonic ∧-preserving
operator and to define 3 as a monotonic ∨-preserving modality. There are two equivalent
axiomatisations of this idea, Plotkin and Stirling’s IK [22, 24] and Fischer-Servi’s system [7],
called FS in [8]. The former is given by the following axioms and rules:

Axioms (IK) Rules (IK)
All theorems of IPL IK3 : ¬3⊥ MP : A and A ⊃ B implies B
IK1 : 2(A ⊃ B) ⊃ (2A ⊃ 2B) IK4 : 3(A ∨B) ⊃ (3A ∨3B) Nec : A implies 2A
IK2 : 2(A ⊃ B) ⊃ (3A ⊃ 3B) IK5 : (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Like classical K, the logic IK/FS admits of an elementary Kripke style model theory. The
systems IK/FS arise from the standard intuitionistic semantics of the propositional connectives
and the interpretation of 2, 3 as universal and existential quantifiers over accessible worlds in
an intuitionistic meta-theory:

x |= 2C iff ∀y. x � y ⇒ ∀z. y R z ⇒ z |= C (1)

x |= 3C iff ∃z. xR z & z |= C (2)

In intuitionistic logic all propositions must be closed under refinement, i.e., x |= C and x � y
implies y |= C. For this to hold under definition (2) of 3, the models of IK/FS need to satisfy

54

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

confluence between � and R, i.e., the frame condition �−1 ; R ⊆ R ; �−1 where ; denotes
composition of relations. The modal logic CK, which is the basis for cALC does not depend on
such frame conditions. CK is a sub-theory of IK/ FS which does not contain the axioms IK3, IK4,
IK5. They are problematic from a constructive point of view as argued in [14].

It seems to us that in computational type theories [12, 6] or modal type theories [10, 21,
18, 19], where constructive proofs turn into λ-programs, the schemes IK3 − IK5 fail to have a
uniform computational justification. On the other hand, the schemes that do appear to be
computationally justified are IK1 and IK2. Restricting to these axioms yields the constructive
system known as CK [14, 3, 13].

3 The Typed Language λALC

Our language λALC extends the simply-typed λ-calculus with explicit pairing and disjoint sums
[9] by constructions to handle roles and fillers. Like in object-oriented programming we distin-
guish between filler objects and filler methods. The former are references to local data bases
or data contexts and the latter are computational methods that can be executed on these data
bases. Both together constitute what we might call a computational knowledge base.
The difference to standard λ-calculus is that computations are only available as local methods
by reference to knowledge bases reified as role fillers. By way of role filling we can change
the knowledge base in context and jump between those. Role filling can be understood as a
computational process where we distinguish between input and output filling actions. This gives
a rather natural operational interpretation for the duality between existential and universal role
filling. Specifically, for navigation the language provides explicit path expressions of the shape
R!k.e and R?a.e. These resemble a process-algebraic prefix notation suggesting an implicit
interaction relation of the form

R!k.e
R!k−→ e or R?a.e

R?a−→ e

where k is a filler (an entry point to a local knowledge base), a a filler variable and R ∈ NR

a role name. The former represents an output action R!k which provides a reference k for an
R-filler and e is the filler method that can be executed in the context of k. The second kind
of action R?a accepts an R-filler a from the environment and executes method e there. The
distinction between input R?a and output actions R!k is reflected in the difference between
universal and existential quantification of our cALC types. Existentials ∃R.C specify output
actions and universals ∀R.C pertain to input. A method p of type ∃R.C contains computations
of R-fillers of type C which are offered at a specific location determined by p. In contrast, a
method p typed ∀R.C generates a computation of type C at any R-filler determined by the
environment of p.

3.1 Syntax of λALC

The syntax is as seen in Fig. 1. We only explain the parts that extend the λ-calculus. The
expression letR!a.x = e1 in e2 takes an R-filler expression e1 and matches it against the
pattern R!a.x which binds the filler object to variable a and the filler methods to variable x.
The expression R!k.e packages up a filler k with a particular method e. Formally, R! is the
constructor and let the destructor for objects of type ∃R.C. For the concept type ∀R.C the
constructor is the abstraction R? and the destructor is application @. As explained above,
these work analogously to function abstraction and function application, respectively.
There are several variable binding operators in this language:

55

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

e :: = x value variable
| a filler variable
| k filler object expression/reference
| (e, e) pairs
| πi e projections i = 1, 2
| case e of [ι1 x1 → e | ι2 x2 → e] case analysis
| ιi e injection i = 1, 2
| e e function application
| λx. e function abstraction
| letR!a.x = e in e filler opening
| R!k.e filler closing
| R?a.e filler abstraction
| e@k filler instantiation

Figure 1: Syntax of λALC .

• λx. e binds variable x in e,

• case e of [ι1 x1 → e1 | ι2 x2 → e2] binds variables x1, x2 in e1, e1, respectively,

• letR!a.x = e1 in e2 binds both value variable x and filler variable a in e2,

• R?a.e binds filler variable a in e.

As usual an expression e is called closed if all occurrences of variables in e are in the scope
of an associated binder. Variables which are not bound are called free in e. We will identify
expressions up to renaming of bound variables. Syntactic substitution e1{e2/x} is assumed
to be capture-avoiding, i.e., automatically renaming bound variables of e1 to prevent conflicts
with free variables of e2.

3.2 Typing for λALC

Now we show how concept descriptions from cALC can be attached as static typing information
to specify contextually well-formed or “well-localised” λALC-terms. This is consistent with the
model-theoretic semantics of Sec. 2 in the sense of Curry-Howard (propositions-as-types, proofs-
as-programs), viz. that closed λALC-terms exist for exactly those types that are theorems of
cALC. Thus, λALC plays the same role for the constructive logic and model-theory of cALC
[15] that simply-typed λ-calculus does for intuitionistic propositional logic. Every proof in the
typing system for cALC corresponds to the construction of a well-localised λALC program.

The typing system uses typing judgements, also called sequents, of the form Σ ` Ψ in which
Σ is a typing context containing typing assumptions and Ψ is the actual typing statement which
gives typing guarantees on the basis of assumptions Σ. Context and statement are sequences of
sets in which the information is localised to individual filler objects connected by filler relations.
Specifically, a context in general looks like

Σ = Γ1 �S2?b2 Γ2 �S3?b3 · · · �Sf?bf �Γf �Sf+1?bf+1
· · · �Sn?bn Γn (3)

for role names Si ∈ NR and filler variables bi (i = 1, . . . , n). Each Γi is a set of local typing
assumptions, or filler scopes

56

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

Γi = {ti1 : Ci1, ti2 : Ci2, . . . , timi
: Cimi

} (4)

for some (destructor) terms tij and types Cij . The context Σ in (3) represents the assumption
that all objects specified in Γi are available as filler methods of an Si-filler referred to by variable
bi of the object at level Γi−1. The first scope Γ1 is referred to as the root and the last Γn as
the leaf assumption. As can be seen in (3) one of these local assumptions �Γf , is distinguished
by a focus marker. The focus � highlights the filler object bf in Σ relative to which the typing
guarantees Ψ in sequent Σ ` Ψ are made. The number of filler steps to the right of the focus is
called the length of a context Σ and the number of contexts before the focus is called its depth.
E.g., the context Σ in (3) has depth f − 1 and length n− f . Thus, a context with zero depth
and zero length is a single set Σ = �Γ.

The typing statement Ψ, too, is split into a sequence of guarantees

Ψ = Φ1 �R2!k2 Φ2 �R3!k3 Φ3 �R4!k4 · · · �Rm!km Φm (5)

with Rj ∈ NR and filler expressions kj (j = 1, . . . ,m). In contrast to the typing assumptions
in Σ for which filler relationships are context assumptions and therefore input actions Si?bi,
here we are looking at output actions Rj !kj which guarantee the existence of filler objects kj .
Notice, there is no focus marker in Ψ. It is implicit and fixed to the first set Φ1. Accordingly,
the statement Ψ has no depth but length m − 1. It suffices to consider typing statements of
length ≤ 1 which contain exactly one expression, i.e., sequents Σ ` e : D or Σ ` ∅ �R!k e : D.
On the context side Σ, restrictions can be made, too, though we do not need to exploit these
here.

Before we can present the typing system for λALC to derive valid sequents Σ ` Ψ we need
to agree on a couple of meta-level syntactic conventions to handle sequents generically. To
begin with, we will treat each element Γj of the context sequence Σ (and similarly for Ψ) as
an unordered list without duplications, so that if t : C ∈ Γj then Γj is the same as Γj , t:C and
t:C,Γj . In handling the sequence Σ we need to preserve the ordering between the Γj , however.
We will usually place the focus at the beginning of the respective local assumption set �Γf , t : C
as done in (3) but sometimes we write Γf , t : C � to make it appear at the end.

Talking about full context sequences (and analogously for statements Ψ) it will be convenient
to use associativity of the separators �S?b for breaking up a context at any point as in Σ =
Σ′ �S?b Σ′′ where Σ′ and Σ′′ are the corresponding sub-sequences. This includes the special
case that one of the sub-sequences is empty. E.g., if Σ′′ is empty then Σ′ �S?b Σ′′ = Σ′. This
is not the same as Σ′ �S?b ∅ keeping in mind the difference between an empty sequence and
a singleton sequence consisting of an empty set of assumptions. In a sequent Σ ` Ψ neither
sequence Σ nor Ψ will ever be empty, i.e., we have n,m ≥ 1 in (3) and (5).

We will write Σ, t : C to say that the leaf assumption contains t : C, i.e., Σ, t : C = Σ′ �S?b

Γ, t : C, where Σ′ is the initial sub-sequence of Σ without the leaf set. If Σ′ is empty, then
Σ′ �S?b Γ, t : C is the same as the singleton sequence Γ, t : C. Similarly, t : C,Σ means that
t : C is in the root, i.e., t : C,Σ = Γ, t : C �S?b Σ′. Again, Σ′ may be the empty sequence
in which case Γ, t : C �S?b Σ′ = Γ, t : C. Finally, Σ � indicates that the focus is in the leaf
context.

The typing rules are now given in Figs. 2 and 3 separated into those which deal with the standard
λ-terms and those that are specific to cALC-types. The former in Fig. 2 are essentially the well-
known rules from intuitionistic logic and simply typed λ-calculus. The rules for modal types in
Fig. 3 warrant more detailed explanations and in the following we discuss them one by one.

57

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

AxmΣ �S?b � t : C,Σ′ ` t : C

Σ �S?b �π1 t : C1, π2 t : C2,Σ
′ ` Ψ uL

Σ �S?b � t : C1 u C2,Σ
′ ` Ψ

Σ ` e1 : D1 Σ ` e2 : D2 uR
Σ ` (e1, e2) : D1 uD2

Σ ` e : D1 tR1Σ ` ι1e : D1 tD2

Σ ` e : D2 tR2Σ ` ι2e : D1 tD2

Σ �S?b �x1 : C1,Σ
′ ` Ψ1 Σ �S?b �x2 : C2,Σ

′ ` Ψ2 tL
Σ �S?b � t : C1 t C2,Σ

′ ` case(t, x1, x2,Ψ1,Ψ2)

Σ �S?b �Σ′ ` e1 : C1 Σ �S?b � t e1 : C2,Σ
′ ` Ψ vL

Σ �S?b � t : C1 v C2,Σ
′ ` Ψ

Σ �S?b �x : C,Σ′ ` e : D vR
Σ �S?b �Σ′ ` λx. e : C v D

In rule tL the two right-hand contexts must be both of the same form, i.e., Ψi = ei : D or
Ψi = ∅ �R!ki

ei : D. In the former case, we define case(t, x1, x2,Ψ1,Ψ2) =df e : D, in the
latter case(t, x1, x2Ψ1,Ψ2) =df ∅ �R!k e : D, where e =df case t of [ι1 x1 → e1 | ι2 x2 → e2]
and k =df case t of [ι1 x1 → k1 | ι2 x2 → k2]. The variable x must be fresh in vR.

Figure 2: Lambda Typing Rules.

Σ�R?a �Γ′ ` e : D
Ax fΣ ��R?a Γ′ ` ∅ �R!a e : D

Σ ` ∅ �R!k e : D ∃R
Σ ` R!k.e : ∃R.D

Σ � �R?a y : C ` e : D ∃L
Σ, t : ∃R.C � ` letR!a.y = t in e : D

Σ �S?b t@b : C,Σ′ ` Ψ ∀L
Σ, t : ∀S.C �S?b Σ′ ` Ψ

Σ �R?a � ∅ ` e : D ∀R
Σ � ` R?a. e : ∀R.D

The variables a and y must be fresh in rules ∀R and ∃L.

Figure 3: Modal Typing Rule.

• The right rule ∃R says that if e represents a filler method of type D for an R-filler of the
current scope, referred to by k, then the output action R!k.e is an object of type ∃R.D at
the current focus. Note the difference of length between premise and conclusion: While e
in the premise is typed ` ∅ �R!k e : D, i.e, it is one R-step forward from the current scope,
the typing ` R!k.e : ∃R.D ensures that the closed action R!k.e is available at the current
focus rather than somewhere else.

• The purpose of the left introduction rule ∃L is to tell how R-filler output actions can be
used. As seen in the premise of ∃L we take an expression e of some type D which depends
on a R-filler variable a and a method y : C. These are assumptions about the existence of a
filler forward from the current scope, which is why e is typed in the context Σ � �R?a y : C.
In the conclusion of the rule we move into context Σ, t : ∃R.C � where t represents an R-filler
of type C accessible from the current focus. We extract the R-filler from t by way of the

58

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

pattern letR!a.y = t in e in which the filler object provided by t is bound to a and its
method to y, respectively. Using a and y the expression e then constructs the desired return
value of type D. The fact that e in the premise is constructed from the extended context
Σ � �R?a y : C ensures that y is located at a which is R-accessible from the scope of
letR!a.y = t in e which lives in context Σ, t : ∃R.C �.

• The left rule ∀L allows us to propagate context objects along sequences of role fillers all the
way down from the root assumption to the current focus. Reading the rule upwards it says
that whenever there is an object universally typed t : ∀S.C in some local scope from where
an S-filler with reference b is directly reachable, then we can localise t to b and obtain an
object method t@b : C at b. Notice that ∀L is applicable regardless the position of the focus.

• Finally, the right introduction rule ∀R encodes input abstraction for R-filler locations: For
an input action R?a.e to have type ∀R.D in context Σ we consider a fresh R-filler a for
the current focus, extend the context to Σ �R?a � ∅ and type the body e as D. The
new context moves the focus forward into the scope of the R-filler a where it starts with
an empty scope to make sure that e does not depend on any information other than what
can be propagated from the old context Σ across role R to location a. Since a is fresh and
thus does not appear in Σ we guarantee that e works on any location a as expressed by the
universal quantifier ∀R.D.

The typing rules of Figs. 2 and 3 have the interesting feature that all terms which they type are in
normal form, i.e., which are fully evaluated.We obtain non-normal λALC terms by substitution,
governed by the rules given in Fig. 4. There are two ways to substitute, associated with the
two possible typing statements Σ ` e : D and Σ ` ∅ �R!k e : D: The first rule subst1 takes an
expression e typed in the current focus and substitutes it into another expression (statement)
Ψ for a free variable x : D in the current scope. The second rule subst2 permits us to take an
expression e : D typed in the scope of an R-filler k relative to the current focus and substitute
both into expression Ψ which depends on R-filler reference a and filler method x.

Σ � ` e : D Σ, x : D � ` Ψ
subst1Σ � ` Ψ[e/x]

Σ � ` ∅ �R!k e : D Σ � �R?a x : D ` Ψ
subst2Σ � ` Ψ[e/x, k/a]

The conclusion statements Ψ[e/x], Ψ[e/x, k/a]
arise from Ψ by substituting e for every free
occurrence of x and k for a in Ψ.

Figure 4: Substitution Rules.

The type system is conservative over cALC in the same way as the pure simply typed λ-calculus
is conservative over intuitionistic propositional logic. Let D be a concept description without
negation or falsity. Then D is a theorem of cALC iff there exists a λALC method that implements
it, i.e., there is m such that � ∅ ` m : D is derivable. This follows from the completeness proof
of the term-free calculus for cALC [14].

The cALculus is pure in the sense that it does not prejudice the properties of roles and
fillers. In particular, it does not assume that there are at all any fillers for a given role or that
there are non-trivial methods which could be instantiated for some R-fillers. All information
about roles and fillers must be axiomatised in the typing context. In fact, λALC does not contain
closed methods of type ∃R.D for any D and any closed method of type ∀R.D is essentially of
the form R?a.m where m has type D and thus can be turned into a method S?a.m : ∀S.D for
all roles S.

59

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

Example 3 (IK1, IK2). The K-combinators of the Hilbert system for cALC [14] corresponding
to the axioms IK1, IK2 of CK (see p.54), respectively are the typed terms

K∃R = λx. λz. let R!a.y = z inR!a.((x@a) y) : ∀R.(C v D) v (∃R.C) v (∃R.D)
K∀R = λx. λz.R?a.(x@a)(z@a) : ∀R. (C v D) v (∀R.C) v (∀R.D)

obtained from the following derivations (without terms, for conciseness):

Axm∅ �R �C ` C Axm∅ �R �D,C ` D vL∅ �R �C v D,C ` D ∀L∀R. (C v D) �R �C ` D
Ax f�∀R. (C v D) �R C ` ∅ �R D ∃R

�∀R. (C v D) �R C ` ∃R.D ∃L
�∀R. (C v D),∃R.C ` ∃R.D vR

�∀R. (C v D) ` (∃R.C) v (∃R.D) vR
� ∅ ` ∀R. (C v D) v (∃R.C) v (∃R.D)

Axm∅ �R?a �C ` C Axm∅ �R?a �D,C ` D vL∅ �R?a �C v D,C ` D ∀L∀R. (C v D) �R?a �C ` D ∀L∀R. (C v D),∀R.C �R?a � ∅ ` D ∀R
�∀R. (C v D),∀R.C ` ∀R.D vR

�∀R. (C v D) ` (∀R.C) v (∀R.D) vR
� ∅ ` ∀R. (C v D) v (∀R.C) v (∀R.D)

Example 4 (MP and Nec). Our calculus maintains the crucial distinction between the rules
of Modus Ponens and Necessitation which is that the former can be internalised as a closed
term (known as functional completeness) but the latter cannot. Modus Ponens, which is simply
function application, is representable as a combinator MP = λy. λx. y x for which � ∅ ` MP : C v
(C v D) v D is derivable. Then, if � ∅ ` m1 : C v D and � ∅ ` m2 : C we have � ∅ ` MPm1m2 :
D. What about Necessitation? Is there also a combinator � ∅ ` NecR : D v ∀R.D such that
� ∅ ` m : D gives � ∅ ` NecRm : ∀R.D? Indeed, context weakening guarantees that � ∅ ` m : D
implies � ∅ ` R?a.m : ∀R.D for any role R. Hence, NecRm is an abbreviation for R?a.m. But
this does not mean that NecR is representable as a (first-order) operator λx.R?a. x. In fact,
the attempt to type this term

???
x : D �R?a � ∅ ` x : D ∀R
�x : D ` R?a. x : ∀R.D vR

� ∅ ` λx.R?a. x : D v ∀R.D

fails because the axiom rule Axm does not apply for sequent x : D �R?a � ∅ ` x : D in which
variable x appears in the context outside of the current focus. In order to bring it into focus we
need rule ∀L. However, for ∀L to be applicable, we should have type x : ∀R.D for the variable.
The resulting derivation

Axm∅ �R?a �x@a : D ` x@a : D ∀L
x : ∀R.D �R?a � ∅ ` x@a : D ∀R
�x : ∀R.D ` R?a. x@a : ∀R.D vR

� ∅ ` λx.R?a. x@a : ∀R.D v ∀R.D

yields the identity function λx.R?a. x@a ∼= λx. x1 which is fine but something entirely different
from NecR.

1This is a form of η-conversion R?a. x@a ∼= x just like λy. f y ∼= f in the λ-calculus.

60

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

Example 5 (Disjunctive Distribution). In [15] it was pointed out as one of the constructive
features of cALC that ∃R does not distribute over disjunction, which contrasts with classical
ALC. This was motivated by model-theoretic means. We can now justify operationally why
the concept description ∃R.(C tD) v (∃R.C t ∃R.D) is not typeable in λALC . Exploiting cut
elimination (normal form terms) the only possible candidate method m which would generate
mx : ∃R.C t ∃R.D from x : ∃R.(C tD) is

m =df λx. letR!a.y = x in case y of[ι1 y1 → ι1R!a.y1 | ι2 y2 → ι2R!a.y2] (6)

but its typing

??
� ∅ �R?a y : C tD ` case(a, y) : ∃R.C t ∃R.D ∃L

�x : ∃R.(C tD) ` let R!a.y = x in case(a, y) : ∃R.C t ∃R.D vR
� ∅ ` λx. let R!a.y = x in case(a, y) : ∃R.(C tD) v ∃R.C t ∃R.D

where case(a, y) abbreviates case y of[ι1 y1 → ι1R!a.y1 | ι2 y2 → ι2R!a.y2] does not quite
work out. At the top line the only rule applicable is tR which is certainly not sensible as it
would break up the statement (output) disjunction ∃R.C t ∃R.D on the output side before we
have split the two cases of y : C tD in the context (input). Yet, rule tL for case analysis on
y does not apply because it does not have the focus. Trouble is, there is no way to move the
focus right to get

∅ �R?a � y : C tD ` case(a, y) : ∃R.C t ∃R.D

since the rule Ax f which would do that is not applicable at this point. So, what is the problem?
Look at the typing that we need:

� ∅ �R?a y : C tD ` case(a, y) : ∃R.C t ∃R.D

It forces us to make a decision between ∃R.C or ∃R.D in the scope which has focus and this is
empty. Instead, we need to access the method y : C tD in the scope of filler a but this is one
R-role ahead from the object in scope.

Suppose we evaluated our candidate term mx from (6) in the scope of some entity b. The
pattern matching let R!a.y = x extracts an R-filler of b from x, binds it to a and also a method
of type CtD bound to variable y. Then, a case analysis on y is made: if y is a left injection ι1 y1
we return ι1R!a.y1. Otherwise, if y is a right injection we take ι2R!a.y2 as result. However,
both these computations are done at filler b whereas the value y on which they depend lives
at R-filler a. Our pure type system precludes such scope extrusions. The pure cALculus is
conservative and does not permit forward references to use computations from an R-filler a to
construct values at its predecessor b. This allows for more general classes of interpretations.
Some interpretation may permit forward references, some only in special situations, others
never. This depends on applications and the choice of a suitable context theory (computational
TBox).

Example 6 (IK5). Another axiom that is not valid in cALC is IK5. This has been motivated
model-theoretically in [14]. At this point we can give an operational justification why the
concept description (∃R.C v ∀R.D) v ∀R.(C v D) is not typeable in λALC . One possible
expression m with the type of IK5 is

m =df λx.R?a.(λy. ((x (R!a.y))@a)). (7)

61

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

but the type check for m fails as can be seen in the following derivation:

??
x : ∃R.C v ∀R.D �R?a � y : C ` (x(R!a.y))@a : D vR

x : ∃R.C v ∀R.D �R?a � ∅ ` λy. ((x(R!a.y))@a) : C v D ∀R
�x : ∃R.C v ∀R.D ` R?a.(λy. ((x(R!a.y))@a)) : ∀R.(C v D) vR

� ∅ ` λx.R?a.(λy. ((x(R!a.y))@a)) : (∃R.C v ∀R.D) v ∀R.(C v D)

At the top line no more rule is applicable. The problem lies in the context localities of x and y,
i.e. in the application (x (R!a.y)) where x is from the outer context, the term (R!a.y) depends
on y from the inner context and y lies behind one R-step. Since y is R-context dependent w.r.t.
a, it cannot be used outside of this context. In a system where context-awareness plays a role
it is not possible for a context dependent term (context locally) to be used in a global fashion
(context globally). The focus constrains the derivations to context-aware sequents. Formally,
this can be demonstrated by allowing the focus to move arbitrarily backward and forward.
Moving the focus in the top sequent to the left gives us the typing we need

�x : ∃R.C v ∀R.D �R?a y : C ` (x(R!a.y))@a : D

such that we can proceed with rule vL as follows:

Axm∅ �R?a � y : C ` y : C
Ax f∅ � �R?a y : C ` ∅ �R?a y : C ∃R∅ � �R?a y : C ` R!a.y : ∃R.C

??∅ � �R?a (x (R!a.y))@a : D, y : C ` (x (R!a.y))@a : D ∀L
x (R!a.y) : ∀R.D � �R?a y : C ` (x (R!a.y))@a : D vL

�x : ∃R.C v ∀R.D �R?a y : C ` (x(R!a.y))@a : D

This allows us to use the term R!a.y outside of the R-context in the left branch of the derivation
and permits the construction of the application term (x (R!a.y)) of type ∀R.D. From the current
focus this term can be propagated by rule ∀L along the existing R-filler a, i.e. localised at a,
to obtain the object method (x (R!a.y))@a : D at a. But the application of Rule Axm and
therefore the typing is not possible since the focus is at the outer context. To close the right
branch of the derivation we have to move the focus again, this time into the R-context which
gives us the sequent

∅ �R?a � (x (R!a.y))@a : D, y : C ` (x (R!a.y))@a : D

that can be closed by rule Axm. Our pure system excludes such arbitrary context changes and
does not allow a context dependent term to be used independently from its context.

4 Operational Semantics

The computational semantics of λALC is given in the standard fashion by term rewriting,
starting with the basic contractions of Fig. 5. Of those, the contractions βπ1, βπ2, βcase1,
βcase2, βλ are well known from λ-calculus [9] while βR?, βR! are new for λALC . We write
e � e′ for the reflexive, transitive closure of contractions applied in arbitrary sub-expressions
of e.

An input prefix R?a. e acts like a functional abstraction λa. e where the role R indicates a
named access method or named channel unlike the λ binder which is anonymous. Accordingly,

62

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

π1(e1, e2) −→ e1 βπ1
π2(e1, e2) −→ e2 βπ2

case ι1 e of [ι1 x1 → e1 | ι2 x2 → e2] −→ e1{e/x1} βcase1
case ι2 e of [ι1 x1 → e1 | ι2 x2 → e2] −→ e2{e/x2} βcase2

(λx.e1) e2 −→ e1{e2/x} βλ
(R?a. e)@b −→ e{b/a} βR?

letR!a.x = R!k.e1 in e2 −→ e2{e1/x}{k/a} βR!

Figure 5: Contraction Rules (β-Reductions).

filler instantiation e@a corresponds to function application with contraction βR? mimicking the
β-reduction for λ. In contrast to ordinary λ-terms the prefix R?a. e only abstracts filler object
references a rather than the filler methods. The filler references themselves are not typed, only
their methods are. The expression letR!a.y = e in e2 is a pattern matching which opens an R-
filler e binding its object reference to variable a and object methods to variable y and executes
expression e2. Hence, if e has been evaluated to explicit form R!k.e1 the bindings in e2 can be
executed with e2{e1/x}{k/a} as done in contraction βR!.

The operational semantics exhibit a perfect duality in the syntax for role filling: R? and R!
are the constructors for types ∀R.C and ∃R.C, respectively, while @ and let are the associated
destructors. The contraction rules implement the idea that applying a destructor on top of a
constructor returns the original parts from which the object was constructed. Moreover, the
difference between R? and R! is the difference between input and output. To see this let us
consider reductions p � R?a.q or p � R!k.q for a closed expression p : ∀R.C or p : ∃R.C,
respectively, as abstract role filling transitions

p
R?a
� q p

R!k
� q.

which move from an object p to a filler object q through input and output actions R?a, R!k.
Now look at the computational behaviour of the two combinators K∃R, K∀R from Ex. 3 which
encapsulate two forms of function application under role filling. Based on the reduction rules
from Fig. 5 we obtain the following evaluation rules

f
R?b
� f ′ p

R!k
� p′

K∃R f p
R!k
� (f ′{k/b}) p′

f
R?b
� f ′ p

R?c
� p′

K∀R f p
R?a
� (f ′{a/b})(p′{a/c})

In both cases, a function f ′ is applied to an argument p′ which are obtained by role filling
from f and p, respectively. However, the filler scope at which f ′ p′ is executed (or available)
is controlled differently. In K∃R f p the scope is determined by the argument p and passed to
function f as well as to the environment using output action R!k. In contrast, the process
K∀R f p takes the scope as an external input R?a from the environment and passes it to f and
p, which of course must be able to accept it. Accordingly, p has type ∀R.C in the expression
K∀R f p while it is of type ∃R.C in K∃R f p. The function f in both cases receives the filler scope
in line with its universal type f : ∀R.(C v D) and thus is executable at any filler reference.

The contraction rules for the two variable binding operations case e of and letR!a.y = e in
depend on their main sub-expression e to be normalised to a constructor first, before they can
fire. When dealing with open terms, however, we cannot assume that e always reduces to a
constructor pattern. So, while the reduction rules in Fig. 5 are complete for closed expressions,

63

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

we need to add further commuting conversions. In general, we need to be able to push every
destructor of λALC through an occurrence of both case e of and letR!a.y = e in. We only
give the relevant cases for let in Fig. 6, the ones for case are analogous (cf. [9]).

πi(letR!a.y = e1 in e2) −→ letR!a.y = e1 inπi e2 γR!1
(letR!a.y = e1 in e2) e3 −→ letR!a.y = e1 in e2 e3 γR!2
(letR!a.y = e1 in e2)@k −→ letR!a.y = e1 in e2@k γR!3
case(letR!a.y = e1 in e2)
of[ι1 x1 → e3 | ι2 x2 → e4] −→ letR!a.y = e1

in case e2 of[ι1 x1 → e3 | ι2 x2 → e4] γR!4
letR!a.y = letS!b.z = e1 in e2 in e3 −→ letS!b.z = e1 in letR!a.y = e2 in e3 γR!5
πi(casex of[ι1 x1 → e1 | ι2 x2 → e2]) −→ casex of[ι1 x1 → πi e1 | ι2 x2 → πi e2] γ case1
(casex of[ι1 x1 → e1, ι2 x2 → e2]) e3 −→ casex of[ι1 x1 → e1 e3 | ι2 x2 → e2 e3] γ case2
(casex of[ι1 x1 → e1 | ι2 x2 → e2])@k −→ casex of[ι1 x1 → e1@k | ι2 x2 → e2@k] γ case3
case(case y of[ι1 y1 → e1 | ι2 y2 → e2])
of[ι1 x1 → e3 | ι2 x2 → e4] −→ case y of

[ι1 y1 → case e1 of[ι1 x1 → e3 | ι2 x2 → e4],
ι2 y2 → case e2 of[ι1 x1 → e3 | ι2 x2 → e4]] γ case4

letR!a.y =
case e1 of[ι1 x1 → e2 | ι2 x2 → e3] in e4 −→ case e1 of

[ι1 x1 → letR!a.y = e2 in e4 |
ι2 x2 → letR!a.y = e3 in e4] γ case5

Figure 6: Commuting Conversions.

Our language cALC now consists of Figs. 2, 3 and 4 for typing and Figs. 5 and 6 for
execution. As mentioned before, the subsystem of Figs. 2, 3 types precisely the normal forms.
If Σ ` e : D is derivable using the rules of Figs. 2 and 3 then e � e′ implies e = e′. λALC is
a conservative extension of the simply typed λ-calculus which enjoys the same computational
soundness properties: We conjecture that the reduction relation � is confluent and strongly
normalising on well-typed expressions. It is a open problem whether the reduction relation �
satisfies subject reduction i.e., Σ ` e : D and e� e′ implies Σ ` e′ : D.

Thus, λALC sets the ground for a higher-order functional framework for computing in DL-
knowledge bases and DL data structures. It realises the Proposition-as-Types and Proofs-
as-Programs Principle (Curry-Howard Isomorphism) for the constructive refinement cAL of
classical AL. Considering the closed normal form terms as the canonical values of a data type
D, then the values of concept description CtD are the disjoint union of the values of C and D.
Indeed, every closed method m : C v D normalises to m� ι1m

′ where m′ : C or to m� ι2m
′

and m′ : D. Similarly, the values of m : C uD are pairs m = (m1,m2) of values of C and D,
respectively; the values of m : C v D are functions m = λx.e from values of C to those of D;
finally, every value of type ∃R.C is an output action m = R!k.m′ with a filler reference k and
filler value m′ : D and every value of ∀R.C is an input action R?a.e which accepts an R-filler
reference k and returns filler methods e{k/a}.

5 Conclusion and Future Work

In this paper we present how the constructive description logic cALC can serve as a semantic
typing system for an extension of the simply typed lambda-calculus which is able to express

64

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

context-dependent computations in structured data, e.g. computational knowledge bases or
databases. The typing system is derived from a multi-sequent calculus for cALC which has
been shown to be sound and complete as has been reported in [16].

As for future work, we aim to prove that λALC exhibits the same computational soundness
properties, namely strong normalisation, confluence and subject reduction, possibly restricted
to special context aware rewriting strategies. The work presented here is still tentative and
leaves many open questions.

We hope that such an approach can constitute a formal grounding for a modally typed
functional programming language that finds practical adoption in the domain of knowledge
base and database processing languages.

References

[1] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementations and Applications. Cambridge University
Press, 2nd edition, 2007.

[3] G. Bellin, V. de Paiva, and E. Ritter. Extended Curry-Howard correspondence for a basic con-
structive modal logic. In Methods for Modalities II, November 2001.

[4] L. Botazzo, M. Ferrari, C. Fiorentini, and G. Fiorino. A constructive semantics for ALC. In Int’l
Workshop on Description Logics (DL 2007), pages 219–226, 2007.

[5] V. de Paiva. Constructive description logics: what, why and how. In Context Representation and
Reasoning, Riva del Garda, August 2006.

[6] M. Fairtlough, M. Mendler, and M. Walton. First-order lax logic as a framework for constraint
logic programming. Technical Report MIP-9714, University of Passau, July 1997.

[7] G. Fischer-Servi. Semantics for a class of intuitionistic modal calculi. In M. L. Dalla Chiara,
editor, Italian Studies in the Philosophy of Science, pages 59–72. Reidel, 1980.

[8] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics.
Elsevier, 2003.

[9] J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.

[10] S. Kobayashi. Monad as modality. Theoretical Computer Science, 175:29–74, 1997.

[11] G. Luettgen and M. Mendler. The intuitionism behind Statecharts step. ACM Transactions on
Computational Logic, 3(1):1–41, January 2002.

[12] M. Mendler. A Modal Logic for Handling Behavioural Constraints in Formal Hardware Verification.
PhD thesis, Department of Computer Science, University of Edinburgh, ECS-LFCS-93-255, March
1993.

[13] M. Mendler and V. de Paiva. Constructive CK for contexts. In L. Serafini and P. Bouquet, editors,
Context Representation and Reasoning (CRR-2005), volume 13 of CEUR Proceedings, July 2005.

[14] M. Mendler and S. Scheele. Cut-free gentzen calculus for multimodal CK∗. To appear in special
issue of Information and Computation on Intuitionistic Modal Logics and Applications (IMLA).

[15] M. Mendler and S. Scheele. Towards constructive description logics for abstraction and refinement.
In 21st Int’l Workshop on Description Logics (DL2008). CEUR Workshop proceedings 353, May
2008.

[16] M. Mendler and S. Scheele. Towards constructive dl for abstraction and refinement. J. Autom.
Reason., 44(3):207–243, 2010.

[17] R. Möller. A functional layer for description logics: knowledge representation meets object-oriented
programming. In OOPSLA ’96: Proceedings of the 11th ACM SIGPLAN conference on Object-

65

Simply Typed CALculus for Semantic Knowledge Bases M. Mendler, S. Scheele

oriented programming, systems, languages, and applications, pages 198–213, New York, NY, USA,
1996. ACM.

[18] A. Nanevski. From dynamic binding to state via modal possibility. In Int’l. Conf. on PRinciples
and Practice of Declarative Programming (PPDP’03), pages 207–218, Uppsala, Sweden, 2003.

[19] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Transactions on
Computational Logic, V(N):1–48, March 2007.

[20] A. Paschke. Typed hybrid description logic programs with order-sorted semantic web type systems
on OWL and RDFS. Technical report, TU Munich, December 2005.

[21] F. Pfenning and R. Davies. A judgemental reconstruction of modal logic. Mathematical Structures
in Computer Science, 11(4):511–540, August 2001.

[22] G. Plotkin and C. Stirling. A framework for intuitionistic modal logics. In J.Y. Halpern, editor,
Theoretical aspects of reasoning about knowledge, Monterey, 1986.

[23] S. Schacht and U. Hahn. A denotational semantics for joining description logics and object-
oriented programming. In SCAI ’97: Proceedings of the sixth Scandinavian conference on Artificial
intelligence, pages 119–130, Amsterdam, The Netherlands, The Netherlands, 1997. IOS Press.

[24] A.K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, Uni-
versity of Edinburgh, 1994.

[25] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume II. North-Holland,
1988.

[26] D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic, volume III, chapter 4, pages 225–339. Reidel, 1986.

[27] D. Wijesekera. Constructive modal logic I. Annals of Pure and Applied Logic, 50:271–301, 1990.

66

	Introduction
	Syntax and Semantics of cALC Types
	The Typed Language ALC
	Syntax of ALC
	Typing for ALC

	Operational Semantics
	Conclusion and Future Work

