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Abstract 
Water distribution networks are critical infrastructures that should ensure the 

reliable supply of high quality potable water to its users. Numerical models of these 
networks are generally governed by many parameters for which the true value is 
unknown. This may be due to a lack of knowledge like for consumer demand or due to 
a lack of accessibility as for the pipe roughness. For network managers, the effect of 
these uncertainties on the network state is important information that supports them in 
the decision-making process. This effect is generally evaluated by propagating the 
uncertainties using the mathematical model. In the past, perturbation and stochastic 
collocation methods have been used for uncertainty propagation. However, these 
methods are limited either in the accuracy of the results or the complexity of the 
calculation. This paper uses an alternative spectral approach with the polynomial chaos 
expansion that has the potential to give comparable results to the Monte Carlo sampling 
through the definition of a stochastic model. This approach is applied to the model of a 
water distribution network in order to evaluate the influence of uncertain demands on 
the water age. 

1 Introduction 
Evaluating the quality of drinking water supplied by a distribution system is usually done by using 

quality indicators like water age or chlorine concentration. These indicators may be determined from 
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mathematical network models. These depend on a great number of parameters like water demand, 
pipe roughness and reservoir levels. However, these parameters are rarely known exactly and thus 
introduce uncertainty into the model. 

Uncertainties in mathematical models are generally divided into aleatory and epistemic 
uncertainties. Aleatory uncertainties are the result of inherently random processes and are often 
described by probability distributions that are modelled on observations. These uncertainties are 
regarded as irreducible since the underlying process cannot be influenced. In contrast, epistemic 
uncertainties follow from incomplete insight into the system, which in theory could be eliminated 
through perfect knowledge. However, epistemic uncertainties are often the necessary effect of 
simplifications in the modelling process and the numerical evaluation. 

Parameter uncertainties are one of the most important aspects of hydraulic modelling as they can 
result in large prediction errors. Hidden parameters like the pipe roughness that cannot be observed 
directly are often estimated through calibration (Savic et al. (2009), Piller et al. (2010)). But, even for 
a well calibrated network some uncertainty remains. Other parameters like demand are clearly 
aleatory in nature.  

The objective of Uncertainty Analysis (UA) is the evaluation and mitigation of such parameter 
uncertainties on the Quantities of Interest (QoI). Central part of this process is the uncertainty 
propagation by means of the mathematical model. Classical approaches contain First Order Second 
Moment (FOSM) methods and Monte Carlo sampling. However, the FOSM is limited by the fact that 
it linearizes the system equation (Cacuci et al. (2005)) and will produce symmetrical confidence 
interval (Vrachimis et al. (2016)). Monte Carlo sampling does not suffer from these limitations, but 
for models with many parameters it is constrained by the curse of dimensionality. This paper proposes 
an alternative approach to the uncertainty propagation with the Polynomial Chaos Expansion (PCE) 
(Smith (2013), Xiu (2010)) Depending on its application the PCE has the potential to greatly reduce 
or even eliminate the sampling by use of the mathematical model. 

The objective of this paper is to analyse the influence of the demand uncertainties on the water age 
in a network model that has been provided by the partner Veolia in the framework of the French-
German project ResiWater (2018). Following this introduction, the example network will be 
introduced together with the basic equations for the hydraulic state and water age in section 2. This is 
followed by a short introduction of the PCE in section 3. Section 4 presents some results of the 
investigation and section 5 closes with a discussion of the results. 

2 Material 
2.1 Hydraulic Model 

In hydraulic modelling, the simplified topological structure of a water distribution network is 
described by a directed graph corresponding to Error! Reference source not found.Figure 1. In this 
graph, links represent pipe sections, valves and pumps, and nodes the resource nodes, tanks, demand 
nodes and connections. The mathematical description of this graph is given by the node-link 
incidence matrix , where  is the number of junction nodes and  is the number of links. 
The coefficients are defined as follows: 

      (1) 

nj np´ÎMA nj np

,

1,  if node  is the end node of link 
0,  if link  is not connected to node 
1,  if node  is the start node of link .
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Water distribution networks in general have a looped structure and the system state is described by the 
potentials at the nodes (heads) and the currents on the links (flow rates). The hydraulic model is 
defined by two sets of equations. First, the mass balance at the nodes: 

          (2) 

where the node-link incidence matrix  includes only nodes with unknown heads,  is the 
vector of link flow rates and  is the vector of demands at consumption nodes. Second, the 
energy equation:  

        (3) 

where describes the incidence matrix of nodes with fixed potential like reservoirs or tanks and 

 is the vector containing the unknown piezometric heads. Parameters are given by the head 
vector  describing fixed heads at special nodes like reservoirs or tanks and the vector 

 containing the friction coefficients for each link. The function  describes the loss in 
head along a pipe. 

2.2 Water Quality Indicators 
The quality indicators are based on the convection-diffusion equation: 

,       (4) 

where  is the variable of interest,  is the diffusion coefficient,  the velocity field and  a 
source term which may be a non-linear function in time and space. For water distribution systems two 
major simplifications are made. First, it is assumed an incompressible water flow, for which extend 
period simulation for the hydraulic is accurate enough (no water hammer neither mass oscillation); it 
follows the hydraulic model is one-dimensional and the velocity vector  simplifies to  
which is calculated for every hydraulic time step  and constant along  for each pipe . Second, it 
is assumed that the regime is turbulent as a consequence the longitudinal diffusion can be neglected as 
in (Rossman & Boulos (1996) ,Fabrie et al. (2010)). With these adaptations, the transport equation for 
water age  may be derived by replacing  with a zero-order source term 

.        (5) 

During each hydraulic time step the water age is resolved by a succession of quality time steps. 
The equation is solved on the domain  for pipe , where  is the pipe length and for the 

time . The initial condition  is defined by the previous time step. The boundary 
conditions are updated with the perfect mixing assumption for the average water age, or with the min 
or max value entering.  
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In the software Porteau (Piller et al. (2011)) water age is evaluated in three variables. Since Porteau 
keeps track of the minimum and maximum water age when water mixes at a junction, it is possible to 
evaluate the extreme values for the residence time. The third variable, average water age, is calculated 
by the weighted sum of the water age in the water columns mixing at the upstream junction. 

2.3 Network Model 
The model of the network used in this paper is shown in Error! Reference source not found.. The 
network hasError! Reference source not found. one loop and three reservoirs with a fixed head. The 
hydraulic system given and (3) have a total number of 21 degrees of freedom given by 9 nodes in 
equation (2) and 12 pipes in equation (3).  

 

Figure 1: Small looped network. 

3 Uncertainty Propagation 
The objective of Uncertainty Analysis (UA) is to evaluate the impact of uncertain parameters on 

the Quantities of Interest (QoI). To do so, the parameters and QoI are modelled as random variables. 
The central part of UA is the propagation of errors and uncertainties by means of the mathematical model. 
Classical approaches contain perturbation and stochastic sampling methods. Stochastic spectral methods are 
a relatively new addition to the field that has been introduced by Xiu (2010). 

Perturbation methods calculate the moments for the distribution of the quantity of interest directly from 
the system equations by means of a truncated Taylor expansion. Typically, the expansions employed are 
limited to first- or second-order expansions (Cacuci et al. (2005)). This limits their accuracy for highly non-
linear models. Stochastic sampling methods like the Monte Carlo Simulation are some of the most 
prominent algorithms for uncertainty propagation. This is due to the easy implementation and the ability to 
be used for non-linear systems. However, it can be computationally demanding as its rate of convergence is 
proportional to , where is the number of simulations (Cacuci et al. (2005), Smith (2013)). The 
objective of stochastic spectral methods like stochastic Galerkin and Non-Intrusive Spectral Projection 
(NISP) is the calculation of a spectral representation of the random variables. Utilizing the smoothness 
requirement of the polynomial basis leads to a more efficient convergence behavior (Smith (2013), Xiu 
(2010)). 

1 M M
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For the Polynomial Chaos Expansion a random variable  is expressed as a truncated spectral series 
expansion of the order  based on a basic random variable and a set of orthogonal basis polynomials 

.  

        (6) 

The choice of the basic random variable, also often termed as the germ, and the orthogonal 
polynomials is joint by the definition of the inner product:  

.  (7) 

Here,  defines the expected value,  is the cumulative distribution function and  is the 
probability density function of the germ distribution. The Kronecker delta  is equal to  if the indices are 
equal and  for the product of two different polynomials. The coefficients of a random parameter are 
calculated by projecting it on the orthogonal basis polynomials: 

.        (8) 

As Equation (7) suggests, the choice of the polynomial basis generally depends on the distribution 
of the basic random variable. In this paper uncertainties are assumed to follow a Gaussian distribution 
which is efficiently approximated by the Hermite polynomials. However, the spectral expansion 
allows to approximate non-Gaussian random variables in the series expansion. Further there exist a 
number of random distributions that are approximated efficiently by specific sets orthogonal 
polynomials [6]. 

Application of the Polynomial Chaos Expansion in general follows an intrusive or a non-intrusive 
procedure. The intrusive approach requires a reformulation of the system equations and allows for the 
direct solution in the parameters of the QoI. Although computationally very efficient it may pose 
certain complications since it is not possible to use existing implementations for the solution of the 
problem. Further, the handling of nonlinearities may require additional steps that introduce additional 
errors. Non-intrusive algorithms use a number of samples similar to the Monte Carlo simulation to 
evaluate the coefficients. This means that in regard to the computation current software and models 
may be used. Even though the non-intrusive PCE is more efficient than the MCS for high dimensional 
parameter spaces the problem may become computationally infeasible for applications with high 
dimensional parameter spaces. 

The non-intrusive method is a stochastic collocation like Monte Carlo simulation. These methods 
use a number of evaluations of the full mathematical model for a limited number of realizations 
from the random parameters in order to build a surrogate model that is fitted at these collocation 
points. In contrast to the MCS, the direct evaluations in intrusive methods are used to fit the 
coefficients of the Polynomial Chaos Expansion to the data. For the vector of QoI for the hydraulic 
propagation is given by , whereas for the water age it is defined as . The 
coefficients are estimated by solving the following equation. 

X
N Z

kY

( ) ( )
0

N

N k k
k

X Z x Z
=

= Yå

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
i j i j Z i j Z i iE Z Z Z Z dP z z z f z dz dé ùY Y = Y Y = Y Y = Yë û ò ò

E ZP Zf

id 1
0 X

2

, k
k

k

X
x

Y
=

Y

M

[ ]T T T=x q h =x A

Spectral Analysis of Uncertainty in Water Age M. Braun et al.

339



     (9) 

The right-hand side is given by the result vectors  of the mathematical model. The 

left matrix on the left-hand side is formed by the value of the  basis polynomials at the 
realizations of the basic random variable. The columns of the second matrix on the left-hand contain 
the coefficients for the PCE of one of the QoI. Further,  are realizations of the basic random 
variable  and  is the vector of realizations of the random model parameters based on the 

realization of . 

4 Results 
The setup that is investigated in this paper is defined as follows. The model defines a diurnal 

demand pattern for a selection of free nodes. This pattern contains a series of demand multipliers. For 
each hydraulic time-step the according demand factor is multiplied by the base demand that is defined 
individually for each consumption node. Through this behavioural aggregation a large portion of the 
network is influenced by a concentrated number of variables. Uncertainty is introduced into the 
system by an uncertainty multiplier that is applied to the demand pattern. This uncertainty is assumed 
to be normally distributed with a mean of   so that the predefined pattern is equal to the expected 
value and a standard deviation of  which in practice ensures that the demand stays positive. From this 
distribution a sample of   elements is taken to modify the parameters for the Monte Carlo simulation. 
From the ensemble of these simulations a reduced number of   elements are taken to evaluate the 
Polynomial Chaos Expansion. In the following result plots, the Monte Carlo Simulation is visualized 
by a histogram. The PCE is illustrated by a red dashed line based on kernel density estimation. 

    
Figure 2: Water age distributions for small network: (a) Node 3 in the meshed part of the system (b) at node 

9 at a branch of the network. 
 
Figure 2 shows the probability distribution for two nodes in the small network. Figure 2 (a) gives 

the distribution at node 3 and Figure 2 (b) the one for node 9. The evaluation is done after a simulated 
duration of 58 hours at which point the behaviour of the water age has become periodic and is no 
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longer influenced by the initial condition. The values of the mean values and standard deviations are 
given in Table 1 along with the expansion order. In the evaluation of the results it has become 
apparent that for the small network no significant difference could be observed between the 
minimum, maximum and average water age. The behaviour at the two nodes is very different. The 
distribution at node 3, while clearly being nonlinear, has still a single peak and a limited standard 
deviation. This observation is supported by the coefficients in Table 2 which decrease rapidly after the 
second coefficient. In contrast the distribution at node 9 shows two peaks and the expansion 
coefficients decrease more slowly. This means that the probable water age in the loop node 3 is higher 
than the one in the tree node 9 however due to the lower standard deviation the level of uncertainty is 
lower at node 3. The development of the two peaks in Figure 2 (b) suggests that, depending on the 
demand multiplier, the flow structure changes and water arrives from a different node, takes a longer 
route or flows more slowly. Remixing of old water is unlikely due to the structure of the network with 
three reservoirs that are connected to the loop. A detailed analysis of the origin reservoir has not been 
performed as a part of this study, but may offer better insight. 

 
 LTB /100 Average water age  

Node  Mean   
 Standard deviation  
 Expansion order  
Node  Mean   
 Standard deviation  
 Expansion order  

Table 1: Stochastic moments and PCE order for the probability distribution function of average water age at 
nodes 3 and 9 of the small network. 

 
Order            
Node 3 

  
        

Node 9 
  

 
 

 
 

 
 

 
 

Table 2: The expansion coefficients for the polynomial chaos expansions of average water age at nodes 3 
and 9 of the small network. 

5 Conclusion 
The polynomial chaos expansion has been applied to a small water distribution system to evaluate 

the effect of demand uncertainties on the resident time of water in the network. It has been shown that 
the Polynomial Chaos Expansion gives comparable results to Monte Carlo simulations while reducing 
the number of evaluations of the full system by an order of magnitude. This means that for a fixed 
number of simulations the PCE performs considerably better. Even for the relatively small normally 
distributed perturbation of the demand used in this paper the probability distribution for the water age 
is far from normal. This means that perturbation methods are not suitable for this task. Further it has 
been shown that the size of the network has a considerable influence on the maximum water age. 

 

avgA
3 3 8.1µ =

3 4.7s =

3 7O =
9 9 3.3µ =

9 7.8s =

9 9O =

N 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a
11.90 2.12- 0.40 0.011 0.05 0.09 0.03 0.04

6.52 3.67- 2.10 1.52- 0.03- 1.70- 0.00 1.96- 0.06 0.59-
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