
Refinement and Term Synthesis in Loop

Invariant Generation

Ewen Maclean1, Andrew Ireland1, Robert Atkey and Lucas Dixon

1 Heriot-Watt University
{eahm2,air}@macs.hw.ac.uk
2 University of Edinburgh

{bob.atkey,lucas.dixon}@ed.ac.uk

Abstract

We present a technique for refining incorrect or insufficiently strong loop invariants in
correctness proofs for imperative programs. We rely on previous work [16] in combining
program analysis and Proof Planning, and exploit IsaPlanner’s use of meta-variables and
goal-naming to generate correct loop invariants. We present a simple example in detail
and discuss how this might scale to more complex problems.

1 Introduction

Our primary interest is the automatic generation of correct and sufficiently strong loop in-
variants to allow correctness proofs about imperative programs to succeed. Here we present a
simple example for proving exception freedom from array bounds errors. When proving imper-
ative programs correct, sufficiently strong loop invariants must be discovered. Existing tools
and techniques for discovering loop invariants are successful for array bound exception freedom
proofs – where the access to an array is shown not to fall outside its bounds – but we propose
to extend these techniques by using proof failure analysis to refine candidate loop invariants.

This paper outlines a cooperative approach where program analysis systems can be combined
with theorem proving in a Higher Order setting. Our hypothesis is that combining the two we
can successfully infer correct loop invariants for difficult problems about functional correctness.
This is an extension of an idea described for example in [16]. In the work described here we
focus on Higher Order Logic but as is described in Section 6, it is being performed in parallel
with work in automating proof in Separation Logic [19].

2 Existing Technologies

We describe first existing systems which find candidate loop invariants, and go on to a descrip-
tion of the important features of IsaPlanner – the theorem proving system we adopt.

2.1 Program Analysis Systems

In our work to date we have explored different systems in order to determine the likely loop
invariant candidates which would be suggested. Existing techniques for discovering loop invari-
ants roughly fall into four main categories:

Dynamic Approaches This technique runs input templates on the loops and uses techniques
such as machine learning to try and work out invariants from the results after the appli-
cation of the loop. Work of this kind is the Daikon system, which has been successfully
integrated in ESC/Java2, as presented in [22].
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Top-down Static Approaches [21] presents work in taking the postcondition of a loop, and
propagating it through the loop backwards in order to generate candidates for the loop
invariant.

Bottom-up Static Approaches The most research has been done on this technique, which
works by propagating the precondition of a loop forwards through the loop in order to yield
candidates for loop invariants. The various different techniques used are too numerous
for this report, but some pertinent techniques are those used in [9] for calculating linear
equalities in loop invariants, and in [11] for evaluating program states using difference
equations.

Predicate Abstraction Techniques Predicate abstraction is used widely in conjunction
with model checking for program verification. It places abstracted predicates at every
choice point in the control flow of a program, and refines them as necessary. Predicate
abstraction has also been used successfully in the Houdini system [12] to generate loop
invariants for ESC/Java.

Constraint-based Methods Possibly the most sophisticated and modern techniques use
complex mathematics such as Gröbner bases to calculate non-linear constraints on in-
variants and then extract actual program invariants. This is demonstrated in [17] for
example.

Some of these systems are combined with provers and can verify the correctness of a loop
invariant. We are interested in cases where the loop invariant is not strong enough and must
be modified.

2.2 IsaPlanner

Proof assistants, such as Isabelle [23], Coq [27] and HOL [13], provide a framework for formali-
sation tasks such as software verification and mechanised mathematics. Typically, automation
is developed by writing programs, called tactics, that combine operations from a small trusted
kernel. Although many forms of proof automation are already available, developing new tactics
and extending existing ones can be difficult. Higher-level concepts, such as search space and
heuristic guidance, must be developed on top of the the logical kernel. Proof Planning is an
approach to providing this kind of high-level machinery in order to encode and apply common
patterns of reasoning [6]. Further to this machinery there is a mechanism for recognising com-
mon failure patterns and suggesting ways of “patching” the failed proof, which is encapsulated
in Proof Critics. We refer to the set of critics built-up for a particularly theory as its library of
critics.

IsaPlanner [10] is a Proof Planner for the Isabelle proof assistant. The features of the
system which are of particular importance for the work in this paper are:

• it provides a programatic way to manage the names of assumptions and goals;

• it efficiently manages the meta-variables which can be shared across different conjectures,
and which once instantiated result in several theorems;

• it allows a large collection of automated proof methods to be combined, including counter-
example finding, inductive theorem proving with rippling [4], linear arithmetic decision
procedures, simplification, and tableaux methods.

We now briefly outline the nature of these features and the arguments that justify finding
a solution for them.
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2.2.1 Naming Goals and Assumptions

Most tactic based theorem provers represent the assumptions to a theorem (and those to a goal)
as a list of terms. A tactic that performs forward reasoning specifies the assumptions on which
it works by indices in the list. Similarly, applying tactics to goals typically involves providing
an index for the goal. The result is that the list has new elements inserted, and possibly old
elements re-arranged. Such an approach has two problems:

• To perform further reasoning on another assumption its position must be re-determined,
possibly involving a complete traversal of all assumptions, even if its old position were
known. Positions, which are used as names, are not stable over a tactics application. The
same problem occurs for subgoals held in a list. Index-based names for referring to goals
are not stable over tactic application. Tactics can re-order goals and insert new ones, as
well as accidentally solve the goal you planned to tackle with another procedure.

• Having too many assumptions is not a theoretical problem in logics with weakening,
as they can be ignored. But from the perspective of automated theorem proving they
are problematic. For instance, certain unfortunate assumptions can cause simplification
tactics to loop forever, or simply perform the wrong simplification. Some mechanism to
say which assumptions should be used is needed.

Structured proof languages, such as Isar and Mizar, provide the means for the user to name
assumptions as they interactively write a proof script. However, most proof systems have no
such mechanisms for managing the names of assumptions, conjectures, and goals. IsaPlanner is
the first system we know of to explicitly give stable names to assumptions and goals, and provide
a programatic means for the generation of names to the tactic language. This allows proof
machinery to refer to names of assumptions and goals which helps make the Proof Planning
techniques applied more robust and simpler to express.

2.2.2 Meta-variables

Most tactic based systems struggle with proof automation when goals contain meta-variables -
such as those resulting from existentially quantified variables in the goal or universally quantified
ones in assumptions. The inherent logical problem with such variables for proof automation is
that the search space suffers an exponential explosion. Furthermore, from a pragmatic point
of view, the work involved in managing instantiations is difficult to achieve in a verifiable and
efficient manner.

When systems do provide a form of meta-variables, it can only be used within a single
proof attempt. Typically, several partial proof attempts cannot be started if they share meta-
variables. This is for two main reasons. Firstly, meta-variables are free-variables over a sequent;
there is usually no global name space for free/meta-variables - having one would cause several
other problems including the inability to perform proof checking or proof search in parallel.
The second reason is that meta-variables are not stable over tactic application. Tactics often
instantiate old ones, rename them, and introduce new ones. The pragmatic problem with meta-
variables is that upon instantiation, every term in which the variable occurs must be updated.
Without efficient means to track the dependencies, or lazily instantiate variables, this becomes
a slow operation.

IsaPlanner deals with these issues by naming meta-variables in a manner that is stable
over tactic application and shared over a collection of proof attempts. Managing dependencies
then reduces to operations on a binary relation between two finite sets. The two sets being
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the variable names and the set of names for assumptions, conjecture and goals. Allowing
meta-variables in conjectures also allows synthesis to be treated in a first class manner where a
conjecture in refined and modified so that the final result is not abstracted away to an existential
variable. This allows the instantiation found to be used in other proof attempts. For instance,
this has been used to synthesise a custom induction scheme as part of the inductive proof
attempt for proving the correctness of quicksort [5].

2.2.3 Combining Proof Tools

The final feature of IsaPlanner used in this paper is automated proof tools. These include many
powerful automatic tactics from Isabelle such as the simplifier, the classical reasoner, counter-
example finding, and linear arithmetic [8] as well as the efficient inductive theorem proving
tools in IsaPlanner [10].

2.3 Current Automation

At present we are able to automatically generate the verification conditions and generate correct
loop invariants. We can prove array bounds exception freedom for some simple programs
which manipulate arrays which have no user provided annotation. Section 4 shows a solution
of an exception freedom verification problem which has been done completely automatically.
Throughout this section when we write “we” we are referring to the reader’s interpretation of
the automatic proof as produced by IsaPlanner.

Although the problem shown in Section 4 is one which would be solved by most program
analysis systems, we describe our methodology and extend it to the more difficult functional
correctness problem in Section 5. In this Section the methodology is combined by hand, and we
claim no more automation than the verification condition generation. We fully expect however
that the proof itself and synthesis problem which is central to the invariant generation are
automatable.

3 Verification Condition Generation

Our verification condition generation procedure follows standard Hoare style rules [14] to
generate entailments in Higher Order Logic. Initially, we ignore the values of array elements,
only concentrating on exception freedom. The Hoare Logic rules for arrays are initially ignored,
and assertions are inserted into the code where array elements are accessed to ensure the index
is within the requisite bounds. We introduce here the rules we use to generate the weakest-
precondition entailment, and give an example program. Extensions to functional correctness
are given in Section 5.

3.1 Imperative Language

The version of Java we consider is based on Middleweight Java [3], extended with loops and
arrays. This is a cut-down version of Java that retains enough features to demonstrate the
properties we require, but is small enough to allow quick experimentation. In the proofs that
follow, all types of variables are implicitly integers since this is the type given in the program-
ming languages. For this reason we write i + 1 instead of s(i) since this is more pertinent to
the inductive structure of the natural numbers.
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3.2 Exception Freedom Rules

We use the standard notion of Hoare Triples to generate entailments for correctness proofs.
In the case of verification of array bounds correctness – i.e. that no array index is out of the
bounds of the array – we are not concerned with the value of array elements. Figure 1 shows
the set of Hoare Logic rules that we use. Importantly, the only rule which requires creative
input is the rule for the while construct in our imperative language since a loop invariant must
be discovered.

{P [E/x]}x := E{P}

{P}C{Q} {Q}D{R}

{P}C;D{R}

{Cond ∧ P}C{Q} {¬Cond ∧ P}D{Q}

{P}if Cond C else D{Q}

{Cond ∧ P}C{P}

{P}while Cond C{¬Cond ∧Q}

Figure 1: The Hoare Rules used to Generate Verification Conditions

4 Example Problem

Figure 2 shows a program which makes a copy of an array with the elements reversed. We use
a weakest precondition analysis to generate the set of hypotheses and conclusions shown in Fig-
ure 3. Here X stands for a meta-variable which depends on the free variables in the hypotheses
and conclusions. This is equivalent to an existentially quantified higher-order variable standing
for the function which describes the loop invariant. For example, a natural candidate for the
loop invariant would be

X ≡ λa, i. i ≥ 0 ∧ i < len(a)

since this describes the limits of the loop variable imposed in the code, noticing that the index
is incremented each pass through the loop. At this point we are disregarding the pre and post
conditions since we are interested purely in exception freedom.

procedure revArray(int[ ] a) {
{α0 = elements(a, 0, len(a))}

int[ ] b = new int[a.length];
int i = 0;
while (i! = a.length){

b[i] = a[a.length− (i+ 1)];
i = i+ 1;

}
{elements(a, 0, len(a)) = α0 ∧ elements(b, 0, len(b)) = rev(α0)} }

Figure 2: A procedure for copying an array with the elements reversed

We consider proving that there are no array bounds errors in the loop of the program
shown in Figure 2. This verification has been performed in IsaPlanner and the proof is totally
automatic thanks to the mechanisms described in Section 2.2, using Isabelle’s built in auto tactic
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and its counter-example checker. We choose this particular verification in order demonstrate
the invariant generation techniques we develop. Existing systems such as ESC/Java2 [22] and
Houdini [12] are already capable of proving this program free from array bounds exceptions.
We discuss a more complicated example in Section 5.

We imagine first of all that no loop invariant has been given and that it is represented by a
meta variable X as described in Section 4. After a weakest precondition analysis, we perform
Isabelle’s safe tactic which reduces the goal to a set of hypotheses and conclusions as shown
in Figure 3.

We omit some details of the result of the verification generation process, and present slightly
simplified versions for presentation clarity. While we are just proving the correctness of the loop,
we can assume len(a) = len(b) since this is set at the start of the code when the array b is
allocated. At the assignment of an array cell, the variable is changed and an extra hypothesis
is added ensuring that the length of the array is unchanged. This is represented by len(b′) =
len(b′′) in the code, which is a simplification of a full description of array update as applied in
Section 5. In the presentation, b′ is the state of array b at some point at the start of the loop,
and b′′ is the state of array b at the end of the loop code.

h1 :X (a, b′, i) c1 :i ≥ 0
h2 :i 6= len(l) c2 :i < len(b′)
h3 :len(a) = len(b) c3 :len(a)− (i+ 1) ≥ 0
h4:len(b′) = len(b′′) c4 :len(a)− (i+ 1) < len(a)

c5 :X (a, b′′, i+ 1)

Figure 3: The Verification Conditions Generated with no Loop Invariant

4.1 Dependent Bi-Abduction

[7] presents a method for automatically annotating programs with pre and post conditions
using a method known as bi-abduction. This is focussed on verification of programs which use
pointers, and uses separation logic to verify properties about the shape of inductive structures
on the heap (see Section 6).

Abduction is a proof-technique which determines what must be true in hypotheses in order
to render a conclusion correct. For example, consider the following theorem:

i, j, n : N. j ≤ n ⊢ n− (i+ j) ≥ 0 ∧ n− j ≥ 0

The conclusion n − (i + j) ≥ 0 cannot be proven from the hypotheses. In order for the proof
to go ahead, we must add the hypothesis that i ≤ n− j. Determining this extra hypothesis is
a form of abduction.

The premise behind bi-abduction is that it should be possible, by program analysis, to
determine not only hypotheses which allow verification proofs to succeed, but also to determine
extra conclusions which can be proved from the hypotheses. In the case of the work presented
in [7] for example, this happens in program verification where such extra hypotheses pertain to
a part of memory which is not passed to a procedure. The extra conclusions which are added
pertain to parts of memory which must exist in order for post-conditions of procedures to be
satisfied.

In our work we see a parallel between this work, and the synthesis and refinement of loop
invariants. When using a proof system to determine a correct loop invariant, we need to both
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use it as part of the hypotheses and in the conclusion. In order to prove the conclusions correct
we can use abduction to determine what must be true of the loop invariant. However in adding
extra hypotheses through instantiation of a loop invariant we also add extra conclusions. As
a result this is bi-abduction, since we are determining new hypotheses and conclusion, but we
observe dependencies between them.

4.2 Refinement

As discussed in [15], Proof Planning techniques can be used to analyse failure of a verification
in order to discover correct loop invariants. We consider here the verification conditions shown
in Figure 2, imagining that we are trying to prove the program correct given an insufficiently
strong suggestion for a loop invariant – i.e. one which contains some necessary conditions, but
not all of them.

IsaPlanner has a critics mechanism built-in as described in Section 2.2. Although some
of the refinements described here have been done interactively, the proposal is to extend the
library of critics to analyse the failure patterns we discuss here. This is an extension of the
work described for example in [16].

4.2.1 Invariant Candidate Refinement by Addition of Conjuncts

Imagine that we have been given the suggestion

X ≡ λa, i. i ≥ 0 ∧ i ≤ len(a)

which creates the set of hypotheses and conclusions shown in Figure 4. When IsaPlanner
attempts to prove this set of verification conditions it is capable of annotating which of the
goals it has not been possible to prove. This report is motivated by the use of a counter-
example checker, as described in Section 2.2. Each conclusion in Figure 4 is marked with a
tick or a cross denoting whether it is provable from the hypotheses.

h1 :i ≥ 0 c1 :i ≥ 0 ✔

h2 :i ≤ len(a) c2 :i < len(b′) ✘

h3 :i 6= len(a) c3 :len(a)− (i+ 1) ≥ 0 ✔

h4 :len(a) = len(b) c4 :len(a)− (i+ 1) < len(a) ✔

h5 :len(b′) = len(b′′) c5 :i+ 1 ≥ 0 ✔

c6 :i+ 1 ≤ len(a) ✔

Figure 4: The Verification Conditions Generated with Loop Invariant Suggestion ( 1)

In this case we analyse the failure pattern of the conclusions and see that the failing goal is
i < len(b′). A naive patch would be to add this to the hypotheses by means of extending the
loop invariant. This would involve instantiating the loop invariant to

X ≡ λa, i. i ≥ 0 ∧ i ≤ len(a) ∧ i < len(b).

This results in divergence since the set of generated verification conditions include the conclusion
i + 1 < len(b) which is included by the array access assertion conditions. Analysing this
divergence is similar to the fixed point analysis presented in [20], and the divergence critic
developed and discussed in [28].
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Our solution is to augment the existing loop invariant candidate with an extra uninstantiated
conjunct. We are motivated to do this in this case noticing that the existing loop invariant
does not contain any relation between the variables which exist within the failed conclusion.
Accordingly we write

X ≡ λa, b, i. i ≥ 0 ∧ i ≤ len(a) ∧ Y(a, b, i)

which renders the verification complete given IsaPlanner’s term synthesis machinery as de-
scribed in Section 4.3.

4.2.2 More Complicated Invariant Candidate Refinement

Imagine now that we have been given the flawed invariant candidate

X ≡ λa, i. i ≥ 0 ∧ i < len(a)

based purely on the initial inspection that all accesses to array elements should be within the
bounds of the arrays. Given this loop invariant IsaPlanner produces the set of verification
conditions shown in Figure 5.

h1 :i ≥ 0 c1 :i ≥ 0 ✔

h2 :i < len(a) c2 :i < len(b′) ✘

h3 :i 6= len(a) c3 :len(a)− (i+ 1) ≥ 0 ✔

h4 :len(a) = len(b) c4 :len(a)− (i+ 1) < len(a) ✔

h5 :len(b′) = len(b′′) c5 :i+ 1 ≥ 0 ✔

c6 :i+ 1 < len(a) ✘

Figure 5: The Verification Conditions Generated with Loop Invariant Suggestion ( 1)

Now inspecting the failed conclusions we see that i + 1 < len(a) and i < len(b′) cannot be
solved. This time we have a failing conclusion which is not independent of the existing conjuncts
in the loop invariant. We therefore identify the failing conjunct within the loop invariant to be
i < len(a). We want to replace this with a more general term, so we insert a corresponding
meta-variable with arguments a, i. We also want to add an extra conjunct as described above
to include the extra variable b. We thus remove the conjunct i < len(a) and add the two
uninstantiated conjuncts

Y(a, i) Z(a, i, b)

Since Z subsumes Y we adjust the loop invariant to

X ≡ λa, b, i. i ≥ 0 ∧ Z(a, i, b).

which renders the verification complete given IsaPlanner’s term synthesis machinery.

4.2.3 Counter-Example Driven Refinement

When a verification attempt fails, IsaPlanner uses the built-in Isabelle counter-example checker
to give values of variables for which the verification fails. This helps in giving suggestions
for how the invariants should be refined. IsaPlanner exploits its nominals to identify which
goals have failed. We can analyse the counter-example given. For example, in some cases the
counter-example found involves mismatching list lengths, so we can automatically add len to
the term synthesis machinery.
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4.3 Term Synthesis

Given a refined loop invariant which has meta-variables inserted as described above, we can
exploit IsaPlanner’s term synthesis mechanism to generate and test loop invariant candidates.
The set of function and constant symbols that we add to the term synthesis machinery are

0 1 λx.len(x) λx, y.x ≤ y λx, y.x = y λx, y.x < y λx, y.x ∧ y

The current machinery for term synthesis combines terms using meta-variables until a ground
term is found, which is then checked using the counter-example checker. Once a term is con-
structed for which a counter-example is not found, the proof is attempted using IsaPlanner and
Isabelle’s auto tactic.

This yields a correct loop invariant automatically in IsaPlanner. The process of narrowing
the possible function symbols down to those shown above is currently hard-coded. In general
choosing a complete set of such functions automatically is very difficult, but we aim to address
this problem. Since we use breadth-first search, this is guaranteed to find a correct candidate
if one exists.

5 Functional correctness

We extend the techniques described up to this point to verify the functional correctness of the
program shown in Figure 2. This requires an extension of the verification condition generation
to array assignment, and a language for proving the resulting entailment from the weakest
precondition analysis.

5.1 Additional Rules

The rule for array assignment is given as

{P [upd(a, i, E)/a]}a[i] := E{P}

and all occurrences of array lookup are replaced by the function ele. The function elements
allows inductive decomposition of an array so we can reason about the structure of the data.
This mimics the linked list structures found when reasoning about pointer programs [29, 2].
Extending Separation Logic to account for arrays is briefly discussed further in Section 6.
Rewrite rules augmented with rippling annotations, known as wave rules, are given for these in
Figure 6.

5.2 Entailment With Unknown Loop Invariant

When proving the functional correctness of the program, there are three stages to consider, all
of which rely on a correct loop invariant. We represent the unknown loop invariant as usual with
the meta-variable X . This makes the bi-abduction more complicated than the example shown
in Section 4. We must determine that the loop invariant follows from the pre-condition and
code before the loop; that the loop invariant is indeed invariant; finally that the post-condition
follows from the loop invariant and code after the loop. These three entailments are combined
into the set of hypotheses and conclusions shown in Figure 7.
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ele(upd(X, Y,Z), Y ) ⇒ Z (1)

¬Y = N → ele( upd(X , Y,Z)
↑

, N) ⇒ ele(X,N) (2)

elements(N,X, 0) ⇒ nil (3)

X + (Y + 1) ≤ len(A) → elements(A,X, Y + 1
↑

) ⇒ ele(A,X) :: elements(A, X + 1
↑

, Y )

↑

(4)

X + (Y + 1) ≤ len(A) → elements(a,X, Y + 1
↑

) ⇒ elements(A,X, Y ) <> ele(A,X +N)
↑

(5)

rev(nil) ⇒ nil (6)

rev( X <> h :: nil
↑

) ⇒ h :: rev(X)
↑

(7)

nil <> t ⇒ t (8)

h :: l <> t ⇒ h :: l <> t
↑

(9)

elements(X, 0) = nil ⇔ len(X) = 0 (10)

X + Y + Z
↑

⇒ X + Y + Z
↑

(11)

X − ( Y + Z
↑

) + Z

↑

⇒ X − Y (12)

Figure 6: Wave Rules Used in the Functional Verification

h1 :elements(a, 0, len(a)) = α0 c1 :X (0, a, b)
h2 :len(a) = len(b) c2 :X (i+ 1, a, b′)
h3 :X (i, a, b) c3 :elements(a) = αo

h4 :b′ = upd(b, i, ele(a, len(a)− (i+ 1))) c4 :elements(b, 0, len(b)) = rev(α0)
h5 :¬i = len(a)
h6 :X (len(a), a, b)

Figure 7: Verification Conditions with an Uninstantiated Loop Invariant

5.3 Program Analysis Suggestion for Loop Invariant

A standard interpretation of how to generate a loop invariant for such a program is to create
an invariant by analysing the “work done” and “work left to do” in a loop. In the case of the
program we are analysing, we can suggest that the update to b has been done up to some point
between i = 0 and i < len(a), since i is incremented at each stage. A good initial candidate
then assumes that the array b is updated up to, but not including, the value of i:

X ≡ λi, a, b. i ≥ 0 ∧ i ≤ len(a) ∧ ∀j.0 ≤ j < i → ele(b, j) = Y(a, b, j, i)

This yields a set of hypotheses and conclusions as shown in Figure 8.

5.4 Term Synthesis

We study the case where the set of verification conditions shown in Figure 8 is the initial state
for the synthesis attempt. We use the post-condition, program analysis, and the set of function
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h1 :elements(a, 0, len(a)) = α0 c1 :∀j.0 ≤ j < 0 → ele(b, j) = Y(a, b, j, 0)
h2 :len(a) = len(b) c2 :∀j.0 ≤ j < i+ 1 → ele(b′, j) = Y(a, b′, j, i+ 1)
h3 :∀j.0 ≤ j < i to ele(b, j) = Y(a, b, j, i) c3 :elements(a, 0, len(a)) = αo

h4 :b′ = upd(b, i, ele(a, len(a) − (i+ 1))) c4 :elements(b, 0, len(b)) = rev(α0)
h5 :¬i = len(a) c5 :0 ≥ 0
h6 :∀j.0 ≤ j < len(a) to ele(b, j) = Y(a, b, j, len(a)) c6 :0 ≤ len(a)
h7 :i ≥ 0 c7 :i+ 1 ≥ 0
h8 :i ≤ len(a) c8 :i+ 1 ≤ len(a)

Figure 8: Verification Conditions with Partial Instantiation

symbols available to create a large set of possible term symbols over which to instantiate the
possible loop invariant. The set of possible term symbols is

0 1 λx, y.x + y λx, y.x− y λx, y.x = y λx, y.x ∧ y λx.len(x) λx, y.ele(x, y)

which will generate the correct loop invariant:

X ≡ λi, a, b. i ≥ 0 ∧ i ≤ len(a) ∧ ∀j.0 ≤ j < i → ele(b, j) = ele(a, len(a)− (j + 1)).

5.5 Proof

Given an instantiation of

Y = λa, b, i, j. ≡ ele(a, len(a)− (j + 1))

the interesting and non-trivial conjuncts to prove are c2 and c4 in Figure 8. We do not discuss
here the actual proof in IsaPlanner, or the reasoning techniques which must be employed. Our
interest is in the correct synthesis of a loop invariant. The proofs that follow are all automtable
in IsaPlanner.

5.5.1 Goal c2

After some simplification for clarity of presentation, the entailment resulting from a weakest
precondition analysis is

elements(a, 0, len(a)) = α0 , i < len(a), i ≥ 0

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

∀j.0 ≤ j < i+ 1 → ele(upd(b′, i, ele(a, len(a)− (i + 1))), j) = ele(a, len(a)− (j + 1)).

We now perform first a case split on i, proving a branch where i = 0 and a branch where i > 0.
The first branch leads with i = 0 to

elements(a, 0, len(a)) = α0 , i < len(a), i = 0

∀j.0 ≤ j < 0 → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

∀j.0 ≤ j < 1 → ele(upd(b′, 0, ele(a, len(a)− 1)), j) = ele(a, len(a)− (j + 1))

which reduces to

elements(a, 0) = α0 , i < len(a), i = 0, j = 0

true ⊢

ele(upd(b′, 0, ele(a, len(a)− 1)), 0) = ele(a, len(a)− 1)
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which reduces to an identity with application of rule ( 1). In the second branch where i > 0 we
obtain

elements(a, 0) = α0 , i < len(a), i > 0

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

∀j.0 ≤ j < i+ 1 → ele(upd(b′, i, ele(a, len(a)− (i+ 1))), j) = ele(a, len(a)− (j + 1))

for which we now split up the conclusion into cases where 0 ≤ j < i and j = i. This yields
firstly the goal

elements(a, 0) = α0 , i < len(a), i > 0

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

∀j.0 ≤ j < i → ele( upd(b′ , i, ele(a, len(a)− (i + 1)))
↑

, j) = ele(a, len(a)− (j + 1))

for which rule ( 3) applies since we can prove that 0 ≤ j < i → j 6= i. This reduces to

elements(a, 0) = α0 , i < len(a), i > 0

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)).

For the case where j = i we yield

elements(a, 0) = α0 , i < len(a), i > 0

∀j.0 ≤ j < i → ele(b′, j) = ele(a, len(a)− (j + 1)) ⊢

ele(upd(b′, i, ele(a, len(a)− (i + 1))), i) = ele(a, len(a)− (i+ 1))

which using rule ( 1) reduces to an identity.

5.5.2 Goal c4

The goal we need to prove is

elements(a, 0, len(a)) = α0, len(a) = len(b)

∀j.0 ≤ j < len(a) to ele(b, j) = ele(a, len(a)− (j + 1)) ⊢

elements(b, 0, len(b)) = rev(α0).

We write this in a simpler form as

∀j.0 ≤ j < len(a) → ele(b, j) = ele(a, len(a)− (j + 1)) ⊢

elements(b, 0, len(a)) = rev(elements(a, 0, len(a))

in order to prove this, we generalise the theorem. The Generalisation of the theorem to segments
within the array is described by the diagram in Figure 5.5.2. This sort of generalisation
is possible within IsaPlanner, and can be done automatically since the class of induction is
bounded. This means that in the theorem the induction variable is constrained to a finite
range. Once generalised we can set up an inductive proof on the length of the segment.

∀j.0 ≤ j < len(a) → ele(b, j) = ele(a, len(a)− (j + 1)) ⊢

∀m,n.len(a) < m ≥ 0 ∧ len(a) ≤ n ≥ 0 ∧ len(a) ≤ m+ n ≥ 0 →

elements(b, len(a)− (m+ n), n) = rev(elements(a,m, n))
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This can be proved by IsaPlanner by induction on n and with subsequent case-splits on s(n) >
0 ∨ s(n) = 0. In the case where s(n) = 0 the conclusion in trivial, so we concentrate here on
the step case when we know that s(n) > 0. For ease of presentation we omit the precedents
to the implications. This complicates the proof, but IsaPlanner is capable of dealing with this
sort of problem in inductive proof. We now have the goal

∀j. 0 ≤ j < len(a) → ele(b, j) = ele(a, len(a)− (j + 1)) †

∀m′.elements(b, len(a)− (′m+ n), n) = rev(elements(a,m′, n)) ⊢

elements(b, len(a)− (m + n + 1
↑
), n + 1

↑
) = rev(elements(a, m, n + 1

↑
))

We apply rules ( 4),( 6) on the left and right of the equality to obtain the conclusion

ele(b, len(a)− (m+ n+ 1)) :: elements(b, len(a)− (m + n + 1
↑
) + 1

↑

, n)

↑

=

rev( elements(a, m, n) <> ele(a,m+ n)
↑

)

Now applying rule ( 7),( 11) and ( 12) we obtain

ele(b, len(a)− (m+ n+ 1)) :: elements(b, len(a)− (m + n), n
↑

=

ele(a,m+ n) :: rev(elements(a, m, n))
↑

at which point the induction hypothesis applies leaving us to prove the equality

ele(b, len(a)− (m+ n+ 1)) = ele(a,m+ n)

which we can solve using hypotheses †. The hypothesis applies since we are in a branch where
n+ 1 > 0.

Figure 9: The generalised form of goal c4 pertaining to array segments

5.6 Middle-Out Reasoning

As described in [18] and [26] for example, middle out reasoning can be applied in these
situations to instantiate meta-variables such as Y during the progress of the proof. Our approach
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here differs in that a term is constructed and tested in order to complete the proof. The key of
the work is to make sure that the set of possible constant and function symbols is small, and
that the eventual term which must be synthesise is minimal.

6 Separation Logic And Future Work

Separation Logic as described in [25] for example, is a substructural logic which is based on the
Logic of Bunched Implications [24] and has been extended with Hoare Logic rules to describe
manipulation of data on the heap. It is primarily designed for pointer programs where aliasing
and resource management have traditionally been a difficult problem. We intend to extend
our work on arrays by exploiting existing and ongoing work on functional correctness proofs in
pointer programs, to treat arrays as indexed data structures on the heap.

The advantage of separation logic is that it exploits a semantics which introduces a separat-
ing conjunction which is associative-commutative and does not allow weakening or contraction.
This means that one can ensure memory safety properties. Since we are interested in func-
tional correctness we exploit the existing tools such as Smallfoot [1] to indicate how a proof
proceeds when the values of data cells are not the focus of the proof. Arrays introduce a new
problem, which is that the separating conjunction must be indexed to describe allocation and
deallocation of array elements. Reynolds calls this the Iterated Separating Conjunction. This
is denoted by an expression of the form ⊙n

exp=mp(exp) where m and n are indices to the array.
In this formalisation emp is given to mean the empty heap.

In the formalisation demonstrated here, since we are using IsaPlanner in conjunction with
Isabelle/HOL, we have extended the logic with the function symbols elements and ele which
describe the data within the array. The inductive definition of elements, given by equations
(4) and (6), is comparable to the construction of the iterated separating conjunction whose
definitions. The main difference is that instead of start and end markers for the array indices
in the case of Separation Logic, we have a start marker and then a number of subsequent array
cells. Figure 10 shows the equivalences between the definitions, and demonstrates that the
Iterating Separating Conjunction approach is more expressive. The equivalent statement of the
conclusion for example for goal c4 then becomes

⊙
len(a)−(m+1)
i=len(a)−(m+n)b(i) = rev(⊙m+n−1

i=m a(i)).

This definition is more elegant, and the underlying separating logic allows for a important safety
aspects of arrays to be proved. In particular we can use the Iterating Separating Conjunction
to reason about the size of arrays. For functional correctness we need to define new rules for
the manipulation of the arrays. This means we will be adding terms to the pure part of the
goal – i.e. that which does not contain any non-classical connectives. For example, a possible
recursive definition of the rev function applied to the iterated separating conjunction would be:

rev(⊙
m+s(n)
i=m p(i)) ⇐⇒ q(m) ∗ ⊙m+n

i=m p(i) ∧ q(m) = p(m+ s(n))

Here the pure part is what follows after the classical conjunction. After the heap assertions
have been satisfied we will be left with a pure residue which is similar to the reasoning we have
presented in Section 5. Other Proof Planning techniques such as rippling extend to Separation
Logic formulae.
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m > n → ⊙n

i=m
p(i) ↔ emp n ≤ 0 → elements(p,m, n) = nil

m = n → ⊙n

i=m
p(i) ↔ p(m) elements(p, n, 1) = ele(p, n)

k ≤ m ≤ n+ 1 → ⊙n

i=k
p(i) ⇐⇒ n+ k +m ≤ len(a) → elements(a,m, n+ k) =

(⊙m−1

i=k
p(i) ∗ ⊙n

i=m
p(i)) elements(a,m, n) <> elements(a,m+ n, k)

⊙n

i=m
p(i) ⇐⇒ ⊙n−k

i=m−k
p(i+ k)

Figure 10: A comparison between the Iterating Separation Conjunction and Our Approach

7 Conclusion

The approach presented here is the initial findings of our work on loop invariant generation
techniques for functional properties of programs. We exploit existing work on Program Analysis
to collect good candidates for loop invariants. These are often insufficient and need to be
modified. In order to do this we use a refinement technique and make use of IsaPlanner’s
treatment of meta-variables and its ability to name hypotheses and goals.

Although the work is incipient we believe the success of the approach at verifying array
bounds exception freedom will scale to functional correctness problems. In particular this work
progresses in parallel with other work on verifying functional correctness of programs which
manipulate pointers.
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