
EPiC Series in Computing

Volume 59, 2019, Pages 111–126

Proceedings of Pragmatics of SAT 2015 and 2018

The Effect of Scrambling CNFs∗

Armin Biere1 and Marijn J.H. Heule2

1 Johannes Kepler University Linz
2 University of Texas at Austin

Abstract

It has been an ongoing, decades-long debate about how SAT solvers and in general
different or new algorithms should be evaluated and compared both in competitions and
more importantly in papers. Evaluations are usually performed on existing benchmarks.
Cross-validation and other means to avoid over-fitting are rarely used. In this paper we
revisit the old idea of scrambling benchmarks also used in early competitions. Scrambling
has the goal to make results of such evaluations more robust. We present a new method
for scrambling CNFs, which allows to gradually increase the effect of scrambling, from
keeping the scrambled CNF close to the original CNF, to complete random permutation
of variables, clauses, and phases of literals. We used this method to scramble benchmarks
from the last two SAT competitions and solved them with the best solvers in the main track
of the last SAT competition. As expected our experimental results suggest that scrambling
has a substantial effect on the performance of individual solvers but surprisingly has little
effect on rankings among solvers. As a consequence we argue that only using our method of
scrambling is not enough to increase robustness of competitions and evaluations in general.

Introduction

In the SAT 2003 Competition complete random permutation of variables and clauses was used,
and random flipping of literals too. This randomization of instances was also called “shuffling”.
In the analysis of the competition it was observed [6] that such scrambling might result in
totally different run-times of the same solver on the original and the scrambled instance (called
the lisa syndrome in [6]). Triggered by this observation the SAT 2004 Competition report [7]
includes experiments of running solvers in the “industrial” track on original as well as on two
scrambled versions for each instance. Solvers performed worse on scrambled benchmarks.

A possible explanation might be that solvers simply use the given variable order for picking
the first decisions, usually implicitly by the way how the binary heap acting as decision queue
is initialized. Since this order often encodes some structural property of the original problem,
one often gets “good” initial decisions this way, which in the end improves performance.

It was also claimed that better performing solvers are less robust with respect to scram-
bling. Thus scrambling became questionable to measure performance of SAT solvers on indus-
trial benchmarks and as a consequence was abandoned. However, SAT solvers have become

∗This work is partially supported by FWF, NFN Grant S11408-N23 (RiSE).

D. Le Berre and M. Järvisalo (eds.), POS-18 (EPiC Series in Computing, vol. 59), pp. 111–126

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

substantially more robust since 2003. It is therefore expected that the impact of scrambling on
the performance on current state-of-the-art solvers is less profound.

One crucial change since 2005 has been the use of bounded variable elimination [10]. Actu-
ally, eliminating variables somewhat scrambles the formula, but this technique has been highly
effective and easily overcomes its negative effects. Another robustness enhancement has been
the use of phase-saving combined with rapid restarts [17] (2007). Early CDCL solvers used
negative branching, i.e., assigning decision variables always to false [11]. This was more or less
an heuristic choice based on how problems are generally encoded. Negative branching is much
more effective compared to assigning a random truth value to decision variables. Scrambling
instances would turn the former into the latter, while it has almost no influence on phase-saving.

Another motivation is that scrambling demonstrates the upper bound on how much a solver
is expected to gain form adding noise. Quite some papers present a technique and claim that it
improves performance based one solving a handful of instances more after adding the new tech-
nique. This is argued to be progress as the difference in solved formulas between the top solvers
during the competition is also only a handful of instances. We will show that this reasoning
is problematic: for all top solvers it is possible to increase the number of solved instances by
simply scrambling them with the same strategy and the same seed. As a consequence, papers
should be able to show that adding a new technique outperforms various scrambling strategies.
Our scrambling tool can be used to strengthen the claim that a certain technique is effective.

Scrambling has also been proposed as a method to avoid cheating by just hashing instances
to their status. We are not aware of any attempt in this direction. The requirement to provide
witnesses and now even proofs makes cheating by hashing extremely difficult, especially for
unsatisfiable formulas. Yet to some degree such hashing might happen unintentionally: Solver
parameters are optimized to solve as many existing benchmarks as possible, which in turn may
result in storing good decisions for known formulas. Scrambling could counter this effect.

Understanding the effects of completely random “shuffling” was the motivation for [15] which
reports similar results as [7] but also attempts a more precise statistical analysis. Already in [1]
it was also observed that “shuffling” (so complete random scrambling) was less harmful to solver
performance than expected and occasionally even lead to more solved instances. We are going to
apply scrambling to the current state-of-the-art, purely from an experimental perspective, apply
current much longer time outs and also propose and experiment with variants of scrambling
which have a tunable randomization effect.

Scrambling

First of all, it is important to note, that we are working with the DIMACS format, where literals
are represented as integers. Consider the following CNFs over two variables in DIMACS format
which all have exactly one solution (first three “v -1 -2 0” and last one “v -1 2 0”):

c only c only c clauses reversed

c variables c clauses c first literal flipped

c original c swapped c reversed c variables swapped

p cnf 2 3 p cnf 2 3 p cnf 2 3 p cnf 2 3

-1 -2 0 -2 -1 0 1 -2 0 -2 -1 0

-1 2 0 -2 1 0 -1 2 0 2 1 0

1 -2 0 2 -1 0 -1 -2 0 2 -1 0

These examples introduce all the forms of scrambling we consider in this paper:

(i) permuting variables, (ii) permuting clauses, and (iii) flipping literals.

112

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●

0.01

●●
●●
●
●
●●
●
●
●
●
●
●●
●
●
●
●
●
●
●●●
●
●
●
●

●
●
●

●●

●

●

●●

●
●

●

●

●

●

●●
●●

●●

●

●●
●
●●
●

●

●
●
●

●●

●

●●●●

●

●

●

●

●
●

●

●●●

●
●

●●

●

●

●
●
●●●
●

●

●
●
●

●
●

●

●
●
●
●
●

●

●●●
●

●
●●●

●●
●●●

●

●

●
●

●

●

●
●
●
●

●
●

●●

●

●●

●

●●

●
●

●●●

●
●
●

●
●

●

●

●

●●

●

●●●
●
●●

●
●

●
●
●

●
●
●●

●
●
●

●●●●●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●●
●●
●

●
●
●

●●

●

●

●●

●

●

●

●●●
●

●

●

●●

●
●●
●●

●

●
●

●

●●
●
●
●●

●

●●
●
●

●
●

●

●

●●

●
●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●●

●
●

●

●
●

●

●

●●
●
●

●

●

●
●
●
●
●●●●●
●

●

●
●

●
●●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●●

●
●

●
●

●●
●

●

●
●
●
●

●●●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●
●

●●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●
●

●

●
●

●●

●
●●●

●

●

●●

●

●●

●

●
●

●●

●

●
●

●

●
●
●
●

●●
●
●●
●
●●

●●

●●
●

●
●

●
●

●

●●

●

●

●

●●
●●
●
●
●
●
●

●

●

●

●●

●
●
●

●

●

●●●●●

●●

●
●

●●
●

●

●●

●
●
●●●

●●

●●●
●

●

●

●
●
●

●
●●
●●●

●

●
●

●
●

●●

●

●

●

●●●

●

●
●

●●
●

●

●

●●
●
●

●●
●

●
●

●

●
●●●
●

●

●

●

●●
●●●

●

●
●●

●

●

●
●

●
●●

●

●
●
●

●

●

●

●●

●
●
●

●

●●

●

●

●
●

●

●●

●
●

●

●
●
●

●
●
●

●

●
●

●
●

●
●●
●
●

●
●

●●
●

●
●
●
●

●●
●●

●

●

●●●
●

●

●●
●

●●

●

●
●●●●

●

●
●

●●●
●

●

●●
●

●

●
●
●

●●

●●

●
●
●●
●●
●

●
●
●

●

●●

●

●
●
●
●●
●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●
●●

●
●
●

●
●

●
●

●●●

●
●
●
●

●

●

●

●
●

●

●●●

●●●
●

●●
●

●
●

●

●
●

●

●

●
●

●
●●●

●
●

●●

●●

●●
●
●

●

●●●

●

●
●
●

●

●

●

●●

●

●

●●
●●

●
●

●●

●
●●

●

●

●

●
●
●
●
●

●

●
●●
●
●
●

●

●

●

●

●
●
●
●
●
●

●●

●
●

●

●

●

●

●●●

●●

●●
●

●●●●

●

●●
●
●

●

●●

●●
●●●

●

●

●
●●

●
●

●
●●
●

●●
●

●

●
●

●●
●●

●
●
●
●
●●

●

●
●

●●

●

●
●

●

●●

●

●
●●

●

●

●●
●
●●

●
●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●
●

●●

●

●
●

●
●●●
●●
●

●
●

●

●

●
●

●
●●
●●
●
●●

●

●

●
●●●

●●

●

●●

●
●
●●

●

●
●

●

●●●●

●●

●
●

●

●
●●●
●

●

●●●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●●

●
●●

●

●

●
●●

●
●
●

●

●●

●
●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●
●

●
●●
●●

●
●●●●●
●
●

●●

●
●

●

●

●●
●●
●

●●●
●●
●●
●
●●
●●●

0.10

●

●
●
●
●
●

●
●

●●

●●

●

●
●
●
●
●

●●

●

●

●
●
●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●●
●

●●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●
●
●

●

●

●

●●

●●
●
●●
●●●

0.50

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●
●

●

●
●

●

●

●
●●
●●●

1.00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

permute

Figure 1: From 1% over 10% and 50% to 100% move window and complete random permutation.
The original position i is on the x-axis and new position π(i) on the y-axis.

Note that we do not permute literal positions within clauses at this point. There are also other
more sophisticated forms of scrambling, like removing or adding clauses or even variables and
in general of course any kind of transformations, even though probably only satisfiability pre-
serving transformations are interesting. The reason for restricting our discussion to permuting
and flipping is because this model has already been used in earlier competitions and that even
for this simple form of scrambling the empirical effect is considered unclear, particularly with
respect to how scrambling would effect competition results for state-of-the-art solvers.

Variables and clauses were always permuted in a complete random way in earlier work on
“shuffling” CNFs. Similarly literals were flipped with 50% probability. It was also argued
that this random process would destroy the structure of the CNF and thus make the formula
(unnecessarily) harder. Thus as a starting point of the work reported in this paper we were
searching for a tunable way of randomizing CNFs, with the property that the amount of ran-
domization can be specified explicitly. The hope was that such “light” randomization would
avoid over-tuning effects without destroying the structure too much, i.e., keeping solving time
of scrambled instances close to solving time of the original formula.

Our scrambling process1 works the same for both variables and clauses. Each variable and
clause is just abstracted away to the position where it occurs in the input. Assume we want
to scramble either n variables or n clauses and we are also given w ∈ R with 0 ≤ w, called the
relative move window size. Let S = 0, . . . , n− 1 be the sequence of the first n natural numbers.
We need another sequence of (in principle) real numbers d0, . . . , dn−1 ∈ [0, 1), i.e., 0 ≤ di < 1,
for i ∈ S. These are for instance generated by a random number generator such as drand48,
which further can be assumed to be parameterized by a initial random seed (through srand48).
The result will be a permutation of π : S → S which for all 0 ≤ i, j < n satisfies

if i+ w · n · di < j + w · n · dj then π(i) < π(j)

To compute this permutation we sort S with respect to i+w ·n · di. Applied to n variables the
relative move window w determines the number w · n of variables a variable at position i can
“overtake” in the new order (π(0), π(1), . . .). The effect of varying w is shown in Fig. 1. We
obtain a completely random permutation if we only require π(i) < π(j) whenever di < dj .

Pseudo-code for this scrambling procedure can be found in Fig. 2. It is applied to the
number n of variables as first parameter and returns a table representing a permutation of the
variable indices 0, . . . , n − 1. Note that the DIMACS format requires to shift the start of the
sequence by one. The same idea is used to permute the input clauses.

If the third parameter “bool permute” is true then the target position “pos” is set to a
random number d with 0 ≤ d < 1 and thus sorting w.r.t. this target positions gives a com-

1A reviewer suggested a simpler way to achieve the same effect, but we were not able to investigate this
proposal yet and particularly were not able to re-run the experiments for the workshop version of this paper.

113

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

int[] scramble (int n, double w, bool permute)

struct { int src; double pos; } order[n];

for (int i = 0; i < n; i++) order[i].src = i;

if (permute)

for (int i = 0; i < n; i++)

order[i].pos = drand48 ();

else

for (int i = 0; i < n; i++)

order[i].pos = i + w * n * drand48 ();

sort (order w.r.t. pos);

int res[n];

for (int i = 0; i < n; i++) res[i] = order[i].src;

return res;

Figure 2: Pseudo code for tunable scrambling of variables and clauses.

abbreviation solver name in competition last names of authors

maplelcm Maple LCM Dist [18] Xiao, Luo, Li, Manyà, Lü
maplecompsps MapleCOMSPS LRB VSIDS 2 drup [13] Liang, Oh, Ganesh, Czarnecki, Poupart
comspspulsar COMiniSatPS Pulsar drup [16] Oh
cadical cadical-sc17-proof [8] Biere
tchglucose tch glucose3 [14] Moon, Mary
glucose41 glucose-4.1 [2] Audemard, Simon
gluvc glu vc [9] Chen

Table 1: Mapping of abbreviated names to the ones used in the competition.

plete random permutation (called “shuffling” in earlier work). Otherwise the second parameter
“double w” determines the amount of scrambling. If it is zero then the result is the identity
function. As larger it gets as closer the result is to a completely randomly picked permutation.
If it is for instance 0.01 then variables are respositioned randomly within a window of 1% of
all variables. The plots in Fig. 1 show this effect in the first four plots where permute is false.
The last plot shows a random permutation where permute is true. They were generated from
applying our scrambler scranfilize to a concrete CNF with 1035 variables and dumping the
variable permutation table.

Experiments

In our experiments we focus on the top 17 best performing solvers in the main track of the
SAT 2017 Competition [5] out of 29 ranked configurations. We then selected for each group
of submitters the best performing solver (configuration) and ended up with 7 solvers listed in
Table 1. This selection is the same for both type of scores considered (“par2” and “solved”).

114

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

our experiments SAT 2017 Competition

rank par2 solved sat uns rank par2 solved sat uns

1 1639735 208 101 107 1 1610934 208 102 106 maplelcm
2 1823497 184 90 94 2 1780711 188 93 95 maplecompsps
3 1868096 181 87 94 3 1798300 188 89 99 comspspulsar
4 1877512 180 83 97 4 1825427 185 83 102 cadical
5 1961085 172 77 95 5 1890486 179 80 99 tchglucose
6 1969231 171 79 92 6 1893632 180 85 95 glucose41
7 2037362 165 73 92 7 1958463 174 77 97 gluvc

Table 2: Comparison of our original experiments with competition results.

Table 1 also contains the mapping of the abbreviated names used in this paper to those longer
and more cumbersome names used in the competition. The solver names are (for these solvers)
the same as the name of the zip file of the source code available from the SAT 2017 Competition
webpage which also matches the directory names if unzipped.

The solvers are ranked by performance. As it turns out, both considered scores “par2”
and “solved” give the same ranking in our experiments. In earlier SAT competitions solvers
were ranked by the “solved” score, which is the number of solved instances within in a time
limit T (in recent competition set to 5000 seconds). The “par2” score is well known from
the literature too and has been used in the SAT 2017 Competition to put more emphasis on
speed. It is computed as the sum of the running times a solver took to solve all instances in
the given benchmark set (for instance 350 benchmarks from the main track of the SAT 2017
Competition). However, each unsolved instance contributes two times the time limit (2 · T),
thus essentially assuming that in these unsolved cases the solver would have solved the instance
in (exactly) twice the time limit.

In our experiments we used the same time limit of 5000 seconds but slightly different compute
nodes than in the SAT 2017 Competition. Each dual socket compute node in our cluster had
two Intel Xeon E5-2620 v4 CPUs running at 2.10GHz with turbo-mode disabled, while the
STAREXEC nodes used in the competition had Intel Xeon E5-2609 CPUs running at 2.40GHz.
We were running 16 jobs (solver benchmark pairs) in parallel on each node limiting main
memory per job to 7 GB (using the “runlim” tool). Note, that our compute nodes have
128 GB shared main memory each and 16 · 7 GB = 112 < 128 GB. In our experience this set-
up only leads to minor performance differences between repeated experiments. The SAT 2017
Competition used a much higher memory limit 24 GB though. However, in our experiments with
the SAT 2017 Competition benchmarks only the best performing solver “maplelcm” reached
that limit and also for at most two benchmarks (“T106.2.0” and “T50.2.0”). These cases were
of course treated as unsolved instances.

Table 2 compares our results of running the selected solvers on the original unscrambled
benchmarks on our hardware versus the published2 competition results. Our cluster is slightly
slower, but rankings are the same for the selected solvers.

We used the same source code and build scripts as submitted to the competition. As required
to enter the main track the default for all these solvers is to produce DRAT [12] proofs, which
is also not easy to disable. Thus we kept proof generation enabled but modified provided
execution scripts to write proofs to “/dev/null”, which accordingly were also not checked.

The different forms of scrambling used in the experiments are explained in Tab. 3. Those

2https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results

115

https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

flip relative
permute reverse probability move window

variables clauses variables clauses literals variables clauses
-p -P -r -R -f -v -c

∗ orig

vrev 1
crev 1

pf50 1 0.50
qf50 1 0.50

∗ bf50 1 1 0.50

f001 0.01
f010 0.10
f050 0.50
f100 1.00

v001 0.01
v010 0.10
v100 1.00

c001 0.01
c010 0.10
c100 1.00

∗ a001 0.01 0.01 0.01
a010 0.10 0.10 0.10
a100 0.50 1.00 1.00

Table 3: Different forms of scrambling used in the experiments (empty entries 0).

marked with an asterisk “∗” correspond to the most interesting variants (original “orig”, shuffled
“bf50”, light “a001”), which we also marked in the plots below by vertical lines. The 4th row
gives the actual command line options used for our tool scranfilize. Beside completely
randomly permuting we also allow to reverse the order of variables and clauses (not shown in
the pseudo-code of Fig. 2). Empty entries in the table correspond to zero and thus disable the
corresponding feature. It might be important to note that literals are flipped individually with
the given probabiliy. Thus f100 replaces all literals by their negation (flipping all), while f050
flips a literal with 50% probabiliy, which is the most random way of flipping literals (as in pf50,
qf50, bf50, a100 and of course f050). The code of our tool scranfilize as well as experimental
data can be found at http://fmv.jku.at/scranfilize.

Figures 3-6 and related tables 4-5 show the effect of scrambling the benchmarks of the main
track of the SAT 2017 Competition on the performance of SAT solvers. The solver “maplelcm”
clearly dominates the competition, both on the “par2” score and the number of instances, as
well as on satisfiable and unsatisfiable instances—regardless of the scrambling strategy. Thus
we used the number of instances solved by “maplelcm” to order the scrambling strategies on
the x-axis. This ordering gives a monotonic decrease of the line for “maplelcm” in Fig. 4, but
for consistency is also applied to Figures 3-6.

Also, the ranking of solvers is quite robust for all scrambling strategies as shown in Table 4.
However, the relative performance on satisfiable vs. unsatisfiable instances can differ substan-

116

http://fmv.jku.at/scranfilize

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

16
00

00
0

18
00

00
0

20
00

00
0

f1
00

c0
10 or
ig

qf
50

c0
01

cr
ev

f0
10

f0
01

ar
ev

f0
50

a0
10

a0
01

vr
ev

v1
00

bf
50

c1
00

v0
10

v0
01

pf
50

a1
00

●

● ●
●

● ●

●
●

● ●

●
●

●

● ●

●

● ●

●

●

● maplelcm
maplecomsps
comspspulsar
cadical
tchglucose
glucose41
gluvc

Figure 3: Par2 score (y-axis) for instances from main track of the SAT 2017 Competition after
applying different forms of scrambling (x-axis) – smaller is better.

tially. For example, “cadical” ranks on average second on unsatisfiable instances, but fifth on
satisfiable ones. See also the cactus plots in Fig. 7-8, which allow to compare the least robust
(“cadical”) vs. most robust solver (“comspspulsar”) for the benchmarks in the main track of
the SAT 2017 Competition w.r.t. solved instances, i.e., column “solved σ” in Tab. 5.

Scrambling the instances of the 2017 suite typically reduces solver performance. Yet some
strategies actually improve performance. For example, strategy c010 results in equal or better
performance of all solvers compared to orig. Notice that “glucose41” even solves 10 additional
instances with strategy c010. Many papers that present a new SAT solving technique claim
that solving 10 additional instances demonstrates that the technique is useful in practice. Our
experiments show that the technique may only cause an effect that is similar to scrambling
and thus is not better than adding noise. In order to strengthen a claim that a technique is
useful, we propose to include additional evidence that the technique outperforms scrambling.
For example, one can run the solver without the technique several times using strategy c010
with different random seeds and show that the solver with the new technique is always stronger.

After analyzing the results on SAT 2017 Competition benchmarks, we were curious whether
these findings apply to the SAT 2016 Competition [4, 3] benchmarks too. This is particularly
interesting since solvers from 2017 can be considered to have been “trained” on these bench-
marks. The remaining figures and tables provide results for SAT 2016 Competition benchmarks
using the same solvers. Since results for the main track of the SAT 2016 Competition were sep-
arated into “application” and “crafted” instances (in contrast to the SAT 2017 Competition)
we have also split figures and tables accordingly but do not include separate plots for “satisfi-
able” and “unsatisfiable” instances due to space reasons. Instead of the official number of 300
benchmarks(see also [3]), we used only 299 instances in the application track, not considering

117

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

16
0

17
0

18
0

19
0

20
0

21
0

f1
00

c0
10 or
ig

qf
50

c0
01

cr
ev

f0
10

f0
01

ar
ev

f0
50

a0
10

a0
01

vr
ev

v1
00

bf
50

c1
00

v0
10

v0
01

pf
50

a1
00

●

● ●
● ● ●

● ●
●

● ●
●

● ● ●
● ●

●
●

●

● maplelcm
maplecomsps
comspspulsar
cadical
tchglucose
glucose41
gluvc

Figure 4: Solved instances (y-axis) from main track of the SAT 2017 Competition after applying
different forms of scrambling (x-axis) – larger is better.

70
80

90
10

0

f1
00

c0
10 or
ig

qf
50

c0
01

cr
ev

f0
10

f0
01

ar
ev

f0
50

a0
10

a0
01

vr
ev

v1
00

bf
50

c1
00

v0
10

v0
01

pf
50

a1
00

●

● ● ●
● ●

● ●

●

●

●
●

●

●
●

●
● ●

●
●

● maplelcm
maplecomsps
comspspulsar
cadical
tchglucose
glucose41
gluvc

Figure 5: Solved satisfiable instances (y-axis) from main track of the SAT 2017 Competition
after applying different forms of scrambling (x-axis) – larger is better.

118

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

85
90

95
10

0
10

5

f1
00

c0
10 or
ig

qf
50

c0
01

cr
ev

f0
10

f0
01

ar
ev

f0
50

a0
10

a0
01

vr
ev

v1
00

bf
50

c1
00

v0
10

v0
01

pf
50

a1
00

●

● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

● maplelcm
maplecomsps
comspspulsar
cadical
tchglucose
glucose41
gluvc

Figure 6: Solved unsatisfiable instances (y-axis) from main track of the SAT 2017 Competition
after applying different forms of scrambling (x-axis) – larger is better.

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

maplelcm 1 1.00 0.00 1 1.00 0.00 1 1.00 0.00 1 1.00 0.00
maplecomsps 2 2.10 0.31 2 2.40 0.60 2 2.30 0.47 4 3.85 1.31
comspspulsar 3 3.00 0.46 3 2.75 0.64 3 2.75 0.55 5 3.95 1.05
cadical 4 4.40 0.88 4 4.40 0.88 4 5.10 0.85 2 2.25 0.64
tchglucose 5 5.40 0.75 5 5.35 0.75 6 5.35 0.75 3 4.50 1.05
glucose41 6 5.10 0.72 6 5.10 0.85 5 4.50 0.76 6 5.55 0.83
gluvc 7 7.00 0.00 7 7.00 0.00 7 7.00 0.00 7 6.90 0.31

Table 4: Original (o) and average (µ) ranking with standard deviation (σ) on benchmarks from
the main track of the SAT 2017 Competition.

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

maplelcm 1639735 1681268 40656 208 203.85 4.00 101 99.80 2.78 107 104.05 2.50
maplecomsps 1823497 1841931 27838 184 182.95 3.00 90 89.45 2.70 94 93.50 1.73
comspspulsar 1868096 1873304 21828 181 180.90 2.61 87 86.95 2.42 94 93.95 2.35
cadical 1877512 1935606 66136 180 175.15 5.41 83 78.55 3.59 97 96.60 2.72
tchglucose 1961085 1973028 34740 172 172.00 4.09 77 78.70 2.27 95 93.30 3.10
glucose41 1969231 1963012 38947 171 172.10 4.42 79 80.95 2.28 92 91.15 2.85
gluvc 2037362 2085159 29408 165 159.95 3.19 73 70.90 1.59 92 89.05 2.61

Table 5: Original (o) and average (µ) scores with standard deviation (σ) on benchmarks from
the main track of the SAT 2017 Competition.

119

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●
●●●●●●●●

●●●
●●●●●

●●●●●●●
●●

●●●●●
●
●●●●●●

●●●●●●
●●●

●●
●●●

●
●●●●

●●
●●●

●●●
●
●●●

●●
●●●

●●

●●

●●
●

●
●●

●●
●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●

●●●●
●●●

●●
●●●●●●

●●●
●●●

●●
●●●

●●●
●●●

●●
●●

●●●
●●●

●
●
●●●

●●
●●●

●
●●●

●●●
●
●●

●

●●
●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●
●●●●●●

●●●●●●●●
●
●●●●●●●

●●●
●●●●●●●

●●●
●●●●

●●●
●●●

●●●
●●

●●●
●
●
●●●●

●●
●●

●●
●●●

●

●●
●
●●

●
●●

●●●
●●

●●●
●●●

●
●

●●

●

●●
●
●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●●

●●●●●●●
●●●●●

●●●●●●●
●●

●●●●
●●

●●●●●
●●●

●●●
●●

●●
●●●

●●
●●●

●●
●●●

●●
●
●
●
●

●
●●●

●●●
●●●

●
●

●
●●●

●●
●
●●●●

●●

●
●●

●●

●●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●

●●●
●●●●

●●
●●●●

●●
●●

●●●
●●

●●
●●

●
●●●

●
●
●●

●●
●●●●●

●
●●●

●●
●●●

●●●●
●●

●●
●

●
●
●
●●●

●●
●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●
●●●●

●●
●●●●●●

●
●●●●

●
●●●●

●

●
●
●
●
●●

●
●
●●

●
●●●

●

●
●
●●

●
●●

●
●
●
●

●
●
●●

●●●
●

●●

●●

●

●

●

●

●

●

c001
f100
crev
c010
orig
c100
vrev
f050
arev
f010
f001
a001
v001
v100
qf50
bf50
a010
a100
v010
pf50

Figure 7: Cactus plot of the main track of the SAT 2017 Competition for the most sensitive
solver “cadical”.

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●
●●●●

●●●●●
●●●●●

●●
●●●

●
●●●●

●●●●
●
●
●●●●

●●●

●●
●●

●
●
●
●●

●

●●●
●

●●●
●
●
●●

●●

●●●
●

●
●●●

●
●●

●●
●
●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●
●●●

●●
●●

●●●
●●

●●
●●

●●●
●●

●
●
●●●●

●●
●●

●
●
●

●●
●●

●●

●
●●

●●
●

●
●●

●
●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●
●●●

●●●
●●●●●

●●●●
●●●

●
●●●

●●●
●
●
●

●
●●

●●●●
●
●●

●●
●●

●●
●

●

●●●●
●
●●●

●

●
●
●

●
●●

●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●
●●●●

●●●●●
●●●

●●●
●●

●●
●●

●●
●●

●

●●●●●
●
●
●●

●●
●
●
●●●

●
●

●●
●
●
●
●

●●●
●●●●

●
●
●
●●●

●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●
●●●

●●●●●●●●
●●

●●●●
●●●

●
●●●●●

●
●●●●●

●
●●

●
●●●

●●
●

●●

●●●
●

●
●
●

●●●●
●
●●

●

●
●

●

●●
●●●●●●●●●●

●●●●●●●●
●
●●●●

●
●●●●

●

●●●
●●●●

●
●

●●●●

●

●
●●

●

●
●

●
●
●
●

●●●●

●
●
●
●●

●

●●

●
●
●
●

●

●●
●

●

●

●

●

●

●

qf50
f100
c001
c100
c010
f050
arev
a001
orig
a010
vrev
v001
v010
v100
bf50
crev
a100
f010
f001
pf50

Figure 8: Cactus plot of the main track of the SAT 2017 Competition for the most robust solver
“comspspulsar”.

120

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

16
00

00
0

17
00

00
0

18
00

00
0

or
ig

c0
10

cr
ev

c0
01

f0
01

f1
00

f0
50

qf
50

v0
01

v1
00

a0
01

a1
00

c1
00

vr
ev

f0
10

v0
10

ar
ev

a0
10

bf
50

pf
50

●

● ●

●

●
● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

● cadical
maplecomsps
maplelcm
tchglucose
glucose41
gluvc
comspspulsar

Figure 9: Par2 score (y-axis) for instances from application track of the SAT 2016 Competition
after applying different forms of scrambling (x-axis) – smaller is better.

“sncf model ixl bmc depth 14”, since first during the competition a truncated syntactivally
incorrect DIMACS file was used for this benchmark and accordingly all solvers aborted during
parsing, and second benchmarks from this family anyhow remained unsolved for all other BMC
depths 7,8,9,10,11,12,15 during the competition. For the crafted track we used all 200 instances.

The scrambling strategies on the x-axis of these plots are ordered with respect to the best
solver on the original instances in these tracks, which is “cadical” for the application track
and “gluvc” for the crafted track. While in the crafted track “gluvc” clearly dominates as did
“maplelcm” on the 2017 instances, the winner in the application track would vary depending
on which scoring scheme and which scrambling strategy is applied, i.e., “maplelcm” would have
won for “par2” scores with “c010” scrambling. The conclusion is that the same effects on
performance can be observed for the SAT 2016 Competition benchmarks as for the SAT 2017
Competition benchmarks, except that for crafted instances scrambling has less influence.

Altogether we were running 7 solvers on 20 variants of 849 = 350 + 299 + 200 benchmarks,
which in total amounts to 16980 benchmarks and thus 118860 = 7 · 16980 individual runs, each
with a time limit of 5000 seconds. This would take slightly less than 19 years of total CPU
time if all runs would need to use the full time limit.

The actual runs required 12 years and 160 days of total CPU time: 4 years 237 days for the
benchmarks of the main track of the SAT 2017 Competition, 4 years 11 days for the benchmarks
of the application track and 3 years and 277 days for the benchmarks of the crafted track of
the SAT 2016 Competition benchmarks.

121

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

13
0

13
5

14
0

14
5

15
0

15
5

or
ig

c0
10

cr
ev

c0
01

f0
01

f1
00

f0
50

qf
50

v0
01

v1
00

a0
01

a1
00

c1
00

vr
ev

f0
10

v0
10

ar
ev

a0
10

bf
50

pf
50

●

●

● ●

● ●

● ●

●

● ● ●

● ● ● ●

● ●

●

●

● cadical
maplecomsps
maplelcm
tchglucose
glucose41
gluvc
comspspulsar

Figure 10: Solved instances (y-axis) from application track of the SAT 2016 Competition after
applying different forms of scrambling (x-axis) – larger is better.

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

cadical 1 1.15 0.37 1 1.95 0.83 1 4.95 1.67 1 1.15 0.37
maplecomsps 2 2.30 0.80 3 2.55 0.89 2 1.85 0.99 3 3.10 0.55
maplelcm 3 2.85 0.88 2 1.60 0.68 3 1.90 1.17 2 2.20 1.24
tchglucose 4 4.55 0.94 5 4.85 0.99 4 3.45 1.00 7 5.85 1.09
glucose41 5 5.30 1.42 4 5.30 1.42 5 5.35 1.57 5 4.65 1.35
gluvc 6 6.15 0.59 6 6.10 0.55 7 5.80 1.15 4 5.00 1.26
comspspulsar 7 5.70 1.30 7 5.65 1.23 6 4.70 1.72 6 6.05 0.76

Table 6: Original (o) and average (µ) ranking with standard deviation (σ) on benchmarks from
the application track of the SAT 2016 Competition.

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

cadical 1561368 1643180 37184 154 145.80 3.29 65 59.50 2.67 89 86.30 1.26
maplecomsps 1642508 1670404 28498 147 144.80 2.91 64 63.40 1.88 83 81.40 1.50
maplelcm 1644453 1681871 30163 152 147.10 3.48 64 63.05 2.33 88 84.05 2.68
tchglucose 1686618 1716486 28651 141 138.70 3.29 62 60.65 1.63 79 78.05 2.19
glucose41 1687616 1729213 30800 142 138.05 3.55 62 58.35 2.50 80 79.70 1.98
gluvc 1702788 1738847 27915 141 136.85 2.64 60 58.45 1.36 81 78.40 2.62
comspspulsar 1715156 1734357 34491 140 137.45 4.03 60 59.35 2.25 80 78.10 2.73

Table 7: Original (o) and average (µ) scores with standard deviation (σ) on benchmarks from
the application track of the SAT 2016 Competition.

122

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

15
00

00
0

16
00

00
0

17
00

00
0

18
00

00
0

cr
ev

vr
ev

f0
01

v0
01

f0
10

c0
01

ar
ev

a1
00

pf
50

qf
50

v1
00

a0
01

c0
10

bf
50

f0
50

a0
10

f1
00

v0
10 or
ig

c1
00

● ● ●
●

●
● ●

● ● ● ●
● ● ●

● ●
● ● ● ●

● gluvc
cadical
maplelcm
maplecomsps
comspspulsar
glucose41
tchglucose

Figure 11: Par2 score (y-axis) for instances from crafted track of the SAT 2016 Competition
after applying different forms of scrambling (x-axis) – smaller is better.

25
30

35
40

45
50

55

cr
ev

vr
ev

f0
01

v0
01

f0
10

c0
01

ar
ev

a1
00

pf
50

qf
50

v1
00

a0
01

c0
10

bf
50

f0
50

a0
10

f1
00

v0
10 or
ig

c1
00

● ●
● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ● ●

● gluvc
cadical
maplelcm
maplecomsps
comspspulsar
glucose41
tchglucose

Figure 12: Solved instances (y-axis) from crafted track of the SAT 2016 Competition after
applying different forms of scrambling (x-axis) – larger is better.

123

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

gluvc 1 1.00 0.00 1 1.00 0.00 7 4.15 2.08 1 1.00 0.00
cadical 2 2.00 0.00 2 2.10 0.31 5 6.00 1.26 2 2.05 0.22
maplelcm 3 3.50 0.61 3 3.10 0.55 3 3.95 1.88 3 3.15 0.49
maplecomsps 4 4.90 0.31 4 4.95 0.22 1 2.50 1.67 5 5.00 0.00
comspspulsar 5 3.60 0.60 5 3.85 0.49 6 3.90 1.77 4 3.80 0.41
glucose41 6 6.00 0.00 6 6.00 0.00 4 4.15 1.69 6 6.00 0.00
tchglucose 7 7.00 0.00 7 7.00 0.00 2 3.35 2.03 7 7.00 0.00

Table 8: Original (o) and average (µ) ranking with standard deviation (σ) on benchmarks from
the crafted track of the SAT 2016 Competition.

par2 solved sat unsat
o µ σ o µ σ o µ σ o µ σ

gluvc 1542210 1525377 11383 53 54.70 1.30 5 6.15 0.88 48 48.55 0.94
cadical 1580688 1579156 11125 49 49.60 1.67 5 5.10 0.85 44 44.50 1.43
maplelcm 1629226 1626691 9516 46 46.10 1.45 6 5.90 1.02 40 40.20 1.47
maplecomsps 1644454 1650459 11235 42 40.40 1.64 8 6.75 1.16 34 33.65 1.18
comspspulsar 1651826 1627593 15569 40 43.45 2.11 5 6.10 0.97 35 37.35 1.79
glucose41 1698562 1709790 14641 35 34.30 1.98 5 6.00 0.86 30 28.30 1.78
tchglucose 1766652 1774629 9319 26 24.95 1.23 7 6.40 0.94 19 18.55 0.69

Table 9: Original (o) and average (µ) scores with standard deviation (σ) on benchmarks from
the crafted track of the SAT 2016 Competition.

Conclusion

We presented a range of scrambling techniques based on permuting variables and clauses, and
flipping literals in order to determine the robustness of state-of-the-art SAT solvers. We ob-
served that most scrambling strategies reduce performance of SAT solvers, but were surprised
to see that some strategies actually improve performance. Researchers that claim that a new
technique is useful should take this point into consideration. We also noticed that solvers are
more robust on the SAT 2017 Competition benchmark suite than on the suite of SAT 2016
Competition. This could be a coincidence, but could also be explained as follows: most (possi-
bly all) solvers have been optimized using the 2016 suite as part of the training set in contrast
to the 2017 suite. As a consequence, solvers may be overfitted on the existing benchmarks.

As future work we want to explore more sophisticated ways of scrambling and compare
external scrambling to internal scrambling within the solver through for instance randomizing
the initial phase or the initial variable order, as well as using random decisions. Note, that our
analysis of the source code and runs of the 7 considered solvers indicates than none of them
used any kind of such randomization (was switched off by default). Only “maplelcm” should be
considered non-deterministic since it switches to a different solving strategy after 2500 seconds.

Scrambling is only one technique that can be helpful to improve the quality of solver (or
in general algorithm) evaluations. Based on our results we expect that the presented form
of scrambling is mostly useful to enhance the evaluation in papers as they only use existing
benchmarks. The quality of the results of SAT competitions is expected to gain more from a
sophisticated selection of benchmarks than scrambling them. However, some of our light-weight
scrambling strategies appear not harmful and may thus result in modest improvements.

124

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

Although the paper focusses on the use of scrambling to evaluate solver performance, there
are other applications we want to explore. For example, we want to apply scrambling in the
context of random sampling of satisfying assignments. Current uniform random sampling tech-
niques are expensive, while the scrambling techniques discussed in this paper have only modest
impact on performance. We want to understand whether there exist scrambling techniques that
result in (near) uniform sampling. Another application is randomizing proofs of unsatisfiability
via scrambling, which could be useful to randomize search for unsatisfiable cores.

References

[1] Gilles Audemard and Laurent Simon. Experimenting with small changes in conflict-driven clause
learning algorithms. In Peter J. Stuckey, editor, Principles and Practice of Constraint Program-
ming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18, 2008. Pro-
ceedings, volume 5202 of Lecture Notes in Computer Science, pages 630–634. Springer, 2008.

[2] Gilles Audemard and Laurent Simon. Glucose and Syrup in the SAT’17. In Balyo et al. [5], pages
16–17.

[3] Tomás Balyo, Marijn J. H. Heule, and Matti Järvisalo. SAT competition 2016: Recent devel-
opments. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the 31st AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages
5061–5063. AAAI Press, 2017.

[4] Tomáš Balyo, Marijn Heule, and Matti Järvisalo, editors. Proc. of SAT Competition 2016 –
Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series
of Publications B. University of Helsinki, 2016.

[5] Tomáš Balyo, Marijn Heule, and Matti Järvisalo, editors. Proc. of SAT Competition 2017 –
Solver and Benchmark Descriptions, volume B-2017-1 of Department of Computer Science Series
of Publications B. University of Helsinki, 2017.

[6] Daniel Le Berre and Laurent Simon. The essentials of the SAT 2003 competition. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT 2003. Santa Margherita Ligure, Italy, May 5-8,
2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 452–467.
Springer, 2003.

[7] Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver: The SAT 2004 competition.
In Holger H. Hoos and David G. Mitchell, editors, SAT 2004, Vancouver, Revised Selected Papers,
volume 3542 of Lecture Notes in Computer Science, pages 321–344. Springer, 2004.

[8] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition
2017. In Balyo et al. [5], pages 14–15.

[9] Jingchao Chen. Glu vc: Hacking Glucose by Weighted Variable State Independent Decay Sum
Branching Policy. In Balyo et al. [5], page 19.

[10] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elimina-
tion. In Fahiem Bacchus and Toby Walsh, editors, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[11] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[12] Marijn J. H. Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229, 2016.

[13] Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-
COMSPS LRB VSIDS and MapleCOMSPS CHB VSIDS. In Balyo et al. [5], pages 20–21.

[14] Seongsoo Moon and Inaba Mary. bs glucose, tch glucose. In Balyo et al. [5], pages 24–25.

[15] Mladen Nikolic. Statistical methodology for comparison of SAT solvers. In Ofer Strichman and
Stefan Szeider, editors, SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6175 of

125

The Effect of Scrambling CNFs A. Biere & M.J.H. Heule

Lecture Notes in Computer Science, pages 209–222. Springer, 2010.

[16] Chanseok Oh. COMiniSatPS Pulsar and GHackCOMSPS. In Balyo et al. [5], pages 12–13.

[17] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfiabil-
ity solvers. In João Marques-Silva and Karem A. Sakallah, editors, SAT 2007, Lisbon, Portugal,
May 28-31, 2007, Proceedings, volume 4501 of Lecture Notes in Computer Science, pages 294–299.
Springer, 2007.

[18] Fan Xiao, Mao Luo, Chu-Min Li, Felip Manyà, and Zhipeng Lü. MapleLRB LCM, Maple LCM,
Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017.
In Balyo et al. [5], pages 22–23.

126

