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Abstract

In this work we present strategies for (optimal) measurement computation and selection in model-
based sequential diagnosis. In particular, assuming a set of leading diagnoses being given, we show
how queries (sets of measurements) can be computed and optimized along two dimensions: expected
number of queries and cost per query. By means of a suitable decoupling of two optimizations and a
clever search space reduction the computations are done without any inference engine calls. For the
full search space, we give a method requiring only a polynomial number of inferences and guarantee-
ing query properties existing methods do not provide. Evaluation results using real-world problems
indicate that the new method computes (virtually) optimal queries instantly independently of the size
and complexity of the considered diagnosis problems.

1 Introduction
Model-based diagnosis (MBD) is a widely applied approach to finding explanations, called diagnoses,
for unexpected behavior of observed systems including hardware, software, knowledge bases, discrete
event systems, feature models and user interfaces [27, 9, 40, 22, 25, 19, 11, 41]. In case the available
observations about the system are insufficient for successful fault localization, i.e., multiple diagnoses
exist, sequential diagnosis (SQD) methods collect additional information by generating a sequence of
queries [7, 26, 10, 37, 35].1 If chosen properly, each query’s answer eliminates some diagnoses and thus
reduces the diagnostic uncertainty. As query answering is often costly, the goal of SQD is to minimize
the diagnostic cost in terms of, e.g., time or manpower required to achieve a diagnostic goal, e.g., a
highly probable diagnosis. Because the problem of optimal query selection2 is NP-complete [17], the
cited SQD works minimize the number of queries by a greedy (e.g., one-step lookahead) measure m
such as entropy [7]. However, they do not optimize the query cost, such as the time required to perform
measurements [16].

∗Corresponding author.
1Following the arguments of [26] we do not consider non-MBD sequential methods [24, 34, 43, 2, 15].
2Also known as Optimal Test Sequencing Problem [24] or Optimal Decision Tree Problem [17].
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Contributions. We present a novel query optimization method that

1. is logics- and reasoner-independent, i.e. can handle system models formulated in any monotonic
and decidable knowledge representation language and can incorporate any reasoner that is sound
and complete for the used language. This allows for a general applicability to any MBD problem
in the sense of [7, 27].

2. defines a query as a set of first-order sentences and thus generalizes the measurement notion of
[7, 27].

3. can deal also with diagnosis problems where the query space is implicit.3

4. given a set of leading diagnoses [8], allows the two-dimensional optimization of the next query
in terms of the expected number of subsequent queries (measure m) and query cost (measure c).

5. for an aptly refined (yet exponential) query search space, finds – without any reasoner calls – the
globally optimal query wrt. measure c that globally optimizes measure m.4

6. for the full query search space, finds – with a polynomial number of reasoner calls – the (under
reasonable assumptions) globally optimal query wrt. m that includes, if possible, only “cost-
preferred” sentences (e.g., those answerable automatically using built-in sensors).

7. guarantees the proposal of queries that discriminate between all leading diagnoses and that un-
ambiguously identify the actual diagnosis.

The efficiency of our approach is possible by the recognition that the optimizations of m and c can
be decoupled and by using logical monotonicity as well as the inherent (already inferred) information
in the (⊆-minimal) leading diagnoses. In particular, the method is inexpensive as it

(a) avoids the generation and examination of unnecessary (non-discriminating) or duplicate query
candidates,

(b) actually computes only the single best query by its ability to estimate a query’s quality without
computing it, and

(c) guarantees soundness and completeness wrt. an exponential query search space independently of
the properties and output of a reasoner.

Modern SQD methods like [7] and its derivatives [10, 35, 31] do not meet all properties (a) – (c).
Moreover, by the generality of our query notion, our method explores a more complex search space
than [7, 5], thereby guaranteeing property 7 above.

2 Preliminaries

2.1 Model-Based Diagnosis (MBD)
In this section we recapitulate important MBD concepts and draw on definitions of [27] to characterize
a system and diagnoses. We will use the following notation throughout this work:

3We say that a diagnosis problem has an implicit query space iff all possible system measurements cannot be enumerated
in polynomial time in the size of the system model. E.g., in a digital circuit all measurement points (and hence the possible
queries) are given explicitly by the circuit’s wires which can be directly extracted from the system description. By contrast, in e.g.
knowledge base debugging problems the possible measurements (i.e. questions to an expert) must be (expensively) inferred and
are not efficiently enumerable.

4The term globally optimal has its standard meaning (cf. [21, p. 184]) and emphasizes that the optimum over all queries in
the respective query search space is meant.
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SD {¬AB(ci)→ beh(ci) | ci ∈ COMPS}
COMPS {c1, c2, c3, c4, c5}

normal behavior beh(ci) of
components ci ∈ COMPS

beh(c1) : A→ B ∧ L beh(c2) : A→ F

beh(c3) : B ∨ F → H beh(c4) : L→ H

beh(c5) : ¬H → G ∧ ¬A
N n1 : {A→ H} OBS,P = ∅

Table 1: Running Example DPI Ex

Notation: If X is a collection of sets, then UX and IX denote the union and intersection of all elements
of X , respectively. K |= S for a set S is a shorthand for K |= s for all s ∈ S.

A system (SD, COMPS) consists of a set of components COMPS and a system description SD where
{¬AB(c)→ beh(c) | c ∈ COMPS} ⊆ SD. The first-order sentence beh(c) describes the normal behavior
of c and AB is a distinguished abnormality predicate. Any behavior different from beh(c) implies that
component c is at fault, i.e., AB(c) holds.5

From the viewpoint of system diagnosis, evidence about the system behavior in terms of observa-
tions OBS, positive (P ) and negative (N ) measurements [27, 7, 12] is of interest.

Definition 1 (DPI). Let COMPS be a finite set of constants and let SD, OBS, each p ∈ P , and each
n ∈ N be finite sets of consistent first-order sentences. Then (SD, COMPS, OBS,P ,N ) is a diagnosis
problem instance (DPI).

Definition 2. Let (SD, COMPS, OBS,P ,N ) be a DPI and ∆ ⊆ COMPS. Then SD∗[∆] := SD ∪ OBS ∪
UP ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPS \ ∆} denotes the behavior description of the
system (SD, COMPS) given the observations OBS and the union of positive measurements UP under
the assumption that all components in ∆ are faulty and all components in COMPS \∆ are healthy.

The solutions of a DPI, i.e., the hypotheses that explain a given (faulty) system behavior, are called
diagnoses:

Definition 3 (Diagnosis). ∆ ⊆ COMPS is a diagnosis for the DPI (SD, COMPS, OBS,P ,N ) iff ∆ is
⊆-minimal such that

• SD∗[∆] is consistent (∆ explains OBS and P ), and
• ∀n ∈ N : SD∗[∆] 6|= n (∆ explains N ).

We denote the set of all diagnoses for a DPI X by DX .

A diagnosis for a DPI exists iff SD∗[COMPS] 6|= n for all n ∈ N [13, Proposition 1].

Example 1: Consider the DPI Ex given by Tab. 1. Using, e.g., HS-TREE [27] we get (denoting com-
ponents ci by i) the set of all diagnoses DEx = {∆1,∆2,∆3} = {{1, 2, 5}, {1, 3, 5}, {3, 4, 5}}. E.g.,
∆2 ∈ DEx due to Def. 3 and as SD∗[∆2] = [SD ∪ {AB(c1), AB(c3), AB(c5)} ∪ {¬AB(c2),¬AB(c4)}] ∪
OBS ∪ UP = [{beh(c2), beh(c4)}] ∪ ∅ ∪ ∅ = {A → F,L → H} 6|= {A → H} = n1 ∈ N and is
consistent.

5We make the stationary health assumption [10], i.e. the behavior of each c ∈ COMPS is constant during diagnosis.
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2.2 Sequential Diagnosis (SQD)
Given multiple diagnoses for a DPI, SQD techniques extend the sets P and N by asking a user or an
oracle (e.g., an automated system) to perform additional measurements in order to rule out irrelevant
diagnoses. In line with the works of [33, 35, 28] we call a proposed measurement query and define it
very generally as a set of first-order sentences (this subsumes the notion of measurement, e.g., in [7, 27]).
The task of the oracle is to assess the correctness of the sentences in the query, thereby providing the
required measurements. A query Q is true (t) if all sentences in Q are (necessarily) correct and false
(f ) otherwise.

Usually only a small computationally feasible set of leading diagnoses D (e.g., minimum cardinality
[10] or most probable [4] ones) are exploited for measurement selection [8].

Any sets of diagnoses and first-order sentences satisfy:

Property 1. Let X be a set of first-order sentences and D ⊆ DDPI for DPI = (SD, COMPS, OBS, P,N).
Then X induces a partition PD(X) :=

〈
D+(X),D−(X),D0(X)

〉
on D where D+(X) := {∆ ∈

D | SD∗[∆] |= X}, D−(X) := {∆ ∈ D | ∃s ∈ N ∪ {⊥} : SD∗[∆] ∪ X |= s} and D0(X) =
D \ (D+(X) ∪D−(X)).

From a query, we postulate two properties, it must for any outcome (1) invalidate at least one diag-
nosis (search space restriction) and (2) preserve the validity of at least one diagnosis (solution preser-
vation). In fact, the sets D+(X) and D−(X) are the key to deciding whether a set of sentences X is a
query or not. Based on Property 1, we define:

Definition 4 (Query, q-Partition). Let DPI = (SD, COMPS, OBS, P,N), D ⊆ DDPI and Q be a set of
first-order sentences with PD(Q) =

〈
D+(Q),D−(Q),D0(Q)

〉
. Then Q is a query for D iff Q 6= ∅,

D+(Q) 6= ∅ and D−(Q) 6= ∅. The set of all queries for D is denoted by QD.
PD(Q) is called the q-partition (QP) of Q iff Q is a query. Inversely, Q is called a query with (or:

for) the QP PD(Q).
Given a QP P, we sometimes denote its three entries in turn D+(P), D−(P) and D0(P).

D+(Q) and D−(Q) denote those diagnoses in D consistent only with Q’s positive and negative
outcome, respectively, and D0(Q) those consistent with both outcomes. Since Q ∈ QD implies that
both D+(Q) and D−(Q) are non-empty, clearly Q’s outcomes both dismiss and preserve at least one
diagnosis. Note, in many cases a query also invalidates some (unknown) non-leading diagnoses DDPI \
D.

The set D0(Q) includes the so-called uncommitted diagnoses [7], i.e., those that cannot be elimi-
nated given any outcome of Q. Hence, the size of the set D0(Q) should be minimal, i.e., zero at best,
for optimal diagnoses discrimination. The algorithm presented hereafter guarantees the computation of
only Q’s with D0(Q) = ∅. For example, the methods of [7, 35, 31] cannot ensure this property.

Example 1 (cont’d): Let D = DEx = {∆1,∆2,∆3}. Then, Q = {F → H} is a query in QD. To
verify this, let us consider its QP PD(Q) = 〈{∆1} , {∆2,∆3} , ∅〉. Since both D+(Q) and D−(Q) are
non-empty, Q is in QD. ∆1 = {1, 2, 5} ∈ D+(Q) holds because SD∗[∆1] |= {beh(c3), beh(c4)} =
{B ∨ F → H,L→ H} which in turn entails Q. On the other hand, e.g., ∆2 = {1, 3, 5} ∈ D−(Q)
since SD∗[∆2]∪Q |= {A→ F,L→ H,F → H} |= {A→ H} = n1 ∈ N . Hence, the outcome Q = t
implies that the diagnoses in D−(Q) = {∆2,∆3} are invalidated, whereas Q = f causes the dismissal
of D+(Q) = {∆1}.

Applicability and diagnostic accuracy. For any non-singleton set of leading diagnoses, a discrimi-
nating query exists [28, Sec. 7.6]:
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Property 2. ∀DPI : D ⊆ DDPI, |D| ≥ 2 =⇒ QD 6= ∅.

This has two implications: First, we need only precompute two diagnoses to generate a query and
proceed with SQD. Despite its NP-completeness [3], the generation of two (or more) diagnoses is prac-
tical in many real-world settings [4, 36], making query-based SQD commonly applicable. Second, the
query-based approach guarantees perfect diagnostic accuracy, i.e., the unambiguous identification of the
actual diagnosis.

3 Query Optimization for Sequential Model-Based Diagnosis

3.1 Measurement Selection
As argued, the (q-)partition PD(Q) enables both the verification whether a candidate Q is indeed a
query and an estimation of the impact Q’s outcomes have in terms of diagnoses invalidation. And, given
(component) fault probabilities, it enables to gauge the probability of observing a positive or negative
query outcome [7], e.g., to assess the uncertainty of Q. Active learning query selection measures (QSMs)
m : Q 7→ m(Q) ∈ R [33] use exactly these query properties characterized by the QP to assess how
favorable a query is. They aim at selecting queries such that the expected number of queries until
obtaining a deterministic diagnostic result is minimized, i.e.,∑

∆⊆COMPS

p(∆)q#(∆) → min

where p(∆) is the (a-priori) probability that {AB(c) | c ∈ ∆}∪{¬AB(c) | c ∈ COMPS \∆} is the actual
system state wrt. component functionality and q#(∆) is the number of queries required, given the initial
DPI, to derive that ∆ must be the actual diagnosis. Solving this problem is known to be NP-complete
as it amounts to optimal binary decision tree construction [17]. Hence, as it is common practice in SQD
[7, 5, 26], we restrict our algorithm to the usage of QSMs that make a locally optimal query selection
through a one-step lookahead. This has been shown to be optimal in many cases and nearly optimal in
most cases [6]. Several different QSMs m such as split-in-half, entropy, or risk-optimization have been
proposed, well studied and compared against one another other [7, 35, 31]. For instance, when using
entropy as a QSM, m would be exactly the scoring function $() derived in [7]. Note, we assume w.l.o.g.
that the optimal query wrt. any m is the one with minimal m(Q).6

Besides trying to minimize the number of queries in a diagnostic session, a further goal can be
the minimization of the query cost, e.g., in terms of time, manpower, difficulty or required tools. To
this end, one can specify a query cost measure (QCM) c : Q 7→ c(Q) ∈ R+. Examples of QCMs
are cΣ(Q) :=

∑k
i=1 ci (prefer query with minimal overall cost, e.g., when ci represents time) or

cmax(Q) := maxi∈{1,...,k} ci (prefer query with minimal maximal cost of a single measurement, e.g.,
when ci represents human cognitive load) where Q = {q1, . . . , qk} and ci is the cost of evaluating the
truth of the first-order sentence qi. The QCM c|·|(Q) = |Q| is a special case of cΣ(Q) where c|·| is equal
to cΣ in case ci = cj for all i, j. Now, the problem addressed in this work is:

Problem 1 (Optimal Query Selection). .
Given: DPI := (SD, COMPS, OBS, P,N), D ⊆ DDPI with |D| ≥ 2, QSM m, QCM c, query search
space S ⊆ QD.
Find: A query Q∗ with minimal cost wrt. c among all queries in S that are optimal wrt. m. Formally:
Q∗ = arg minQ∈OptQ(m,S) c(Q) where OptQ(m,S) := {Q′ | Q′ = arg minQ∈S m(Q)}.

6If for some QSM m the best query is the one which maximizes m(Q), one can equivalently use the QSM m′(Q) :=
−m(Q) which must be minimized.
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Algorithm 1 Optimized Query Computation
Input: DPI := (SD, COMPS, OBS, P,N), D ⊆ DDPI, |D| ≥ 2, QSM m, QCM c, component fault probabilities

FP = {pi | pi = p(ci), ci ∈ COMPS}, threshold tm, sound and complete inference engine Inf , set ET of
entailment types, pref (preference information used for query optimization), a Boolean enhance (if true ,
optional query enhancement is run)

Output: an optimized query Q∗ ∈ QD wrt. m, tm and c (cf. Theorems 2 and 3)
1: P← OPTIMIZEQPARTITION(D,FP ,m, tm) . P1
2: if enhance = true then . (optional)
3: Q′ ← EXPANDQUERY(DPI,P,ET , Inf ) . P3
4: Q∗ ← OPTIMINIMIZEQUERY(DPI,P, Q′, pref , Inf ) . P3
5: else . (default)
6: Q∗ ← OPTIMIZEQUERYFORQPARTITION(P, c) . P2
7: return Q∗

Note, there can be multiple equally good queries Q∗ ∈ QD, i.e., the solution to Problem 1 might
not be unique.

3.2 The Proposed Approach
The Algorithm7 we propose to solve Problem 1 is given by Alg. 1. The described query computation
procedure can be divided into three phases: P1 (line 1), P2 (line 6) and P3 (lines 3-4). Before we explain
these phases in more detail we give an intuition and overview of the algorithm.

3.2.1 Overview and Intuition

In a nutshell, the presented query optimization method works as follows. In the first place, P1 optimizes
the next query’s discrimination properties (e.g. the expected information gain) based on the criteria
imposed by the given QSM m, realized by a heuristic backtracking search. Then, as a first option, P2
computes an optimal query Q∗ regarding the given QCM c by running a uniform-cost hitting set tree
search over a suitable (and explicitly given) set of partial leading diagnoses. This is done in a way Q∗

meets exactly the optimal discrimination properties determined in P1. P2 explores the largest possible
query search space that can be handled without any reasoner calls in a complete way. The output
Q∗ suggests the inspection of the system component(s) that is least expensive for the oracle (QCM
c) among all those that yield the highest information (QSM m). As a second option and alternative
to P2, P3 performs a two-step optimization consisting of a first generalization of the addressed search
space and a subsequent divide-and-conquer exploration of this search space focused on cost-preferred
measurements. P3 returns a cost-optimal query Q∗ (wrt. some QCM c) complying with the optimal
discrimination properties fixed in P1. Q∗ may include measurements of arbitrary type, depending on
priorly definable requirements.

3.2.2 Phase P1

At this stage, we optimize the given QSM m – for now without regard to the QCM c, which is optimized
later in P2 (default) or P3 (optional). This decoupling of optimization steps is possible since the QSM
value m(Q) of a query Q is only affected by the (unique) QP of Q and not by Q itself.8 On the contrary,

7In-depth descriptions and discussions of all aspects of the proposed methods as well as proofs of all results are given in
Sec. 3.4ff. of the extended version [29] of this paper. A Protégé [23] plugin implementing i.a. the presented algorithm can be
found on http://isbi.aau.at/ontodebug/.

8Hence, we will sometimes write m(P) to denote the QSM-value of (any query for) the QP P.
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the QCM value c(Q) is a function of Q only and not of Q’s QP. Therefore, the search performed in P1
will consider only QPs.

To verify whether a given 3-partition of D is a QP, however, we need a query Q for this QP which
lets us determine whether D+(Q) 6= ∅ and D−(Q) 6= ∅ (cf. Def. 4). But:

Property 3. For one query there is exactly one QP (immediate from Property 1). For one QP there
might be multiple, in fact exponentially many queries (cf. Proposition 6 later).

Therefore, we use the notion of a canonical query (CQ), which is one well-defined query represen-
tative for a QP. From a CQ, we postulate easiness of computation and exclusion of suboptimal QPs with
D0 6= ∅ (cf. Sec. 2). The key to realizing these postulations is:

Definition 5. Let X ⊆ COMPS. Then BEH[X] := {beh(ci) | ci ∈ X}.

The following property is immediate from Def. 2:

Property 4. X ⊆ COMPS ⇒ SD∗[X] |= BEH[COMPS \X]

From Property 1 and Def. 4 we can directly conclude:

Property 5. A query Q ∈ QD is a subset of the common entailments of all KBs in the set
{SD∗[∆] | ∆ ∈ D+(Q)}.

Using Properties 4 and 5, the idea is now to restrict the space of entailments of the SD∗[·] KBs to
the behavioral descriptions beh(·) of the system components. That is, each CQ should be some query
Q ⊆ BEH[COMPS]. In the light of Def. 4 and the ⊆-minimality of diagnoses, necessary criteria for such
queries are as follows:

Proposition 1. [29, Cor. 19] Any query Q ⊆ BEH[COMPS] in QD must include some formulas in
BEH[UD], need not include any formulas in BEH[COMPS \ UD], and must not include any formulas in
BEH[ID].9

Moreover, the deletion of any sentences in BEH[COMPS \UD] from Q does not alter the QP PD(Q).

Proposition 1 pinpoints the sentences crucial for the discrimination among the leading diagnoses D.
We give these sentences their own name:

Definition 6. DiscD := BEH[UD] \ BEH[ID] = BEH[UD \ ID] is called the discrimination sentences
wrt. D.

CQs can now be characterized as follows:

Definition 7 (CQ). Let ∅ ⊂ D+ ⊂ D. Then Qcan(D
+) := BEH[COMPS\UD+ ] ∩DiscD is the canonical

query (CQ) wrt. seed D+ if Qcan(D
+) 6= ∅. Else, Qcan(D

+) is undefined.

Note, BEH[COMPS \ UD+ ] are exactly the common beh(·) entailments of {SD∗[∆] | ∆ ∈ D+} (cf.
Property 5). The CQ extracts DiscD from these entailments, thereby removing all elements that do not
affect the QP (cf. Proposition 1). By Defs. 4 and 7 and the ⊆-minimality of diagnoses, we get:

Proposition 2. [29, Proposition 50] If Q is a CQ, then Q is a query.

The QP for a CQ is called canonical q-partition:

Definition 8 (CQP). A QP P′ for which a CQ Q exists with QP P′, i.e., PD(Q) = P′, is called a
canonical QP (CQP).

9Please refer to the paragraph Notation in Sec. 2 for notation.
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Since a CQ is a subset of BEH[COMPS] and diagnoses are ⊆-minimal, we can derive:

Proposition 3. [29, Proposition 52] Let P be a CQP. Then D0(P) = ∅.

Discussion: The restriction to CQs during P1 has some nice implications:

1. CQs can be generated by cheap set operations (no inference engine calls),
2. each CQ is a query in QD for sure (Proposition 2), no verification of its QP (as per Def. 4)

required, thence no unnecessary (non-query) candidates generated,
3. automatic focus on favorable queries wrt. the QSM m (those with empty D0, Proposition 3),
4. no duplicate QPs generated as there is a one-to-one relationship between CQs and CQPs (Prop-

erty 3, Def. 7),
5. the explored search space for QPs is not dependent on the particular (entailments) output by an

inference engine.

We emphasize that all these properties do not hold for normal (i.e., non-canonical) queries and QPs.
The significant effect of these advantages of CQ(P)s will be demonstrated in Sec. 4.

Example 1 (cont’d): Let D as before, DiscD = BEH[UD \ ID] = BEH[{1, 2, 3, 4, 5} \ {5}] =
BEH[{1, 2, 3, 4}]. Let us consider the seed D+ = {∆1} = {{1, 2, 5}}. Then the CQ Q1 :=
Qcan(D

+) = (BEH[{1, 2, 3, 4, 5} \ {1, 2, 5}]) ∩ BEH[{1, 2, 3, 4}] = BEH[{3, 4}]. The associated
CQP is P1 = 〈{∆1} , {∆2,∆3} , ∅〉. Note, ∆ ∈ D+(P1) and ∆ ∈ D−(P1) hold for a ∆ ∈ D
iff BEH[COMPS \ ∆] ⊇ Q1 and BEH[COMPS \ ∆] 6⊇ Q1, respectively. E.g., ∆3 ∈ D−(P1) since
BEH[COMPS \ ∆3] = BEH[{1, 2}] 6⊇ BEH[{3, 4}] = Q1. That is, using CQs and CQPs, reasoning is
traded for set operations and comparisons.

The seed D+ = {∆1,∆3} yields Q2 := Qcan(D
+) = (BEH[{1, . . . , 5} \ {1, . . . , 5}]) ∩

BEH[{1, . . . , 4}] = ∅, i.e., there is no CQ wrt. seed D+ and the partition 〈{∆1,∆3} , {∆2} , ∅〉 with
the seed D+ as first entry is no CQP. In fact, it is not a QP either.

The q-partition search. Now, having at hand the notion of a CQP, we describe the (heuristic) search
for an optimal CQP performed in P1.

A (heuristic) search problem [32] is defined by an initial state, a successor function enumerating all
direct neighbor states of a state, the step costs from a state to a successor state, the goal test to determine
if a given state is a goal state or not, (and some heuristics to estimate the remaining effort towards a goal
state).

The type of the proposed search can be characterized as follows:

Depth-first, local best-first strategy At each state in the search tree, the best of all direct successor states
is visited next. The goodness of states can be estimated by some heuristic function that assigns
a real number to each state. The best state is the one with optimal (usually: minimal) heuristic
value.

Backtracking strategy Given that all successors of a state have already been explored and no goal state
has been found yet, the search backtracks and visits the next-best unexplored sibling of this state.

We define the initial state 〈D+,D−,D0〉 as 〈∅,D, ∅〉. The idea is to transfer diagnoses step-by-step
from D− to D+ to construct all CQPs systematically. The step costs are irrelevant, only the found QP
as such counts. Heuristics derived from the QSM m (cf., e.g., [35]) can be optionally integrated into the
search to enable faster convergence to the optimum. A QP P is a goal if it optimizes m up to the given
threshold tm (cf. [7]), i.e., if |m(P)−mopt| ≤ tm where mopt denotes the (theoretically) optimal value
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of m.10 In order to characterize a suitable successor function, we define a direct neighbor of a QP as
follows:

Definition 9. Let Pi := 〈D+
i ,D

−
i , ∅〉, Pj := 〈D+

j ,D
−
j , ∅〉 be partitions of D. Then, Pi 7→ Pj

is a minimal D+-transformation from Pi to Pj iff Pj is a CQP, D+
i ⊂ D+

j and there is no CQP
〈D+

k ,D
−
k , ∅〉 with D+

i ⊂ D+
k ⊂ D+

j .
A CQP P′ is called a successor of a partition P iff P′ results from P by a minimal D+-

transformation.

Intuitively, a successor P′ of a partition P is the result of transferring a ⊆-minimal set of diagnoses
from D−(P) to D+(P) such that P′ is a CQP.

For the successors of the initial state we get:

Proposition 4. [29, Proposition 55] The CQPs 〈{∆} ,D\{∆} , ∅〉 for ∆ ∈ D are exactly all successors
of 〈∅,D, ∅〉.

To specify the successors of an intermediate CQP Pk in the search, we draw on diagnoses’ traits:

Definition 10. Let Pk = 〈D+
k ,D

−
k , ∅〉 be a CQP and ∆i ∈ D−k . Then the trait ∆

(k)
i of ∆i is defined

as BEH[∆i \ UD+
k

].

The relation ∼k associating two diagnoses in D−k iff their trait is equal is obviously an equivalence
relation. Now, Defs. 7, 8 and 9 let us derive:

Proposition 5. [29, Cor. 25] Let EC := {E1, . . . , Es} be the set of all equivalence classes wrt. ∼k.
Pk has successors iff s ≥ 2. In this case, all successors are given by

〈
D+

k ∪ E,D−k \ E, ∅
〉

where
E ∈ EC and E has a ⊆-minimal trait among all classes E′ ∈ EC .

By Def. 9 which requires both minimal changes between state and successor state and the latter to
be a CQP, we have:

Theorem 1. Usage of the successor function as given in Proposition 4 (for initial state) and Proposi-
tion 5 (for intermediate states) makes the search for CQPs sound and complete.

For the number of CQ(P)s, we obtain the following result:

Proposition 6. [29, Cor. 23] Let CQPD denote the set of CQPs for diagnoses D with |D| ≥ 2. Then
|CQPD| = |{UD+ | ∅ ⊂ D+ ⊂ D, UD+ 6= UD}| ≥ |D|.

Whether QPs 〈D+,D−, ∅〉 exist which are no CQPs is not yet clarified, but both theoretical (cf.
[29, Sec. 3.4.2]) and empirical evidence indicate the negative. E.g., an analysis of ≈ 900 000 QPs we
ran for different diagnoses sets D for different DPIs showed that all QPs were indeed CQPs. And, in
all evaluated cases (see Sec. 4) optimal CQPs wrt. all QSMs m given in diagnosis literature [7, 35, 31]
were found. Hence:

Conjecture 1. Let (C)QPD denote the sets of (C)QPs (all with D0 = ∅) for diagnoses D. Then
CQPD = QPD.

10I.e., mopt is the best value regarding the QSM m that any (fictitious) QP might achieve. There need not be a query in QD

for which m evaluates to mopt.
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Example 1 (cont’d): Reconsider the CQP P1 = 〈{∆1} , {∆2, ∆3}, ∅〉. The traits are ∆
(1)
2 =

BEH[{1, 3, 5} \ {1, 2, 5}] = BEH[{3}] and ∆
(1)
3 = BEH[{3, 4}], representing two equivalence classes

wrt. ∼1. There is only one class with ⊆-minimal trait, i.e., {∆2}. Hence, there is just a single suc-
cessor CQP P2 = 〈{∆1,∆2}, {∆3}, ∅〉 of P1 (cf. Proposition 5). Recall, we argued that 〈{∆1,∆3},
{∆2}, ∅〉 is indeed no (C)QP. By Proposition 6, there are |{{1, 2, 5} , {1, 3, 5} , {3, 4, 5} , {1, 2, 3, 5},
{1, 3, 4, 5}}| = 5 different CQPs wrt. D. Note, Conjecture 1 is true here, i.e., the CQPD search is
complete wrt. QPD.

The next example shows one entire execution of the CQP search performed by phase P1 of Alg. 1:

Example 2: Consider the leading diagnoses D given by11

{∆1, . . . ,∆6} = {{2, 3}, {2, 5}, {2, 6}, {2, 7}, {1, 4, 7}, {3, 4, 7}}

Further on, let the diagnoses probabilities

〈p(∆1), . . . , p(∆6)〉 = 〈0.01, 0.33, 0.14, 0.07, 0.41, 0.04〉

The search tree for a goal CQP wrt. the entropy QSM m := $ (see [7, p. 11]) and tm := 0.01 produced
by P1 is shown in Fig. 1. Roughly, m evaluates a QP P the better, the lower the difference between the
probabilities p(D+(P)) :=

∑
∆∈D+(P) p(∆) and p(D−(P)) :=

∑
∆∈D−(P) p(∆) (cf. [35]). Let us

therefore assume a very simple heuristic function h that assigns h(P) = |p(D+(P))− 0.5| to a QP P
where smaller h values imply more promising QPs wrt. m to visit next. Here, the optimal QSM-value
mopt = 0 and thus a CQP P is a goal state iff |m(P)| ≤ tm (cf. Alg. 1).

In Fig. 1, a node in the search tree representing the CQP Pk =
〈
D+

k ,D
−
k ,D

0
k

〉
is denoted by a

frame including a table with three rows where (1) the topmost row shows p(D+
k ) | p(D−k ) (relevant

for computing m and h), (2) the middle row depicts D+
k | D

−
k and (3) the bottommost row gives

UD+
k
| {∆(k)

i | ∆i ∈ D−k } (cf. Def. 10).12 The framed value at the bottom right corner of the large
frame quotes the heuristic value h(Pk). No such value for the root node is given since it is not a QP and
hence does not qualify as a solution. Furthermore, the (for CQPs) always empty D0

k set is omitted. A
frame is dashed / continuous / double if the associated node is generated (but not expanded) / expanded /
a returned goal CQP. Arrows represent minimal D+-transformations, i.e., an arrow’s destination QP is
a result of a minimal D+-transformation applied to its source (q-)partition. Arrow labels give the set of
diagnoses and the probability mass moved from the D−-set of the source (q-)partition to the D+-set of
the destination QP.

Starting from the root node representing the partition 〈∅,D, ∅〉, the successor function generates all
possible CQPs resulting from the transfer of a single diagnosis from the D−-set of the initial state to
its D+-set. Since there are six diagnoses in D, the initial state has exactly six successors (see Proposi-
tion 4). The best successor P1 := 〈{∆5} , {∆1,∆2,∆3,∆4,∆6} , ∅〉 with minimal h(P1) = 0.09 is
selected for expansion.

For P1, the successor function generates exactly two CQPs that result from it by a minimal D+-
transformation (cf. Proposition 5). This can be seen by considering the traits of the diagnoses in D−(P1)
shown in the right column of the third row in the table representing P1. Among the five traits there
are only two ⊆-minimal ones, i.e., ∆

(1)
4 := {2} and ∆

(1)
6 := {3}. All the other traits are proper

supersets of either of these. This means that all successors of P1 can be constructed by shifting either

11Note, since P1, as argued, works on the basis of set operations and without reasoning at all, the actual DPI giving rise to
these diagnoses is not relevant in this example.

12For simplicity, we will write just the set X to represent a trait ∆
(k)
i = BEH[X].
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0 1

∅ ∆1, ∆2, ∆3, ∆4, ∆5, ∆6
∅ {2, 3} , {2, 5} , {2, 6} , {2, 7} , {1, 4, 7} , {3, 4, 7}

0.01 0.99
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{2, 6} {3} , {5} , {7} , {1, 4, 7} , {3, 4, 7} 0.36

0.07 0.93

∆4 ∆1, ∆2, ∆3, ∆5, ∆6
{2, 7} {3} , {5} , {6} , {1, 4} , {3, 4} 0.43

0.41 0.59

∆5 ∆1, ∆2, ∆3, ∆4, ∆6
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∆6 ∆1, ∆2, ∆3, ∆4, ∆5
{3, 4, 7} {2} , {2, 5} , {2, 6} , {2} , {1} 0.46 0.48 0.52

∆4, ∆5 ∆1, ∆2, ∆3, ∆6
{1, 2, 4, 7} {3} , {5} , {6} , {3} 0.02

0.45 0.55
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Figure 1: Search for an optimal QP in phase P1 of Alg. 1 using the entropy QSM m and threshold
tm := 0.01.

∆4 or ∆6 from D−(P1) to D+(P1) yielding P21 := 〈{∆4,∆5} , {∆1,∆2,∆3,∆6} , ∅〉 and P22 :=
〈{∆5,∆6} , {∆1,∆2,∆3,∆4} , ∅〉, respectively.

At this stage, the best QP among the two successors P21 and P22 of P1 (depth-first, local best-
first) is determined for expansion by means of h. As p(D+(P21)) differs by less (0.02) from 0.5 than
p(D+(P22)) (0.05), P21 is chosen. However, as tm has been set to 0.01 and m(P21) ≈ 0.001 ≤ 0.01,
P21 is a goal and returned as the solution of phase P1 of Alg. 1. Note, there were no backtrackings
as the used heuristic h guided the search directly towards a goal state. Such behavior could also be
frequently observed in our experiments (see Sec. 4).

3.2.3 Phase P2

Phase P1 returns an optimal (C)QP Pk wrt. the QSM m. Property 3 indicates that there might be still a
large search space for an optimal query wrt. the QCM c for this QP. The task in P2 is to find such query
efficiently.

From Pk, we can obtain the associated CQ Qk (as per Def. 7). However, usually a least requirement
of any QCM c is i.a. the ⊆-minimality of a query to avoid unnecessary measurements. To this end, let
Tr(Pk) denote the set of all ⊆-minimal traits wrt. ∼k. Given a collection of sets X = {x1, . . . , xn}, a
set H ⊆ UX is a hitting set (HS) of X iff H ∩ xi 6= ∅ for all xi ∈ X . Then:

Proposition 7. [29, Proposition 61] Q ⊆ DiscD is a⊆-minimal query with QP Pk iff Q = H for some
⊆-minimal HS H of Tr(Pk).

Hence, all⊆-minimal reductions of CQ Qk under preservation of the (already fixed and optimal) QP
Pk can be computed, e.g., using the classical HS-TREE [27]. However, there is a crucial difference to
standard application scenarios of HS-TREE, namely the fact that all sets to label the tree nodes (i.e., the
⊆-minimal traits) are readily available (without further computations). Consequently, the construction
of the tree runs swiftly, as our evaluation will confirm. Note also, in principle we only require a single
minimal hitting set, i.e., query. Moreover, HS-TREE can be used as uniform-cost (UC) search (cf., e.g.,
[28, Chap. 4]), incorporating the QCM c to find queries in best-first order wrt. c. In fact, all QCMs
(i.e., cΣ, cmax, c|·|) discussed above can be optimized using UC HS-TREE. In case some QCM c is not
suitable for UC search, a brute force HS-TREE search over all ⊆-minimal queries is often practical as
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well (no expensive operations involved), as our evaluations (cf. Sec. 4) have revealed. Hence, P1 and
P2 provide a solution to Problem 1 without a single inference engine call.

Theorem 2. P1 and P2 compute a solution Q∗ to Problem 1 where S := {BEH[X] | X ⊆ COMPS}.

Example 1 (cont’d): Recall the CQP P1 and let the QCM be c := c|·| (i.e., queries of minimum
cardinality should be preferred). Then Tr(P1) = {BEH[{3}]}, i.e., by Proposition 7 there is a single
c-optimal query BEH[{3}] for P1, a proper subset of the CQ BEH[{3, 4}] for P1. Considering the CQP
P3 := 〈{∆2} , {∆1,∆3} , ∅〉, Tr(P3) = {BEH[{2}], BEH[{4}]} and thus we have (Proposition 7) a
single c-optimal query BEH[{2, 4}] which happens to be equal to the CQ for P3.

So, optionally, by selecting enhance := false (cf. Alg. 1), the query Q∗ optimized along two di-
mensions (number of queries, cost per query) over the restricted search space S (Theorem 2) is directly
proposed as next measurement. A BEH[·] query like Q∗ corresponds to a direct examination of one or
more system components. This could mean to, e.g., ping servers in a distributed system [2], test gates
using a voltmeter in circuits [7] or ask stakeholders of a software / configuration / KB system about the
correctness of code lines / constraints / logical sentences [42, 12, 13].

Alternatively, the already optimal CQP Pk returned by P1 can be exploited to build a solution query
to Problem 1 with full search space S = QD. To this end, enhance is set to true , causing the execution
of phase P3 instead of P2.

3.2.4 Phase P3

In this phase, first, using the CQ Qk of Pk, a (finite) set Qexp of first-order sentences of types ET (e.g.,
atoms or sentences of type A→ B) are computed. Qexp must meet:

1. SD∗[X] |= Qexp where X is some (superset of a) diagnosis such that Qk ⊆ SD∗[X] (entailed by
a consistent system behavior KB),

2. no qi ∈ Qexp is an entailment of SD∗[X]\Qk (logical dependence on Qk, no irrelevant sentences)
and

3. the expansion of Qk by Qexp does not alter the (already fixed and optimal) QP Pk, i.e., Pk =
PD(Qk ∪Qexp).

Proposition 8. (cf. [29, Proposition 62]) Let EntET (X) be a monotonic consequence operator realized
by some inference engine that computes a finite set of entailments of types ET of a KB X . Postulations
1 – 3 above are satisfied if Qexp := EntET (SD∗[UD] ∪Qk) \ EntET (SD∗[UD]).

Finally, the expanded query Q′ := Qk∪Qexp can be minimized to get a⊆-minimal subset of it under
preservation of the associated QP Pk. For this purpose, one can use a variant of the polynomial divide-
and-conquer method QUICKXPLAIN [18], e.g., the MINQ procedure given in [28, p.111ff.]. However,
we propose to alter the input to MINQ as follows: Assume that Q′ can be partitioned into a subset of
cost-preferred sentences Q′C+ (e.g., those measurements executable automatically by available built-in
sensors) and cost-dispreferred ones Q′C− = Q′ \Q′C+ (e.g., manual measurements), as specified by the
parameter pref (see Alg. 1). Let the input to MINQ be the list Q′C+‖asc(Q′C−) (reordering of Q′) where
asc(Q′C−) means that Q′C− is sorted in ascending order by sentence cost and ‖ denotes the standard
concatenation operator. Then:

Proposition 9. (cf. [29, Cor. 27]) MINQ with input Q′C+‖asc(Q′C−) returns a ⊆-minimal query Q∗ ⊆
Q′ such that PD(Q∗) = Pk. Further, if such a query comprising only Q′C+ (and no Q′C−) sentences
exists, then Q∗ ⊆ Q′C+. Else, Q∗ optimizes the QCM cmax (see page 3) among all ⊆-minimal subsets
of Q′ with QP Pk.
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Figure 2: Full adder circuit (left) and related observations (right).

Note, phase P3, i.e., query expansion (Proposition 8) together with optimized minimization (Propo-
sition 9), requires only a polynomial number of inference engine calls [18].

Theorem 3. Let Conjecture 1 hold and the QCM be cmax (see page 3). Then P3, exploiting the QP
output by P1 along with Proposition 8 and 9, solves Problem 1 with full search space S = QD (under
the postulated exclusion of suboptimal queries Q with D0(Q) 6= ∅).

Note, Conjecture 1 is by no means necessary for the proper functioning of our presented algorithms.
In case Conjecture 1 turned out to be wrong, the consequence would be just the invalidity of perfect
completeness wrt. all QPs achieved by the restriction to only CQPs. Still, we could cope well with that
since CQs and CQPs bring along very nice computational properties (see the discussion above), CQP
search spaces are nevertheless of substantial size (see Sec. 4), CQPs prove extremely efficient by the
total avoidance of reasoning (see Sec. 4) and enable to find optimal queries wrt. negligible thresholds
tm for all tested cases and QSMs (see Sec. 4).

Example 1 (cont’d): Assume the QP P1 is returned by P1. Let the cost ci of a sentence qi be the number
of literals in its clausal form. As shown before, the CQ of P1 is Q1 := BEH[{3, 4}] = {B ∨ F →
H,L → H}. Using Proposition 8 with ET set to “definite clauses with singleton body”, we get
Qexp = EntET (Q1) \ EntET (∅) = {B → H,F → H,L → H}. So, Q′ = {B → H,F → H,L →
H,B∨F → H}. Suppose ET defines exactly the cost-preferred sentences, i.e., Q′c+ = Qexp. Running
MINQ with input Qexp‖{B ∨ F → H} yields Q∗ = {F → H}, a query including only cost-preferred
elements (cf. Proposition 9). It is easily verified by Property 1 that Q∗ has still the QP P1.

3.2.5 Recapitulation

To conclude Sec. 3, let us illustrate the entire query selection process executed by Alg. 1 drawing on the
full adder circuit example [14, 27] depicted by Fig. 2.

Example 3: The DPI resulting from the circuit in Fig. 2 is Circ := (SD, COMPS, OBS,P ,N ) where
COMPS includes the five gates X1, X2 (xor), A1, A2 (and), O1 (or), and SD includes one sentence
¬AB(c) → beh(c) for each c ∈ COMPS and models the wires as connections between output and input
terminals of gates, e.g., out(X1) = in1(X2) for the wire connecting X1 and X2. At this, beh(c)
describes the nominal behavior of a gate, e.g., beh(X1) := out(X1) = xor(in1(X1), in2(X1)) for the
xor-gate X1 where in1(.), in2(.) denote the first and second input of a gate, out(.) its output, and xor(.)
the standard xor-function (cf. [27, p. 4]). Below we denote the set of sentences describing the circuit’s

212



Optimized Measurements in Sequential Diagnosis Rodler, Schmid and Schekotihin

wires by WIRES. Further, OBS = {in1(X1) = 1, in2(X1) = 0, in1(A2) = 1, out(X2) = 1, out(O1) =
0} includes the observations about the circuit’s in- and outputs (see Fig. 2). The collections of positive
and negative measurements, P and N , are initially empty.

Suppose we got the information from the manufacturer of the gates that and-, or- and xor-gates
fail with a probability of 0.05, 0.02 and 0.01, respectively (input FP to Alg. 1). As discussed in [27,
p. 7], the set of all diagnoses for Circ is DCirc = {∆1,∆2,∆3} = {{X1}, {X2, A2}, {X2, O1}}. Let
the leading diagnoses be D := DCirc. Appealing to the formula given in [7, Sec. 4.4], the diagnoses
probabilities (normalized over D and rounded) resulting from FP amount to 〈p(∆1), p(∆2), p(∆3)〉 =
〈0.93, 0.05, 0.02〉.

(Phase P1:) Assuming the same QSM m, threshold tm and heuristic h as in Example 2, P1 runs a brute
force search over all (C)QPs as there is no QP that qualifies as a goal wrt. tm. In this case, P1 outputs
the best QP visited throughout its execution, namely P1 := 〈{∆1} , {∆2,∆3} , ∅〉 with h(P1) = 0.43
and m(P1) ≈ 0.63.

(Phase P2:) Let us suppose that a globally optimal query wrt. the QCM cΣ (see page 3) over the re-
stricted search space considered by P2 (see Theorem 2) is desired by the user, i.e., enhance := false .
And, let the expected cost of testing an and-, or- and xor-gate, respectively, be 1, 3 and 2. Then
Tr(P1) = {∆(1)

2 ,∆
(1)
3 } = {BEH[{X2, A2}], BEH[{X2, O1}]} is used to extract the cΣ-optimal query

Q∗ = BEH[{X2}] = {out(X2) = xor(in1(X2), in2(X2))} as the minimal HS with least cost
(cΣ(Q∗) = 2) of all elements of Tr(P1) (cf. Proposition 7). Note, the (only) other ⊆-minimal HS
is Qalt1 := BEH[{A2, O1}] with a cost of cΣ(Qalt1) = 1 + 3 = 4. Q∗ corresponds to the question
“Does gate X2 work properly?”.

(Phase P3:) Given that a query optimized over the full search space (see Theorem 3) is wanted,
enhance := true causes the execution of phase P3 (instead of phase P2). As an input Inf to Alg. 1
we assume, e.g., some constraint propagator, similar to the one described in [7], which computes pre-
dictions of the values at the circuit’s wires. Moreover, we suppose that the preferred entailment types
ET are exactly those stating values of wires, e.g., out(A1) = 1.

As a first step in P3, the CQ Q of P1 is computed as per Def. 7 and 8 as Q := BEH[COMPS \
UD+(P1)] ∩ BEH[UD \ ID] = BEH[{X1, X2, A1, A2, O1} \ {X1}] ∩ BEH[{X1, X2, A2, O1} \ ∅] =
BEH[{X2, A2, O1}]. Then, Q is used to compute the query expansion Qexp according to Proposition 8
as Qexp = EntET (SD∗[UD]∪Q)\EntET (SD∗[UD]) which is by Def. 2 equal to EntET (BEH[{A1}]∪
WIRES ∪ OBS ∪ ∅ ∪ BEH[{X2, A2, O1}]) \ EntET (BEH[{A1}] ∪ WIRES ∪ OBS ∪ ∅). After reasoning,
the latter is equal to {out(X1) = 0, out(A2) = 0, out(A1) = 0} \ {out(A1) = 0} = {out(X1) =
0, out(A2) = 0}.

Next, the contraction of the expanded query Q′ = Q ∪ Qexp = {beh(X2), beh(A2), beh(O1),
out(X1) = 0, out(A2) = 0} takes place. Let us assume that a user wants to avoid component in-
spections, i.e., the query should not include any beh(.) sentences. This is reflected by specifying
pref (cf. Alg. 1) so as to Q′+ := Qexp. Finally, the list Q′+‖asc(Q′−) = [out(X1) = 0, out(A2) =
0, beh(A2), beh(X2), beh(O1)] is passed to MINQ (regarding asc(), recall the gate inspection costs
mentioned in P2 above). The resulting output is the optimized contracted query Q∗ = {out(X1) = 0}
(with QP P1). Indeed, Q∗ includes only cost-preferred elements. We note that Q∗ is the only ⊆-
minimal query with QP P1 which is a subset of Q′+. For the only other ⊆-minimal query comprising
only elements from Q′+ is Qalt2 := {out(A2) = 0} which has not the QP P1, i.e. is not QP-preserving.
The actual QP PD(Qalt2) of Qalt2 is 〈{∆1,∆2} , {∆3} , ∅〉.

Hence, Alg. 1 suggests to probe the wire connecting gate X1 with gates X2 and A2. Taking into
account the query outcome probabilities estimated from the diagnoses probabilities (cf. [7, Sec. 4.3]),
we see that there is a strong bias (probability 0.93) towards a measurement outcome of out(X1) = 0.
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In this case, as indicated by the QP P1 of Q∗, only a single measurement is needed to single out ∆1 as
the actual diagnosis, i.e., to come to the conclusion that X1 must be faulty.

4 Evaluation

4.1 Experimental Settings and Dataset
To evaluate our method, we used real-world inconsistent knowledge-based (KB) systems as (1) they
pose a hard challenge for query selection methods due to the implicit nature of the possible queries
(must be derived by inference; not directly given such as wires in a circuit), (2) any MBD system in the
sense of [27] is described by a KB, (3) the type of the underlying system is irrelevant to our method,
only its size and (reasoning) complexity – for the optional P3 – and the DPI structure, e.g., size, number
or probability of diagnoses – for P1, P2 – are critical. To account for this, we used systems (Tab. 2,
col. 1) of different size (Tab. 2, col. 2), complexity (Tab. 2, col. 3) and DPI structure (Tab. 2, col. 4).

For each KB K in col. 1 of Tab. 2, a DPI was built as (SD, COMPS, OBS,P ,N ) where COMPS
included one component ci for each logical axiom ai ∈ K, SD = {¬AB(ci) → beh(ci) | 1 ≤ i ≤ |K|}
where beh(ci) := ai for 1 ≤ i ≤ |K|, OBS = ∅ (note, SD under the assumption of no faulty components
is inconsistent, without any observations, as K is inconsistent), P = ∅ and N = ∅.

In our experiments,13 for each DPI Sys in Tab. 2 and each n ∈ {10, 20, . . . , 80}, we randomly
generated 5 different D ∈ DSys with |D| = n using INV-HS-TREE [36] with randomly shuffled input.
Each ∆ ∈ D was assigned a uniformly random probability.

For each of these 5 D-sets, we used (a) entropy (ENT) [7] and (b) split-in-half (SPL) [35] as QSM m
and c|·| (cf. page 3) as QCM c, and then ran phases (i) P1+P2 and (ii) P3 to compute an optimized query
as per Theorems 2 and 3, respectively. We set the optimality threshold tm to 0.01 in (a) and 0 in (b). The
search in P1 used the same heuristic as stated in Example 2 for ENT and h(P) =

∣∣|D+(P)| − 1
2 |D|

∣∣
for SPL, both drawing on ideas from [20] that were already exploited in [35]. In P3, pref was chosen to
assign all simple definite clauses of the form ∀x(A(x)→ B(x)) and all facts of the form A(a) to Q′+.

4.2 Experimental Results
The obtained experimental results are shown in Fig. 3.14 Times for SPL are omitted for clarity as they
were quasi the same as for ENT. The dark gray area shows the # of CQPs addressed by P1, and the light
gray line the time for P1+P2 using ENT. It is evident that P1+P2 always finished in less than 0.03 sec
outputting an optimized query wrt. m and c. Note, albeit P1+P2 solve Prob. 1 for a restricted search
space S (cf. Theorem 2), |CQPD|, a fraction of |S|, already averaged to, e.g., 300 (over |D| = 10
cases) and > 530 000 (|D| = 80). That |S| is sufficiently large for all sizes |D| is also substantiated by
the fact that in each single run an optimal query wrt. the very small tm ( 1

10 of tm used in [35]) was found
in S. Also, a brute force (BF) search (dashed line) iterating over all possible CQPs is feasible in most
cases – finishing within 1 min for all runs (up to search space sizes > 120 000) except the |D| ≥ 30
cases for system CE (where up to 3 million CQPs were computed). This extreme speed is possible
due to the complete avoidance of costly reasoner calls. The optional further query enhancement in P3
using the DL reasoner Pellet [38] computing entailments of types ET := {classification, realization}
[1] always finished within 4 sec and returned the globally optimal query wrt. QCM cmax (Theorem 3).
The median output query size after P1+P2+P3 was 3.4. In additional scalability tests using |D| = 500
for the large enough DPIs (CC, CE, T, E), P1+P2 always ended in < 0.6 sec, P3 in < 40 sec.

13All tests were run on a Core i7 with 3.4 GHz, 16 GB RAM and Windows 7 64-bit OS.
14More comprehensive results of these and further experiments are discussed in-depth in [30, Sec. 4].
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System |COMPS| Complexity a #D/min/max b

University (U) c 49 SOIN (D) 90/3/4
MiniTambis (M) c 173 ALCN 48/3/3
CMT-Conftool (CC) d 458 SIN (D) 934/2/16
Conftool-EKAW (CE) d 491 SHIN (D) 953/3/10
Transportation (T) c 1300 ALCH(D) 1782/6/9
Economy (E) c 1781 ALCH(D) 864/4/8
Opengalen-no-propchains (O) e 9664 ALEHIF (D) 110/2/6
Cton (C) e 33203 SHF 15/1/5

a Description Logic expressivity, cf. [1, p. 525ff.].
b #D, min, max denote #, min. and max. size of all diagnoses (computable in≤ 8

h).
c Sufficiently complex systems (#D ≥ 40) used in [35].
d Hardest diagnosis problems mentioned in [39].
e Hardest diagnosis problems tested in [35].

Table 2: Systems used in the experiments
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10000000

M U T E C O CE CC

|D| |CQP_D| ENT: time P1+P2
ENT: time P3 BF: time P1+P2

Figure 3: Results for systems in Tab. 2 (x-axis): # of leading diagnoses |D|, associated size |CQPD|
of CQP search space, and computation time (sec) required by phases P1+P2 and P3 for QSM ENT with
threshold tm = 0.01 and brute force (BF) search (y-axis).

We also simulated P1 by a method using non-canonical QPs, thus relying on a reasoner. For no DPI
in Tab. 2 a result for |D| > 15 could be found within an hour. And, the quality of the returned QP (if
any) wrt. m was never better than for P1. So, not even in a single tested case, a query quality loss was
given due to the restriction to our canonical concepts.

5 Conclusions
We present a search that addresses the optimal measurement (query) computation and selection problem
for sequential model-based diagnosis. The method is independent of the (monotonic and decidable)
knowledge representation language describing the system model and of the used (sound and complete)
inference engine. Therefore, it is generally applicable across different application domains to any model-
based diagnosis problem conforming to [7, 27]. Moreover, the approach can efficiently deal with hard
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sequential diagnosis cases involving implicit15 and large-sized query spaces.
In particular, we allow a query to be optimized along two dimensions, i.e., number of queries and

cost per query. We show that the optimizations of these properties can be decoupled and considered
in sequence. For a suitably restricted (still exponential) query search space (very close approximations
of) global optima wrt. given query quality measures are found without any calls to an inference engine
in negligible time for diagnosis problems of any size and complexity (given the precomputation of
≥ 2 diagnoses is feasible). For instance, query search spaces of size up to 3 million can be handled
instantaneously (< 0.1 sec). For the full search space, under reasonable assumptions, the globally
optimal query wrt. a cost-preference measure can be found within 4 sec for up to 80 leading diagnoses.
Scalability tests involving a vast number of 500 precomputed diagnoses (search space size in O(2500)
only in the first computation phase of the algorithm) always output an optimized query in less than 0.7
sec (restricted search space) and 40 sec (full search space), respectively.
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