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1 Introduction

Cayley’s theorem for monoids states that every monoid can be embedded in the tranformation
monoid of all self-maps on a set. Actually, the set itself, may be taken as the underlying set of
the monoid. If the monoid is a group, then the maps can be taken to be permutations on the
set.

On the other hand, Holland’s theorem [3] states that every lattice-ordered group can be
embedded into the lattice-ordered group of order-preserving permutations on a totally-ordered
set (aka a chain). Recall that a lattice-ordered group (`-group for short) is a structure G =
〈G,∨,∧, ·,−1 , 1〉, where 〈G, ·,−1 , 1〉 is group and 〈G,∨,∧〉 is a lattice, such that multiplication
preserves the order (equivalently, it distributes over joins and/or meets). Unlike in the case of
Cayley, the chain cannot be taken to be the underlying lattice of the `-group, as the latter may
not be a chain. Also, the order-permutations on an non-totally-ordered lattice never form an
`-group. In that sense Holland’s theorem is more sophisticated than Cayley’s, as one needs to
come up with an actual chain on which the group will be acting.

We establish similar results for idempotent semirings and residuated lattices. We also pro-
vide residuated and relational versions of these theorems.

A (unital idempotent) semiring is an algebra R = 〈R,+, ·, 1〉, where 〈R,+〉 is a semilattice,
〈R, ·, 1〉 is a monoid and multiplication distributes over addition, i.e., we have a(b+ c) = ab+ac
and (b+ c)a = ba+ ca, for all a, b, c ∈ R. We write R+ for the semilattice 〈R,+〉.

If L = 〈L,∨〉 is a join-semilattice, the set End(L) of all join-semilattice endomorphisms on
L forms an idempotent semiring End(L) = 〈End(L),∨, ◦, id〉, where ∨ is computed pointwise,
◦ is the functional composition and id is the identity map on L.

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉, where 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉
is a monoid and the following condition holds:

x · y ≤ z iff y ≤ x\z iff x ≤ z/y .

Note that 〈A,∨, ·, 1〉 is an idempotent semiring.
Recall that one can define groups as structures 〈G, ·, \, /, 1〉, by the term equivalence: x\y =

x−1y, y/x = yx−1, and x−1 = 1/x. Therefore, `-groups are term equivalent to special residuated
lattices. In particular, if G is an `-group, then 〈G,∨, ·, 1〉 is an idempotent semiring.

For posets P and Q, a map f : P → Q is said to be residuated if there is a map f† : Q→ P
such that for all x ∈ P and y ∈ Q we have

f(x) ≤ y iff x ≤ f†(y) .

The map f† is called a residual of f . We denote by Res(P ) the set of all residuated maps on
P . Residuated maps preserve arbitrary existing joins; actually, maps on complete lattices are
residuated iff they preserve arbitrary joins.

76 N. Galatos, A. Kurz, C. Tsinakis (eds.), TACL 2013 (EPiC Series, vol. 25), pp. 76–79



Cayley’s and Holland’s Theorems for Residuated Lattices Galatos, Horč́ık

For a join-semilattice L = 〈L,∨〉, the set Res(L) of all residuated maps on L forms a sub-
semiring Res(L) of End(L), since residuated maps are closed under composition and pointwise
join.

Recall that an idempotent semiring R such that R+ is a complete lattice forms a residuated
lattice iff its multiplication distributes over arbitrary joins from both sides (see e.g. [2]) For a
complete lattice L, Res(L) is a complete idempotent semiring. Moreover it is easy to see that
it is actually a residuated lattice.

Let R = 〈R,+, ·, 1〉 be an idempotent semiring. A (left) R-semimodule M is a semilattice
〈M,+〉 together with a map ? : R ×M → M such that for all r, r′ ∈ R and m,m′ ∈ M the
following identities hold:

• r ? (m+m′) = r ? m+ r ? m′,

• (r + r′) ? m = r ? m+ r′ ? m,

• r ? (r′ ? m) = (r · r′) ? m,

• 1 ? m = m.

If M+ forms a complete lattice, then we call M a complete R-semimodule.
Every semiring R = 〈R,∨, ·, 1〉 gives rise to an R-semimodule 〈R,∨〉, where multiplication

serves as the action. On the other hand, every join-semilattice L = 〈L,∨〉 can be viewed as an
End(L)-semimodule, where the action ? : End(L)× L→ L is defined by f ? m = f(m).

2 Cayley-type representation theorems

We can swiftly observe Cayley’s theorem for idempotent semirings.

Theorem 1 (Cayley’s theorem for idempotent semirings). Every idempotent semiring R em-
beds into End(R+).

Given an idempotent R-semimodule M , we denote by I(M) the semimodule 〈I(M+),∨〉
of all ideals of M+ where ∗ : R× I(M+)→ I(M+) is defined by r ∗ I = ↓{r ? m | m ∈ I}.

Theorem 2 (Residuated Cayley’s theorem for idempotent semirings). Any idempotent semiring
R is embeddable into Res(I(R+)).

Note that one can identify a binary relation R ⊆ A × B with a function from A to P(B)
mapping a ∈ A to R(a) = {b ∈ B | 〈a, b〉 ∈ R}. Furthermore, such a function lifts to a function
from P(A) to P(B), defined by R[X] =

⋃
x∈X R(x); note that we abuse notation by overloading

the symbol R. Actually, all such lifted functions are exactly the residuated maps from P(A) to
P(B). So we identify relations from A to B with residuated maps from P(A) to P(B).

If A and B are join-semilattices the above maps restrict to maps from I(A) to P(B). We
will focus on the case where this restrictions are actually residuated maps from I(A) to I(B);
we denote the associated set by Res(I(A), I(B)). Note that the this set forms a join semilattice
under pointwise order. We will characterize the relations that give rise to residuated maps from
I(A) to I(B).

A relation R ⊆ A×B is called compatible if for all x ∈ A, y ∈ B:

• R(x) ∈ I(B),
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• R(x ∨ y) = R(x) ∨R(y), where the second join is computed in I(B).

In other words, they can be identified with join-semilattice homomorphisms from A to I(B),
and as such they also form a complete (since I(B) is complete) join semilattice that we denote
by REnd(A,B). If A = B, we refer to R as a compatible relation on A and write REnd(A)
for the above set.

For every compatible relation R we define the map fR : I(A)→ I(B) by fR(I) = R[I].

Lemma 3. For join semilattices A and B, the map φ : REnd(A,B) → Res(I(A), I(B)),
where φ(R) = fR, is a join-semilattice isomorphism.

Lemma 4. Given a join semilattice L = 〈L,∨〉, REnd(L) = 〈REnd(L),∨, ◦, Id〉 is a semiring
isomorphic to Res(I(L)), where ◦ is the relational composition and Id(x) = ↓x (i.e., 〈x, y〉 ∈ Id
iff x ≥ y).

Theorem 5 (Relational Cayley’s theorem for idempotent semirings). Every idempotent semir-
ing R is embeddable into the semiring of relations REnd(R+).

An interior operator σ on a residuated lattice A is called a conucleus if σ(1) = 1 and
σ(x)σ(y) ≤ σ(xy). Then the residuated lattice Aσ = 〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉, where x ∧σ y =
σ(x ∧ y), x\σy = σ(x\y) and x/σy = σ(x/y) (see [2]). The residuated lattice Aσ is called a
conuclear contraction of A.

Theorem 6 (Cayley’s theorem for residuated lattices). Let A be a residuated lattice and A+

its join-semilattice reduct. Then A embeds into a conuclear contraction of Res(I(A+)) ∼=
REnd(A+).

In addition, if A is complete then A embeds into a conuclear contraction of Res(A+).

3 Holland-type representation theorems

A semiring is called semilinear if it satisfies

u ≤ h ∨ ca and u ≤ h ∨ db implies u ≤ h ∨ cb ∨ da . (1)

Theorem 7 (Holland’s theorem for idempotent semirings). Let R be an idempotent semiring.
Then the following are equivalent:

1. R is semilinear.

2. R is embeddable into End(Ω) for some chain Ω.

3. R is embeddable into REnd(Ω) ∼= Res(I(Ω)) for some chain Ω.

Proof. (Rough outline) For the proof of the theorem, we first show that every semilinear module,
including R+ viewed as an R-module, is embeddable in the diret product of linear modules,
and then obtain a single linear module by taking the ordinal sum of the individual modules.
The implication from (1) to (2) then follows.

To get the embedding into a direct product of linear modules, we observe that homomorphic
images into linear modules arise by taking quotients with appropriately defined linear ideals.
The semilinearity of R turns out to guarantee that we have enough such linear ideals to separate
points. Factoring by an ideal is defined in terms of an equivalence relation associated with the
ideal I and is given by:

m ∼I m′ iff (∀r ∈ R)(r ? m ∈ I ⇔ r ? m′ ∈ I) .
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In other words the associated partition is given by the Boolean combinations of the sets
r−1[I], for r ∈ R.

As a corollary of the above theorem, we can easily derive the original Holland’s theorem
for `-groups from [3]. Given a chain Ω, the `-group of all order-preserving bijections on Ω is
denoted Aut(Ω).

Corollary 8 (Holland’s theorem for `-groups). Every `-group G is embeddable into Aut(Ω)
for some chain Ω.

Theorem 9 (Holland’s theorem for residuated lattices). Let A be a residuated lattice. The
following are equivalent:

1. A satisfies (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da.

2. A embeds into a conuclear contraction of REnd(Ω) for a chain Ω.

3. A embeds into a conuclear contraction of Res(Ω′) for a complete chain Ω′.

Recall that a residuated lattice is called prelinear if it satisfies 1 = (x\y ∧ 1) ∨ (y\x ∧ 1),
cancellative is it satisfies xy/y = x and y\yx = x, and semilinear if it is a subdirect product of
chains.

Corollary 10. The following varieties of residuated lattices consist of algebras that embed into
a conuclear contraction of Res(Ω) for a complete chain Ω.

1. Prelinear residuated lattices.

2. `-groups.

3. Semilinear residuated lattices.

4. Commutative cancellative residuated lattices.

5. Distributive residuated lattices where multiplication distributes over meet.
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