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Abstract

The reachability problem for Vector Addition Systems (VASs) is a central problem of
net theory. The general problem is known to be decidable by algorithms based on the clas-
sical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposition (KLMST decomposition).
Recently from this decomposition, we deduced that a final configuration is not reachable
from an initial one if and only if there exists a Presburger inductive invariant that contains
the initial configuration but not the final one. Since we can decide if a Preburger formula
denotes an inductive invariant, we deduce from this result that there exist checkable certifi-
cates of non-reachability in the Presburger arithmetic. In particular, there exists a simple
algorithm for deciding the general VAS reachability problem based on two semi-algorithms.
A first one that tries to prove the reachability by enumerating finite sequences of actions
and a second one that tries to prove the non-reachability by enumerating Presburger for-
mulas. In another recent paper we provided the first proof of the VAS reachability problem
that is not based on the KLMST decomposition. The proof is based on the notion of pro-
duction relations that directly proves the existence of Presburger inductive invariants. In
this paper we propose new intermediate results that dramatically simplify this last proof.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular formal
methods for the representation and the analysis of parallel processes [2]. Their reachability
problem is central since many computational problems (even outside the realm of parallel pro-
cesses) reduce to the reachability problem. Sacerdote and Tenney provided in [13] a partial
proof of decidability of this problem. The proof was completed in 1981 by Mayr [11] and sim-
plified by Kosaraju [7] from [13, 11]. Ten years later [8], Lambert provided a further simplified
version based on [7]. This last proof still remains difficult and the upper-bound complexity of
the corresponding algorithm is just known to be non-primitive recursive. Nowadays, the exact
complexity of the reachability problem for VASs is still an open-question. Even the existence
of an elementary upper-bound complexity is open. In fact, the known general reachability
algorithms are exclusively based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST)
decomposition.

Recently [9] we proved thanks to the KLMST decomposition that Parikh images of lan-
guages accepted by VASs are semi-pseudo-linear, a class that extends the Presburger sets. An
application of this result was provided; we proved that a final configuration is not reachable
from an initial one if and only if there exists a forward inductive invariant definable in the
Presburger arithmetic that contains the initial configuration but not the final one. Since we
can decide if a Presburger formula denotes a forward inductive invariant, we deduce that there
exist checkable certificates of non-reachability in the Presburger arithmetic. In particular, there
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exists a simple algorithm for deciding the general VAS reachability problem based on two semi-
algorithms. A first one that tries to prove the reachability by enumerating finite sequences of
actions and a second one that tries to prove the non-reachability by enumerating Presburger
formulas.

In [10] we provided a new proof of the decidability of the reachability problem that does
not introduce the KLMST decomposition. The proof is based on transformer relations and
it proves that reachability sets are almost semilinear, a class of sets inspired by the class of
semilinear sets [3] that extend the class of Presburger sets. Since the class of almost semilinear
sets is strictly included in the class of semi-pseudo linear sets, this result is more precise than
the one presented in [9]. This proof is based on a characterization of the conic sets definable
in FO (Q,+,≤) thanks to topological closures with vectors spaces. Unfortunately even though
this characterization is simple, its proof is rather complex. In this paper we provide a more
succinct and direct proof that transformer relations are definable in FO (Q,+,≤). As a direct
consequence topological properties on conic sets are no longer used in this new version.

Outline of the paper : Section 2 recalls the definition of almost semilinear sets, a class of
sets inspired by the decomposition of Presburger sets into semilinear sets. Section 3 introduces
definitions related to vector addition systems. Section 4 introduces a well-order over the runs
of vector addition systems. This well-order is central in the proof and it was first introduced
by Petr Jančar in another context[5]. Based on the definition of this well-order we introduce
in Section 5 the notion of transformer relations and we prove that conic relations generated by
transformer relations are definable in FO (Q,+,≤). Thanks to this result and the well-order
introduced in the previous section we show in Section 6 that reachability sets of vector addition
systems are almost semilinear. In Section 7 we introduce a dimension function for subsets
of integer vectors. In Section 8 the almost semilinear sets are proved to be approximable
by Presburger sets in a precise way based on the dimension function previously introduced.
Thanks to this approximation and since reachability sets are almost semilinear we finally prove
in Section 9 that the vector addition system reachability problem can be decided by inductive
invariants definable in the Presburger arithmetic.

2 Almost Semilinear Sets
In this section we introduce the class of almost semilinear sets, a class of sets inspired by the
geometrical characterization of the Presburger sets by semilinear sets.

We denote by Z,N,N>0,Q,Q≥0,Q>0 the set of integers, natural numbers, positive integers,
rational numbers, non negative rational numbers, and positive rational numbers. Vectors and
sets of vectors are denoted in bold face. The ith component of a vector v ∈ Qd is denoted by
v(i). Given two sets V 1,V 2 ⊆ Qd we denote by V 1+V 2 the set {v1+v2 | (v1,v2) ∈ V 1×V 2},
and we denote by V 1 −V 2 the set {v1 − v2 | (v1,v2) ∈ V 1 ×V 2}. Given T ⊆ Q and V ⊆ Qd
we let TV = {tv | (t,v) ∈ T ×V }. We also denote by v1 +V 2 and V 1 +v2 the sets {v1}+V 2

and V 1 + {v2}, and we denote by tV and Tv the sets {t}V and T{v}.

A periodic set is a subset P ⊆ Zd such that 0 ∈ P and P +P ⊆ P . A conic set is a subset
C ⊆ Qd such that 0 ∈ C, C + C ⊆ C and Q≥0C ⊆ C. A periodic set P is said to be finitely
generated if there exist vectors p1, . . . ,pk ∈ P such that P = Np1 + · · · + Npk. A periodic
set P is said to be asymptotically definable if the conic set Q≥0P is definable in FO (Q,+,≤).
Observe that finitely generated periodic sets are asymptotically definable since the conic set
Q≥0P generated by P = Np1 + · · ·+ Npk is equal to Q≥0p1 + · · ·+ Q≥0pk.
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Example 2.1. The periodic set P = {p ∈
N2 | p(2) ≤ p(1) ≤ 2p(2)−1} is depicted on
the right. Observe that Q≥0P is the conic
set {0} ∪ {c ∈ Q2

>0 | c(2) ≤ c(1)} which is
definable in FO (Q,+,≤).

A Presburger set is a set Z ⊆ Zd definable in FO (Z,+,≤). Recall that Z ⊆ Zd is a
Presburger set iff it is semilinear, i.e. a finite union of linear sets b + P where b ∈ Zd and
P ⊆ Zd is a finitely generated periodic set [3]. The class of almost semilinear sets [10] is
obtained from the definition of semilinear sets by weakening the finiteness condition on the
considered periodic sets. More formally, an almost semilinear set is a finite union of sets of the
form b + P where b ∈ Zd and P ⊆ Zd is an asymptotically definable periodic set.

3 Vector Addition Systems
A Vector Addition System (VAS) is given by a finite subset A ⊆ Zd. A vector a ∈ A is called
an action. A configuration is a vector c ∈ Nd. A run ρ is a non-empty word ρ = c0 . . . ck of
configurations such that the difference aj = cj − cj−1 is in A for every j ∈ {1, . . . , k}. In that
case we say that ρ is labeled by w = a1 . . .ak, the configurations c0 and ck are respectively
called the source and the target and they are denoted by src(ρ) and tgt(ρ). The direction of ρ
is the pair (src(ρ), tgt(ρ)), denoted by dir(ρ). Given a word w ∈ A∗, we introduce the binary
relation w−→ over the set of configurations by x

w−→ y if there exists a run ρ from x to y labeled
by w. Observe that in this case ρ is unique. The displacement of a word w = a1 . . .ak of
actions aj ∈ A is the vector ∆(w) =

∑k
j=1 aj . Note that x

w−→ y implies x+ ∆(w) = y but the
converse is not true in general. The reachability relation is the relation ∗−→ over Nd defined by
x
∗−→ y if there exists a run from x to y. The following simple lemma is central in this paper.

Lemma 3.1 (Monotony). We have c + x
w−→ c + y for every x

w−→ y and for every c ∈ Nd.

Proof. Just observe that if ρ = c1 . . . ck is a run from x to y labeled by w where cj ∈ Nd then
ρ′ = c′1 . . . c

′
k where c′j = c + cj is a run from c + x to c + y labeled by w.

The set of configurations forward reachable from a configuration x ∈ Nd is the set {c ∈ Nd |
x
∗−→ c} denoted by post∗(x). Symmetrically the set of configurations backward reachable from

a configuration y ∈ Nd is the set {c ∈ Nd | c ∗−→ y} denoted by pre∗(y). These definitions are
extended over sets of configurations X,Y ⊆ Nd by post∗(X) =

⋃
x∈X post∗(x) and pre∗(Y ) =⋃

y∈Y post∗(y). A set X ⊆ Nd is said to be a forward inductive invariant if X = post∗(X).
Symmetrically a set Y ⊆ Nd is said to be a backward inductive invariant if Y = pre∗(Y ).

In this paper we prove that for every x,y ∈ Nd such that there does not exist a run from
x to y, then there exists a pair (X,Y ) of disjoint Presburger sets X,Y ⊆ Nd such that X
is a forward inductive invariant that contains x and Y is a backward inductive invariant that
contains y. This result will provide directly the following theorem.

Theorem 3.2. The reachability problem for vector addition systems is decidable.

Proof. Let x,y ∈ Nd be two configurations. Let us consider an algorithm that enumerates
in parallel the runs ρ and the pairs (X,Y ) of disjoint Presburger sets X,Y ⊆ Nd thanks to
formulas in the Presburger arithmetic FO (Z,+,≤). If the algorithm encounters a run from
x to y then it returns “reachable” and if X is a forward inductive invariant that contains x
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and Y is a backward inductive invariant that contains y then it returns “unreachable”. This
last condition can be effectively decided as follows. Note that a set X ⊆ Nd is a forward
inductive invariant iff the set Nd ∩ (X + A)\X denoted by X̃ is empty, and a set Y ⊆ Nd is
a backward inductive invariant iff the set Nd ∩ (Y −A)\Y denoted by Ỹ is empty. Moreover,
from Presburger formulas denoting X and Y we compute in linear time formulas denoting the
sets X̃ and Ỹ . Hence deciding that X is a forward inductive invariant that contains x and Y
is a backward inductive invariant that contains y reduces to the satisfiability of formulas in the
Presburger arithmetic. Since this logic is decidable, we deduce a way for implementing the last
condition of our algorithm. Note that this algorithm is correct. Moreover, it terminates thanks
to the main result proved in this paper.

Remark 3.3. The set post∗(x) is a forward inductive invariant that contains x and pre∗(y) is
a backward inductive invariant that contains y. Moreover, if there does not exist a run from x
to y then these two reachability sets are disjoint. However in general reachability sets are not
definable in the Presburger arithmetic [4].

4 Well-Order Over The Runs
An order v over a set S is said to be a well-order if for every sequence (sj)j∈N of elements
sj ∈ S there exist j < k such that sj v sk. Observe that (N,≤) is a well-ordered set whereas
(Z,≤) is not well-ordered. As another example, the pigeon-hole principle shows that a set S is
well-ordered by the equality relation if and only if S is finite. Well-orders can be easily defined
thanks to Dickson’s lemma and Higman’s lemma as follows.

Dickson’s lemma: Dickson’s lemma shows that the cartesian product of two well-ordered
sets is well-ordered. More formally, given two ordered sets (S1,v1) and (S2,v2) we denote by
v1 × v2 the order defined component-wise over the cartesian product S1 × S2 by (s1, s2) v1

× v2 (s′1, s
′
2) if s1 v1 s′1 and s2 v2 s′2. Dickson’s lemma says that (S1 × S2,v1 × v2) is

well-ordered for every well-ordered sets (S1,v1) and (S2,v2). As a direct application, the set
Nd equipped with the component-wise extension of ≤ is well-ordered.

Higman’s lemma: Higman’s lemma shows that words over well-ordered alphabets can be
well-ordered. More formally, given an ordered set (S,v), we introduce the set S∗ of words over S
equipped with the order v∗ defined by w v∗ w′ if w and w′ can be decomposed into w = s1 . . . sk
and w′ ∈ S∗s′1S∗ . . . s′kS∗ where sj v s′j are in S for every j ∈ {1, . . . , k}. Higman’s lemma says
that (S∗,v∗) is well-ordered for every well-ordered set (S,v). As a classical application, the
set of words over a finite alphabet S is well-ordered by the sub-word relation =∗.

We define a well-order over the runs as follows. We introduce the relation � over the runs
defined by ρ � ρ′ if ρ is a run of the form ρ = c0 . . . ck where cj ∈ Nd and if there exists a
sequence (vj)0≤j≤k+1 of vectors vj ∈ Nd such that ρ′ is a run of the form ρ′ = ρ0 . . . ρk where
ρj is a run from cj + vj to cj + vj+1.

Lemma 4.1. The relation � is a well-order over the runs.

Proof. A proof of this lemma with different notations can be obtained from Section 6 of [5] with
a simple reduction. For sake of completeness, we prefer to give a direct proof of this important
result. To do so, we introduce a well-order � over the runs based on Dickson’s lemma and
Higman’s lemma and we show that � and � are equal. We first associate to a run ρ = c0 . . . ck
the word α(ρ) = (a1, c1) . . . (ak, ck) over the set S = A×Nd where aj = cj−cj−1. The set S is
well-ordered by the relation v defined by (a1, c1) v (a2, c2) if a1 = a2 and c1 ≤ c2. Dickson’s
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lemma shows that v is a well-order. The set of words S∗ is well-ordered thanks to Higman’s
lemma by the relation v∗. The well-order � over the runs is defined by ρ � ρ′ if dir(ρ) ≤ dir(ρ′)
and α(ρ) v∗ α(ρ′). Now, let us prove that � and � are equal. We consider a run ρ = c0 . . . ck
with cj ∈ Nd and we introduce the action aj = cj − cj−1 for each j ∈ {1, . . . , k}.

Assume first that ρ � ρ′ for some run ρ′. Since α(ρ) = (a1, c1) . . . (ak, ck) and α(ρ) v∗
α(ρ′) we deduce a decomposition of α(ρ′) into the following word where c′j ≥ cj for every
j ∈ {1, . . . , k} and w0, . . . , wk ∈ S∗:

α(ρ′) = w0(a1, c
′
1)w1 . . . (ak, c

′
k)wk

In particular ρ′ can be decomposed in ρ′ = ρ0 . . . ρk where ρ0 is a run from src(ρ′) to c′1−a1, ρj is
a run from c′j to c′j+1−aj+1 for every j ∈ {1, . . . , k−1}, and ρk is a run from c′k to tgt(ρ′). Let us
introduce the sequence (vj)0≤j≤k+1 of vectors defined by v0 = src(ρ′)− src(ρ), vj = c′j −cj for
every j ∈ {1, . . . , k} and vk+1 = tgt(ρ′)−tgt(ρ). Note that vj ∈ Nd for every j ∈ {0, . . . , k+1}.
Observe that for every j ∈ {1, . . . , k − 1} we have c′j+1 − aj = cj+1 − aj + vj+1 = cj + vj+1.
Hence ρj is a run from cj + vj to cj + vj+1 for every j ∈ {0, . . . , k}. Therefore ρ� ρ′.

Conversely, let us assume that ρ�ρ′ for some run ρ′. We introduce a sequence (vj)0≤j≤k+1

of vectors in Nd such that ρ′ = ρ0 . . . ρk where ρj is a run from cj +vj to cj +vj+1. We deduce
the following equality where a′j = src(ρj)− tgt(ρj−1):

α(ρ′) = α(ρ0)(a′1, c1 + v1)α(ρ1) . . . (a′k, ck + vk)α(ρk)

Observe that a′j = (cj + vj) − (cj−1 + vj) = aj . We deduce that α(ρ) v∗ α(ρ′). Moreover,
since dir(ρ) ≤ dir(ρ′) we get ρ � ρ′.

5 Transformer Relations
Based on the definition of �, we introduce the transformer relation with capacity c ∈ Nd as the
binary relation

cy over Nd defined by x
cy y if there exists a run from c + x to c + y. We

also associate to every run ρ = c0 . . . ck with cj ∈ Nd the transformer relation along the run ρ
denoted by

ρ
y and defined as the following composition:

ρ
y =

c0y ◦ · · · ◦ cky

In this section transformer relations are shown to be asymptotically definable periodic. Thanks
to the following Lemma 5.1, it is sufficient to prove that

cy is in this class for every capacity
c ∈ Nd.

Lemma 5.1. Asymptotically definable periodic relations are stable by composition.

Proof. Assume that R,S ⊆ Zd × Zd are two periodic relations and observe that (0,0) ∈ R ◦ S.
Let us consider two pairs (x1, z1) and (x2, z2) in R ◦ S. For each k ∈ {1, 2}, there exists
yk ∈ Zd such that (xk,yk) ∈ R and (yk, zk) ∈ S. As R and S are periodic we get (x,y) ∈ R
and (y, z) ∈ S where x = x1 + x2, y = y1 + y2 and z = z1 + z2. Thus (x, z) ∈ R ◦ S and
we have proved that R ◦ S is periodic. Now just observe that Q≥0(R ◦ S) = (Q≥0R) ◦ (Q≥0S).
Hence if R and S are asymptotically definable then R ◦ S is also asymptotically definable.

Lemma 5.2. The transformer relation
cy is periodic.

Proof. Assume that c+x1
w1−−→ c+y1 and c+x2

w2−−→ c+y2 for words w1, w2 ∈ A∗ and vectors
x1,y1,x2,y2 ∈ Nd. By monotony c + x1 + x2

w1w2−−−→ c + y1 + y2.
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In the remainder of this section, we show that Q≥0
cy is definable in FO (Q,+,≤). We

introduce the set Γc of triples γ = (x, c,y) such that x
cy y and the set Γ =

⋃
c∈Nd Γc. Given a

triple γ ∈ Γ, the vectors x, c,y implicitly denote the components of γ. We introduce the set Ωγ
of runs ρ such that dir(ρ) ∈ (c, c) + N(x,y) and the set Qγ of configurations q ∈ Nd such that
there exists a run ρ ∈ Ωγ in which q occurs. We denote by Iγ the set of indexes i ∈ {1, . . . , d}
such that {q(i) | q ∈ Qγ} is finite.

Example 5.3. Let us consider the VAS A = {a, b}
where a = (1, 1,−1) and b = (−1, 0, 1) and let γ =
(x, c,y) where x = (0, 0, 0), c = (1, 0, 1) and y =
(0, 1, 0). Since x = (0, 0, 0), we observe that Ωγ =

{c w1...wn−−−−−→ c + ny | n ∈ N wj ∈ {ab, ba}}. This
set of runs is depicted on the right. Observe that
Qγ = (c+a+Ny)∪ (c+Ny)∪ (c+ b+Ny). Hence
the set of bounded components is Iγ = {1, 3}.

c

c + a c + b

c + y

...
c + (n− 1)y

c + a + (n− 1)y c + b + (n− 1)y

c + ny

a b

ab

a b

ab

In section 5.1 we show that for every configuration q ∈ Qγ , there exist configurations
q′ ∈ Qγ that coincide with q on components indexed by Iγ and such that q′ is as large as
expected on all the other components. Based on a projection of the unbounded components
of vectors in Qγ , i.e. the components not indexed by Iγ , we show in Section 5.3 that a finite
graph Gγ called production graph can be canonically associated to every triple γ. We also prove
that the class {Gγ | γ ∈ Γc} is finite. Finally in Section 5.2 we introduce a binary relation
Rγ ⊆ Q≥0

cy definable in FO (Q,+,≤) associated to the production graphs Gγ and such that
(x,y) ∈ Rγ . By observing that Q≥0

cy=
⋃
γ∈Γc

Rγ and the class {Rγ | γ ∈ Γc} is finite we

deduce that the periodic relation
cy is asymptotically definable.

5.1 Intraproductions

An intraproduction for γ is a vector h ∈ Nd such that there exists n ∈ N satisfying nx
cy

h
cy ny. We denote by Hγ the set of intraproductions for γ. This set is periodic since

cy is
periodic. In particular for every h ∈ Hγ we have Nh ⊆ Hγ and the following lemma shows
that Qγ + Nh ⊆ Qγ . Hence, the components of every vector q ∈ Qγ indexed by i such that
h(i) > 0 can be increased to arbitrary large values by adding a large number of times the
vector h. In order to increase simultaneously all the components not indexed by Iγ we are
interested by intraproductions h such that h(i) > 0 for every i 6∈ Iγ . Note that components
indexed by Iγ are necessarily zero since for every intraproduction h, from c+Nh ⊆ Qγ we get
h(i) = 0 for every i ∈ Iγ .
Example 5.4. Let us come back to Example 5.3. We have Hγ = Ny.

Lemma 5.5. We have Qγ + Hγ ⊆ Qγ .

Proof. Let q ∈ Qγ and h ∈Hγ . As q ∈ Qγ , there exist n ∈ N and words u, v ∈ A∗ such that
c + nx

u−→ q
v−→ c + ny. Since h ∈ Hγ there exist n′ ∈ N and words u′, v′ ∈ A∗ such that

c + n′x
u′

−→ c + h
v′−→ c + n′y. Let m = n+ n′. By monotony, we have c +mx

u′u−−→ q + h
vv′−−→

c +my. Hence q + h ∈ Qγ .
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Lemma 5.6. For every q ≤ q′ in Qγ there exists h ∈Hγ such that q′ ≤ q + h.

Proof. As q, q′ ∈ Qγ there exists m,m′ ∈ N and u, v, u′, v′ ∈ A∗ such that:

c +mx
u−→ q

v−→ c +my and c +m′x
u′

−→ q′
v′−→ c +m′y

Let us introduce v = q′ − q, h = v +m(x + y), and n = m+m′. By monotony:

c + nx
u′

−→ q′ +mx and q + v +mx
v−→ c + h

c + h
u−→ q + v +my and q′ +my

v′−→ c + ny

Since q′ + mx = q + v + mx and q + v + my = q′ + my, we have proved that c + nx
u′v−−→

c+h
uv′−−→ c+ny. Hence h ∈Hγ . Observe that q +h = q′+m(x+y) ≥ q′. We are done.

Lemma 5.7. There exist h ∈Hγ such that Iγ = {i | h(i) = 0}.

Proof. Let i 6∈ Iγ . There exists a sequence (qj)j∈N of configurations qj ∈ Qγ such that
(qj(i))j∈N is strictly increasing. Since (Nd,≤) is well-ordered there exists j < k such that
qj ≤ qk. Lemma 5.6 shows that there exists an intraproduction hi for γ such that qk ≤ qj+hi.
In particular hi(i) > 0 since qj(i) < qk(i). As the set of intraproductions Hγ is periodic we
deduce that h =

∑
i6∈I hi is an intraproduction for γ. By construction we have h(i) > 0

for every i 6∈ Iγ . Since h ∈ Hγ we deduce that h(i) = 0 for every i ∈ Iγ . Therefore
Iγ = {i | h(i) = 0}.

5.2 Production Graphs

Finite graphs Gγ , called production graphs can be associated to every triple γ as follows. The set
of states is obtained from Qγ by projecting away the unbounded components. More formally,
we introduce the projection function πγ : Qγ → NIγ defined by πγ(q)(i) = q(i) for every
q ∈ Qγ and for every i ∈ Iγ . We consider the finite set of states Sγ = πγ(Qγ) and the set Tγ of
transitions (πγ(q), q′− q, πγ(q′)) where qq′ is a factor of a run in Ωγ . Since Tγ ⊆ Sγ ×A×Sγ
we deduce that Tγ is finite. We introduce the finite graph Gγ = (Sγ , Tγ), called the production
graph of γ. Since c ∈ Qγ we deduce that πγ(c) is a state of Gγ . This state, called the special
state for γ, is denoted by sγ .

Example 5.8. Let us come back to Example 5.3. Ob-
serve that πγ(c + a + ny) = (2, ?, 0), πγ(c + ny) =
(1, ?, 1), and πγ(c+b+ny) = (0, ?, 2) where ? denotes
a projected component. The graph Gγ is depicted on
the right. Note that sγ = (1, ?, 1).

(2, ?, 0) (1, ?, 1) (0, ?, 2)

b

b

a

a

Corollary 5.9. We have πγ(src(ρ)) = sγ = πγ(tgt(ρ)) for every run ρ ∈ Ωγ .

Proof. Since ρ ∈ Ωγ there exists n ∈ N such that ρ is a run from c+nx to c+ny. In particular
nx and ny are two intraproductions for γ. We get nx(i) = 0 = ny(i) for every i ∈ Iγ . Hence
πγ(src(ρ)) = πγ(c) = πγ(tgt(ρ)).

A path in Gγ is a word p = (s0,a1, s1) . . . (sk−1,ak, sk) of transitions (sj−1,aj , sj) in Tγ .
Such a path is called a path from s0 to sk labeled by w = a1 . . .ak. When s0 = sk the path is
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called a cycle. The previous corollary shows that for every run ρ = c0 . . . ck in Ωγ the following
word θρ is a cycle on sγ in Gγ labeled by w:

θρ = (πγ(c0),a1, πγ(c1)) . . . (πγ(ck−1),ak, πγ(ck))

Corollary 5.10. The graph Gγ is strongly connected.

Proof. Let s ∈ Sγ . There exists q ∈ Qγ that occurs in a run ρ ∈ Ωγ such that s = πγ(q).
Hence there exist u, v ∈ A∗ such that src(ρ)

u−→ q
v−→ tgt(ρ). Note that θρ is the concatenation

of a path from sγ to s and a path from s to sγ labeled by u, v.

Corollary 5.11. States in Sγ are incomparable.

Proof. Let us consider s ≤ s′ in Sγ . There exists q, q′ ∈ Qγ such that s = πγ(q) and s′ = πγ(q′).
Lemma 5.7 shows that there exists an intraproduction h′ ∈Hγ such that Iγ = {i | h′(i) = 0}.
By replacing h′ by a vector in N>0h

′ we can assume without loss of generality that q(i) ≤
q′(i) + h′(i) for every i 6∈ Iγ . As q(i) = s(i) ≤ s′(i) = q′(i) = q′(i) + h′(i) for every i ∈ Iγ we
deduce that q ≤ q′ + h′. Lemma 5.5 shows that q′ + h′ ∈ Qγ . Lemma 5.6 shows that there
exists an intraproduction h ∈ Hγ such that q′ + h′ ≤ q + h. As h ∈ Hγ we deduce that
h(i) = 0 for every i ∈ Iγ . In particular q′(i) ≤ q(i) for every i ∈ Iγ . Hence s′ ≤ s and we get
s = s′.

Corollary 5.12. The class {Gγ | γ ∈ Γc} is finite.

Proof. Given I ⊆ {1, . . . , d} we introduce the state sc,I ∈ NI defined by sc,I(i) = c(i) for every
i ∈ I. We also introduce the set Γc,I of triples γ ∈ Γc such that Iγ = I. Note that in this
case sc,I is equal to the special state sγ for γ. Assume by contradiction that Sc,I =

⋃
γ∈Γc,I

Sγ
is infinite. For every s ∈ Sc,I there exists γ ∈ Γc,I such that s ∈ Sγ . Hence there exists a
path ps in Gγ from sc,I to s. Since the states in Sγ are incomparable, we can assume that the
states occurring in ps are incomparable. By inserting the paths ps in a tree rooted by sc,I with
transitions labeled by actions in A we deduce an infinite tree such that each node has a finite
number of children (at most |A|). Koenig’s lemma shows that this tree has an infinite branch.
Since (NI ,≤) is well-ordered, there exists two comparable distinct nodes in this branch. There
exists s ∈ Sc,I such that these two comparable states occurs in ps. We get a contradiction.
Thus Sc,I is finite. We deduce the corollary.

5.3 Kirchhoff’s Functions

We associate to the production graph Gγ a binary relation Rγ included in Q≥0
cy and such

that (x,y) ∈ Rγ . This relation is based on Kirchhoff’s functions.

A Kirchhoff’s function for γ is a function f : Tγ → Q labeling transitions of the production
graph Gγ by rational numbers satisfying the following equality for every s ∈ Sγ :∑

t∈Tγ∩({s}×A×Sγ)

f(t) =
∑

t∈Tγ∩(Sγ×A×{s})

f(t)

Kirchhoff’s functions f : Tγ → N>0 are characterized as follows. A cycle θ in Gγ is said to be
total for γ if every transition in Tγ occurs in θ. The Parikh image of a path is the function
f : Tγ → N where f(t) denotes the number of occurrences of t in the path. Since Gγ is strongly
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connected, Euler’s lemma shows that a function f : Tγ → N>0 is a Kirchhoff’ function for γ if
and only if f is the Parikh image of a total cycle for γ.

The displacement of a function f : Tγ → Q is the sum
∑
t∈Tγ f(t)∆(t) where ∆(t) = a if a

is the label of the transition t. This displacement is denoted by ∆(f). Let us observe that if f
is the Parikh’s image of a path in Gγ labeled by a word w then ∆(f) = ∆(w). Intuitively the
displacement of w only depends on the number of times transitions in Tγ occur in the path.

We introduce the relation Rγ of pairs (u,v) ∈ Qd≥0 × Qd≥0 satisfying u(i) > 0 iff x(i) > 0,
v(i) > 0 iff y(i) > 0, and such that there exists a Kirchhoff’s function f : Tγ → Q>0 such that
v − u = ∆(f). Observe that Rγ is definable in FO (Q,+,≤).

Example 5.13. Let us come back to Examples 5.3 and 5.8. A function f : Tγ → Q is a
Kirchhoff’s function for γ if and only if f((1, ?, 1),a, (2, ?, 0)) = f((2, ?, 0), b, (1, ?, 1)) and
f((1, ?, 1), b, (0, ?, 2)) = f((0, ?, 2),a, (1, ?, 1)). We get Rγ = {((0, 0, 0), (0, n, 0)) | n ∈ Q>0}.

Lemma 5.14. We have (x,y) ∈ Rγ .

Proof. Assume that Tγ = {t1, . . . , tk}. By definition of Tγ , for every j ∈ {1, . . . , k}, there exists
a run ρj such that tj occurs in the cycle θρj . Let wj be the label of ρj and nj ∈ N such that
dir(ρj) ∈ (c, c) +nj(x,y). As x

cy y there exists a run ρ from c+x to c+y labeled by a word
w. The cycle θρ shows that w is the label of a cycle on sγ . Let us consider n = 1+

∑k
j=1 nj and

σ = ww1 . . . wk. Observe that σ is the label of a total cycle on sγ . Hence the Parikh’s image of
this total cycle provides a Kirchhoff’s function f for γ such that ∆(σ) = ∆(f). Observe that
∆(σ) = n(y − x). Hence y − x = ∆( 1

nf) and we have proved that (x,y) ∈ Rγ .

Lemma 5.15. We have Rγ ⊆ Q≥0
cy.

Proof. Lemma 5.7 shows that there exists h′ ∈ Hγ such that Iγ = {i | h′(i) = 0}. From
h′ ∈ Hγ we have a run ρ of the form c + nx

w1−−→ c + h′
w2−−→ c + ny for some n ∈ N and

w1, w2 ∈ A∗. The cycle θρ shows that there exist cycles θ1, θ2 on sγ labeled by w1, w2. We
denote by f1 and f2 the Parikh images of these two cycles. Let (u,v) ∈ Rγ . By replacing
(u,v) by a pair in N>0(u,v) we can assume without loss of generality that u′ = u − nx and
v′ = v−ny are both in Nd, and there exists a Kirchhoff’s function f such that f(t) ∈ N>0 and
f(t) > f1(t) + f2(t) for every t ∈ Tγ , and such that v − u = ∆(f). Since g = f − (f1 + f2) is a
Kirchhoff’s function satisfying g(t) ∈ N>0 for every t ∈ Tγ , Euler’s Lemma shows that g is the
Parikh’s image of a total cycle θ in Gγ on sγ . Let σ be the label of this cycle and observe that
∆(σ) = ∆(g) = ∆(f) − (∆(f1) + ∆(f2)) = v − u − ((h′ − nx) + (ny − h′)) = v′ − u′. Since
c + nx

w1−−→ c + h′
w2−−→ c + ny and nx ≤ u, ny ≤ v we deduce by monotony that for every

m ∈ N we have:

c +mu
wm1−−→ c +m(h′ + u′) c +m(h′ + v′)

wm2−−→ c +mv

We prove that there exists a run labeled by σ from c+mh′ for some m ∈ N>0 large enough
as follows. We introduce the decomposition of σ into σ = a1 . . .ak where aj ∈ A. Since θ is a
cycle on the special state sγ labeled by σ, there exists a sequence (sj)0≤j≤k of states sj ∈ Sγ
such that θ = (s0,a1, s1) . . . (sk−1,ak, sk). Let i 6∈ Iγ and j ∈ {0, . . . , k}. Since h′(i) > 0 there
exists mi,j ∈ N such that the ith component of c +mi,jh

′ + ∆(a1 . . .aj) is in N. Let m ∈ N>0

such that m ≥ mi,j for every i 6∈ Iγ and j ∈ {0, . . . , k}. Note that for every i ∈ Iγ and for
every j ∈ {0, . . . , k}, the ith component of c + ∆(a1 . . .aj) is equal to sj(i) which is in N. We
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have proved that c + mh′ + ∆(a1 . . .aj) ∈ Nd for every j ∈ {0, . . . , k}. Hence there exists a
run from c +mh′ labeled by σ.

Let us consider ` ∈ {0, . . . ,m} and let us introduce z` = (m−`)u′+`v′. Note that z` ∈ Nd.
By monotony there exists a run from c +mh′ + z` labeled by σ. Since ∆(σ) = v′ − u′, we get
z` + ∆(σ) = z`+1. We deduce that c +mh′ + z`

σ−→ c +mh′ + z`+1. Therefore:

c +m(h′ + u′)
σm−−→ c +m(h′ + v′)

We have proved the lemma by observing that c +mu
wm1 σ

mwm2−−−−−−→ c +mv.

Corollary 5.16. Transformer relations are asymptotically definable periodic relations.

Proof. Lemma 5.14 and Lemma 5.15 show that Q≥0
cy=

⋃
γ∈Γc

Rγ . Since the class {Gγ | γ ∈
Γc} is finite we deduce that the class {Rγ | γ ∈ Γc} is finite. Recall that relations Rγ are
definable in FO (Q,+,≤).

6 Reachability Relations Are Almost Semilinear

In this section the intersection of the reachability relation ∗−→ with any Presburger relation
R ⊆ Nd × Nd is proved to be almost semilinear. As a direct corollary we will deduce that
post∗(X) ∩ Y and pre∗(Y ) ∩X are almost semilinear for every Presburger sets X,Y ⊆ Nd.
Since Presburger relations are finite unions of linear relations, we can assume that R = r + P
where r ∈ Nd × Nd and P ⊆ Nd × Nd is a finitely generated periodic relation. We introduce
the set Ω of runs ρ such that dir(ρ) ∈ R equipped with the order v defined by ρ v ρ′ if
dir(ρ′) ∈ dir(ρ) + P and ρ � ρ′. Since P is finitely generated, Dickson’s lemma shows that v
is a well-order. In particular we deduce that the set of minimal runs in Ω for v, denoted by
minv(Ω) is finite.

Lemma 6.1. The intersection of ∗−→ with R is equal to:⋃
ρ∈minv(Ω)

dir(ρ) + (
ρ
y ∩P )

Proof. Let us first prove that dir(ρ) + (
ρ
y ∩P ) is included in ∗−→ ∩R for every run ρ ∈ Ω.

Assume that ρ = c0 . . . ck with cj ∈ Nd and let (u,v) ∈ P such that u
ρ
y v. As ρ ∈ Ω we

deduce that (c0, ck) ∈ R. As u
ρ
y v there exists a sequence (vj)0≤j≤k+1 of vectors vj ∈ Nd

such that v0 = u, vk+1 = v and such that vj
cjy vj+1 for every j ∈ {0, . . . , k}. In particular

there exists a run from cj + vj to cj + vj+1 labeled by a word wj ∈ A∗. Now just observe that
we have a run from c0 + v0 to ck + vk+1 labeled by w0a1w1 . . .akwk where aj = cj − cj−1.
Since (c0, ck) ∈ r+P and (u,v) ∈ P we deduce that (c0 +u, ck + v) ∈ r+P +P ⊆ R. Hence
dir(ρ) + (u,v) is in ∗−→ ∩R.

Now, let us prove that for every (x,y) ∈ R such that x ∗−→ y there exists ρ ∈ minv(Ω) such
that (x,y) ∈ dir(ρ) + (

ρ
y ∩P ). There exists a run ρ′ ∈ Ω such that dir(ρ′) = (x,y). Since v

is a well-order, there exists a run ρ ∈ minv(Ω) such that ρ v ρ′. By definition of v we deduce
that dir(ρ′) ∈ dir(ρ) + (

ρ
y ∩P ).
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Since P is finitely generated it is asymptotically definable. From the following lemma we
deduce that

ρ
y ∩P is an asymptotically definable periodic relation. Hence, the previous lemma

proved that the intersection of the reachability relation ∗−→ with every Presburger relation is
almost semilinear.

Lemma 6.2. Asymptotically definable periodic sets are stable by intersection.

Proof. If P 1,P 2 ⊆ Zd are two periodic sets then P = P 1 ∩ P 2 is a periodic set. Moreover,
observe that Q≥0(P 1 ∩ P 2) = (Q≥0P 1) ∩ (Q≥0P 2). Hence, if P 1,P 2 are asymptotically
definable then P is also asymptotically definable.

We deduce the following corollary.

Corollary 6.3. The sets post∗(X) ∩ Y and pre∗(Y ) ∩ X are almost semilinear for every
Presburger sets X,Y ⊆ Nd.

Proof. Let us consider the Presburger relation R = X × Y and observe that post∗(X) ∩ Y =

f(
∗−→ ∩R) and pre∗(Y )∩X = g(

∗−→ ∩R) where f, g : Qd×Qd → Qd and defined by f(x,y) = y
and g(x,y) = x. Now just observe that for every r ∈ Nd×Nd, for every asymptotically definable
periodic relation P ⊆ Nd×Nd, and for every h ∈ {f, g} we have h(r+P ) = h(r)+h(P ). Moreover
h(P ) is a periodic set and the conic set Q≥0h(P ) is equal to h(Q≥0P ) which is definable in
FO (Q,+,≤).

7 Dimension
In this section we introduce a dimension function for the subsets of Zd and we characterize the
dimension of periodic sets.

A vector space is a set V ⊆ Qd such that 0 ∈ V , V + V ⊆ V and such that QV ⊆ V . Let
X ⊆ Qd. The following set V is a vector space called the vector space generated by X.

V =


k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X


This vector space is the minimal for the inclusion among the vector spaces that contain X. Let
us recall that every vector space V is generated by a finite set. The rank rank(V ) of a vector
space V is the minimal natural number m ∈ N such that there exists a finite set X with m
vectors that generates V . Let us recall that rank(V ) ≤ d for every vector space V ⊆ Qd and
rank(V ) ≤ rank(W ) for every pair of vector spaces V ⊆W . Moreover, if V is strictly included
in W then rank(V ) < rank(W ).
Example 7.1. Vector spaces V included in Q2 satisfy rank(V ) ∈ {0, 1, 2}. Moreover these
vectors spaces can be classified as follows : rank(V ) = 0 if and only if V = {0}, rank(V ) = 1
if and only if V = Qv with v ∈ Q2\{0}, and rank(V ) = 2 if and only if V = Q2.

The dimension of a set X ⊆ Zd is the minimal integer m ∈ {−1, . . . , d} such that X ⊆⋃k
j=1 bj + V j where bj ∈ Zd and V j ⊆ Qd is a vector space satisfying rank(V j) ≤ m for every

j. We denote by dim(X) the dimension of X. Observe that dim(v + X) = dim(X) for every
X ⊆ Zd and for every v ∈ Zd. Moreover we have dim(X) = −1 if and only if X is empty.
Note that dim(X ∪ Y ) = max{dim(X),dim(Y )} for every subsets X,Y ⊆ Zd.
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Example 7.2. Let X = {−10, . . . , 10}×Z. Observe that dim(X) ≤ 1 since the set X is included
in

⋃
b∈{−10,...,10}×{0} b + V where V = {0} ×Q.

Lemma 7.3. Let P ⊆ Zd be a periodic set included in
⋃k
j=1 bj + V j where k ∈ N>0, bj ∈ Zd

and V j ⊆ Qd is a vector space. There exists j ∈ {1, . . . , k} such that P ⊆ V j and bj ∈ V j.

Proof. Let us first prove by induction over k ∈ N>0 that for every periodic set P ⊆ Zd included
in

⋃k
j=1 V j where V j ⊆ Qd is a vector space, there exists j ∈ {1, . . . , k} such that P ⊆ V j .

The rank k = 1 is immediate. Assume the rank k proved and let us prove the rank k + 1.
Let P be a periodic set included in

⋃k+1
j=1 V j where V j ⊆ Qd is a vector space. If P ⊆ V k+1

the induction is proved. So we can assume that there exists p ∈ P \V k+1. Let x ∈ P . Since
p+ nx ∈ P for every n ∈ N, the pigeon-hole principle shows that there exist j ∈ {1, . . . , k+ 1}
and n < m such that np + x and mp + x are both in V j . In particular the difference of this
two vectors is in V j . Since this difference is (m − n)p and p 6∈ V k+1 we get j ∈ {1, . . . , k}.
Observe that n(mp + x)−m(np + x) is the difference of two vectors in V j . Thus this vector
is in V j and we deduce that x ∈ V j . We have shown that P ⊆

⋃k
j=1 V j . By induction there

exists j ∈ {1, . . . , k} such that P ⊆ V j . We have proved the induction.
Finally, assume that P ⊆ Zd is a periodic set included in

⋃k
j=1 bj + V j where k ∈ N>0,

bj ∈ Zd and V j ⊆ Qd is a vector space. Let J be the set of j ∈ {1, . . . , k} such that bj ∈ V j

and let us prove that P ⊆
⋃
j∈J V j . Let p ∈ P . Since np ∈ P for every n ∈ N, there exist

j ∈ {1, . . . , k} and n < m such that np and mp are both in bj + V j . The difference of these
two vectors shows that (m − n)p is in V j . From bj ∈ np − V j ⊆ V j we deduce that j ∈ J .
Thus P ⊆

⋃
j∈J V j . As 0 ∈ P we deduce that J 6= ∅ and from the previous paragraph, there

exists j ∈ J such that P ⊆ V j .

Lemma 7.4. We have dim(P ) = rank(V ) for every periodic set P where V is the vector space
generated by P .

Proof. Since P ⊆ V we deduce that dim(P ) ≤ rank(V ). For the converse inequality, there
exist k ∈ N, (bj)1≤j≤k a sequence of vectors bj ∈ Zd and a sequence (V j)1≤j≤k of vector spaces
V j ⊆ Qd such that P ⊆

⋃k
j=1 bj +V j and such that rank(V j) ≤ dim(P ) for every j. Since P

is non empty we deduce that k ∈ N>0. Lemma 7.3 proves that there exists j ∈ {1, . . . , k} such
that P ⊆ V j and bj ∈ V j . By minimality of the vector space generated by P we get V ⊆ V j .
Hence rank(V ) ≤ rank(V j). From rank(V j) ≤ dim(P ) we get rank(V ) ≤ dim(P ).

8 Linearizations
A linearization of an almost semilinear setX is a set

⋃k
j=1 bj+(P j−P j)∩Q≥0P j where bj ∈ Zd

and P j ⊆ Zd is an asymptotically definable periodic set such that X =
⋃k
j=1 bj + P j . Let us

recall that every subgroup of (Zd,+) is finitely generated[14]. Moreover, since FO (Q,+,≤, 0)
admits a quantifier elimination algorithm, we deduce that linearizations are definable in the
Presburger arithmetic.
Remark 8.1. Almost semilinear sets can have multiple linearizations.

In this section we show that if X,Y ⊆ Zd are two non-empty almost semilinear sets with
an empty intersection then every linearizations S,T of X,Y satisfy:

dim(S ∩ T ) < dim(X ∪ Y )
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Figure 1: From left to right : sets X and Y , sets u + Q≥0P and v + Q≥0Q, and set S ∩ T .

Example 8.2. Sets introduced in this example are depicted in Figure 1. Let us introduce
the asymptotically definable periodic set P = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2) − 1} and the
finitely generated periodic set Q = N(1, 0) +N(3,−1). We introduce the almost semilinear sets
X = u + P and Y = v + Q where u = (0, 0) and v = (7, 2). Observe that X ∩ Y is empty
and dim(X ∪ Y ) = 2. Let us consider linearizations S,T of X,Y defined by S = u + P ′

and T = v + Q′ where P ′ = (P − P ) ∩ Q≥0P and Q′ = (Q − Q) ∩ Q≥0Q. Observe that
P ′ = {(0, 0)} ∪ {p ∈ N2

>0 | p(2) ≤ p(1)} and Q′ = Q. Note that the intersection S ∩ T is non
empty since it is equal to {(7, 2), (10, 1)} + N(1, 0). In particular dim(S ∩ T ) ≤ 1 and we get
dim(S ∩ T ) < dim(X ∪ Y ).

Lemma 8.3. Assume that b + M ⊆ (P − P ) ∩Q≥0P where b ∈ Zd and M ,P ⊆ Zd are two
periodic sets. Let a be a vector of the form m1 + · · · + mk where (mj)1≤j≤k is a sequence of
vectors mj ∈M that generates a vector space that contains P . There exists k ∈ N>0 such that
b + kN>0a ⊆ P .

Proof. Since b ∈ P − P there exists p+,p− ∈ P such that b = p+ − p−. As the sequence
(mj)1≤j≤k generates a vector space that contains P , we get p+ ∈

∑k
j=1 Qmj . Hence there

exists z ∈ N>0 such that −zp+ ∈
∑k
j=1 Zmj . By definition of a, there exists n ∈ N>0 such

that −zp+ +na ∈
∑k
j=1 Nmj . Hence b−zp+ +na ∈ b+

∑k
j=1 Nmj . Since this set is included

in Q≥0P and (z− 1)p+ ∈ P we deduce that (b− zp+ +na) + (z− 1)p+ is in Q≥0P . Note that
this vector is equal to −p− + na since b = p+ − p−. Hence, there exists s ∈ N>0 such that
s(−p− + na) ∈ P . Let k = sn and observe that −p− + ka = s(−p− + na) + (s− 1)p−. Hence
−p− + ka ∈ P . Since b + ka = (−p− + ka) + p+ and ka = (−p− + ka) + p− we deduce that
b + ka and ka are both in P . In particular b + kN>0a ⊆ P .

Corollary 8.4. Let X,Y ⊆ Zd be two non-empty almost semilinear sets with an empty inter-
section. For every linearizations S,T of X,Y we have:

dim(S ∩ T ) < dim(X ∪ Y )

Proof. We can assume that X = u + P , Y = v + Q where u,v ∈ Zd and P ,Q ⊆ Zd are two
asymptotically definable periodic sets such that X∩Y = ∅ and we can assume that S = u+P ′

where P ′ = (P − P ) ∩ Q≥0P and T = v + Q′ where Q′ = (Q − Q) ∩ Q≥0Q. Let U and
V be the vector spaces generated by P and Q. Lemma 7.4 shows that dim(X) = rank(U)
and dim(Y ) = rank(V ). Note that S ∩ T is a Presburger set and in particular a finite union
of linear sets. If this set is empty the corollary is proved. Otherwise there exists b ∈ Zd
and a finitely generated periodic set M ⊆ Zd such that b + M ⊆ S ∩ T and such that
dim(S ∩ T ) = dim(b + M). Let W be the vector space generated by M . Observe that
b+M ⊆ (u+U)∩ (v+V ). Hence for every m ∈M since b+m−u and b+ 2m−u are both
in U the difference is also in U . Hence m ∈ U . We deduce that M ⊆ U and symmetrically
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M ⊆ V . As M is included in the vector space U∩V , by minimality of W , we get W ⊆ U∩V .
Assume by contradiction that W = U and W = V . Since M is finitely generated, there
exists a sequence (mj)1≤j≤k of vectors mj ∈ M such that M = Nm1 + · · · + Nmk. Let
a = m1 + · · · + mk. From b − u + M ⊆ (P − P ) ∩ Q≥0P and Lemma 8.3 we deduce that
there exists k ∈ N>0 such that b − u + kN>0a ⊆ P . From b − v + M ⊆ (Q − Q) ∩ Q≥0Q
and Lemma 8.3 we deduce that there exists k′ ∈ N>0 such that b − v + k′N>0a ⊆ Q. In
particular b + kk′a ∈ (u + P ) ∩ (v + Q) and we get a contradiction since this intersection is
empty. Thus W 6= U or W 6= V . Since W ⊆ U ∩V we deduce that W is strictly included in
U or in V . Hence rank(W ) < max{rank(U), rank(V )} = dim(X ∪ Y ). From Lemma 7.4 we
get dim(M) = rank(W ) and since dim(M) = dim(S ∩ T ) the corollary is proved.

9 Presburger Invariants

We introduce the notion of separators. A separator is a pair (X,Y ) of Presburger sets X,Y ⊆
Nd such that there does not exist a run from a configuration in X to a configuration in Y . In
particular X ∩ Y = ∅. The Presburger set D = Nd\(X ∪ Y ) is called the domain of (X,Y ).
We observe that a separator (X,Y ) with an empty domain is a partition of Nd such that X is
a Presburger forward inductive invariant and Y is a Presburger backward inductive invariant.

Lemma 9.1. Let (X0,Y 0) be a separator with a non-empty domain D0. There exists a
separator (X,Y ) with a domain D such that X0 ⊆X, Y 0 ⊆ Y and dim(D) < dim(D0).

Proof. As X0,D0 are Presburger sets, Corollary 6.3 shows that H = post∗(X0) ∩D0 is an
almost semilinear set. We introduce a linearization S of this set. Since (X0,Y 0) is a separator,
the intersection post∗(X0) ∩ Y 0 is empty. Moreover, as post∗(X0) ∩D0 ⊆ S, we deduce that
the set Y = Y 0 ∪ (D0\S) is such that post∗(X0) ∩ Y = ∅. Hence (X0,Y ) is a separator.
Symmetrically, as D0,Y are Presburger sets, Corollary 6.3 shows that K = pre∗(Y )∩D0 is an
almost semilinear set. We introduce a linearization T of this set. Since (X0,Y ) is a separator,
the intersection pre∗(Y ) ∩X0 is empty. Moreover, as pre∗(Y ) ∩D0 ⊆ T , we deduce that the
set X = X0 ∪ (D0\T ) is such that pre∗(Y ) ∩X = ∅. Hence (X,Y ) is a separator.

Let us introduce the domain D of (X,Y ) and observe that D = D0 ∩S ∩T . If H or K is
empty then S or T is empty and in particular D is empty and the lemma is proved. So we can
assume that H and K are non empty. Since H ⊆ post∗(X0) ⊆ post∗(X) and K ⊆ pre∗(Y )
and (X,Y ) is a separator, we deduce that H∩K = ∅. Moreover as H,K ⊆D0 we deduce that
dim(H ∪K) ≤ dim(D0). As S and T are linearizations of the non-empty almost semilinear
sets H, K and H ∩K = ∅, Corollary 8.4 shows that dim(S ∩ T ) < dim(H ∪K). Therefore
dim(D) < dim(D0).

We deduce the main theorem of this paper.

Theorem 9.2. For every x,y ∈ Nd such that there does not exist a run from x to y, then there
exists a pair (X,Y ) of disjoint Presburger sets X,Y ⊆ Nd such that X is a forward inductive
invariant that contains x and Y is a backward inductive invariant that contains y.

Proof. Observe that ({x}, {y}) is a separator.Thanks to Lemma 9.1 with an immediate induc-
tion over the dimension of the domains we deduce that there exists a separator (X,Y ) with an
empty domain such that x ∈X and y ∈ Y .
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10 Conclusion
The reachability problem for vector addition systems can be solved with a simple algorithm
based on inductive invariants definable in the Presburger arithmetic. This algorithm does
not require the classical KLMST decomposition. Note however that the complexity of this
algorithm is still open. In fact, the complexity depends on the minimal length of a run from x
to y when such a run exists, or the minimal length of a Presburger formula denoting a forward
inductive invariant X such that x ∈ X and y 6∈ X when such a formula exists. We left as an
open question the problem of computing lower and upper bounds for these lengths. Note that
the VAS exhibiting a large (Ackermann size) but finite reachability set given in [12] does not
directly provide an Ackermann lower-bound for these sizes since Presburger forward invariants
can over-approximate reachability sets. Note that the existence of a primitive recursive upper
bound of complexity for the reachability problem is still open since Zakaria Bouziane’s paper[1]
introducing such a bound was proved to be incorrect by Petr Jančar[6].
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