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Abstract

We conduct a comparative study between two approaches for combining signals from several
Model-Predictive Controllers (MPCs) designed for different fault scenarios. The first is MPC switch-
ing where a switch dictates which of the MPC controllers is currently active. The second is MPC
mixing where all MPCs are running concurrently and their outputs are blended in proportion to the
current estimate of fault state. We demonstrate results using a gravity drained multi-tank system. Our
empirical results show that the mixing approach responds more quickly to faults than the switching
approach. Further, we show that the speed and accuracy of fault isolation has a critical impact on fault
tolerance.

1 Introduction

A fault-tolerant control system (FTC) is a system that is able to identify and recover from system faults
and continue operation as normal or to maintain stability to a desired level of overall performance. The
need for such systems in areas such as aerospace and industrial processes, where safety and reliability
is paramount, has motivated significant research into the design and optimisation of these systems.
Examples of such systems can be seen in aircraft [1], spacecraft [2], autonomous quad-copter systems
[3], power plants, chemical reactors and ground vehicles, among many more.

FTCs can be divided into two types, passive and active. Passive fault tolerant controllers are de-
signed off-line against predefined models for certain operating conditions and have no ability to react
to unanticipated faults. Passive FTC enables fast adaptation to faults, within the predefined operating
conditions. Active FTC uses on-line data to reconfigure the controller to stabilise the plant. They have
a built in fault detection mechanism which allows them to react to pre-defined faults, but makes the
controller reliant on the accuracy on this fault-detection unit. For a comprehensive study between the
two approaches see [4].

Both active and passive FTC rely, to varying degrees, on specifying the space of faults that the
system will encounter. For passive FTC, approaches such as mixing of controllers tuned to nominal
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and failure modes are used to maintain system stability, e.g., [3]. Analogously, active FTC can rely on
being able to detect pre-specified faults, such as using a bank of observers, with each observer tuned to
a particular fault, e.g. [5]. For complex systems, it is impossible to pre-specify all faults, since there
are too many fault combinations to consider, and it may be impossible to know all possible faults as a
priori. As a consequence, it is imperative that a system designer understand the space of possible faults
and their impact on a system. Creating a controller that can interpolate its control law from predefined
edges of the fault space allows it to adapt to unknown/undefined faults by computing the optimal control
policy for this fault state. Very little work has been conducted on exploring the space of faults and their
impact on active versus passive FTC.

FTC extends traditional controllers with a method of detecting and tolerating faults. The main
purpose of a control system is reference tracking and many different types of controllers including Model
Predictive Controllers (MPCs), Proportional Integral Derivative (PID), Feedback Linearisation (FL),
etc., have been designed for this purpose. We adopt an MPC approach, which is based on numerical
optimization and is categorised as an optimal control strategy [6]. At every time step the MPC solves
an optimization problem to obtain the optimal control input for the current system state. An MPC can
be tuned to handle specific error models to make it a FTC. Several MPCs, each designed to handle a
separate fault scenarios, can be combined to create a controller that is more robust than any individual
MPC can be at maintaining the stability of the system.

We focus on hybrid systems control, where we assume a system that can operate in a set of N modes,
with a different set of dynamics for each mode. We assume that we have a subset of [V failure modes,
with N — N; nominal modes. For each of the nominal modes we pre-compute a control setting. We
also need to tolerate when certain failure modes occur, which is the focus of this article.

In this article we conduct a comparative study between two approaches for combining several MPCs
designed for different fault scenarios. The first is MPC switching where a switch dictates which of the
MPC controllers is currently active. The switching signal is generated by the Fault Detection Unit (FDU)
so once a fault is identified the corresponding controller can be activated to handle this fault. The second
is MPC mixing where all MPCs are running concurrently and their outputs are blended in proportion to
the current fault state estimate generated by the FDU. We demonstrate results using a gravity drained
multi-tank system.

2 Related Work

This work builds on extensive prior work in fault-tolerant control (FTC) and Fault Detection and Isola-
tion (FDI).

In the area of FTC [7], a significant body of work has been developed and applied to real-world
systems. [8] presents a recent overview of FTC, and [9] presents FTC with relation of system safety.
Traditional methods for FTC employ a bank of observers coupled with dedicated controllers, and per-
form discrete switching. This approach enables designers to tune the system to dedicated faults, but the
speed of the system hinges on the speed of FDI. More recent approaches use mixing controllers, e.g.,
[10, 11], which blend the outputs of multiple controllers and are less reliant on FDI.

Our work builds on research into the use of weighted multiple models for adaptive estimation and
control. Early work, e.g., [12, 13] used multiple Kalman filter-based models to improve the accuracy of
the state estimate in estimation and control problems. This early work was then extended to applications,
e.g., real-world problems [14] and fault detection [15].

Blended or weighted multiple model adaptive control (WMMAC) has been used to make control
more robust, e.g., [16, 17]. The use of multiple models within the context of MPC, denoted Multiple
Models Predictive Control (MMPC), has been addressed by [18]. Beyond this focus on robustness, there
have been few applications of multiple blended models to FTC outside of [3]. Our work is novel in its
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Figure 1: Two tank gravity drained system.

investigation of WMMAC for FTC. We are not aware of prior work that empirically compared active
and passive FTC approaches, or that compared the impact of faults on switching vs. mixing supervisory
FTC.

3 Running Example

We illustrate our approach using the two-tank system shown in Fig. 1. Tank T; has area A; and inflow
qi—1, for © = 1, 2. This system connects together two tanks, with a valve V; regulating the proportion of
the flow gy and ¢; into tanks 1 and 2 respectively. The pump flow gy and value V; can be set between 0
and 1. A valve setting of 0 will cause the entire flow to go into tank 1 and a pump setting of 0 will turn
the pump off completely. The control objective is to modify the pump and valve settings to maintain a
reference height in both tanks. Water from tank 1 will flow into tank 2 at a constant rate and water will
flow out of tank 2 at a constant rate. Sensors give us the current water level /1 and Ao in tank 1 and tank
2, respectively.

Both tanks 7} and 75 get filled from a pump, with measured flow go. The proportions of the flow into
each tank are controlled by V7, hence, our control inputs are u = {qo, V1 }.

We assume that we do not directly measure any flows other than the inlet flows g and valve setting
V1. As a consequence, we use the tank heights as a proxy for deriving flows through the two-tank
system. We can control the valve settings where we assume a continuous-valued setting ranging over
[0,1].

We can use basic physics to create a model of the 2-tank system by observing mass-balance require-
ments on each of the tanks, where tank 7; has area A;, for ¢ = 1,2. The state equations are given
by:

dh;

A2
“d

>

= ¢i—1 — i,

=
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where ¢; 1 denotes the flow into tank ¢, and ¢; denotes the flow out of tank .
According to Torricelli’s Law, flow g; out of tank ¢, with liquid level h;, into tank j, is given by:

q; = vV 2gh;, (D

where the coefficient v is used to model the area of the drainage hole and its friction factor through the
hole, and g is gravitational acceleration.

We can use equation 1 to derive the following equations, since the inflow into tank 2 equals the
outflow of tank 1:

hl - qO—Cl'\/E
he = ¢Vl —c2Vh, )

where the constants ¢, co summarize the system parameters representing cross-sectional areas, friction
factors, gravity, etc. Consequently, the parameter set is given by © = {¢1, ¢, 3, g}. We assume that
we can measure the height of liquid in each tank. The set of state variables is {h1, ha, V1,qo}, and the
set of controllable variables is {qo, V1 }.

To formally transform a non-linear system into a linear one, we need to use techniques like small
signal linearization or perturbation theory [19, 20]. For example, in small signal linearization, an equilib-
rium point x¢ of a fault-free non-linear function is first identified, about which the perturbed non-linear
function is expanded: = x¢ + dz. Then we can use a Taylor series expansion, neglecting the higher
order terms, to obtain the linear function.

4 Fault Tolerant Control Schemes

A key aspect of FTC is the ability to adopt a control law that compensates for a system fault. Because
having a single nominal-mode plant model does not allow us to simulate faulty behaviours, modern
FTC uses multiple models that attempt to cover the space of failure behaviours [21]; many diagnostics
approaches also use multiple models, e.g., [22].

However, in realistic problems, the dimension of the plant and of the unknown parameter vector
are large. As a consequence, the number M of models needed to satisfy stability and controllability
conditions given faults becomes prohibitively large, since M increases exponentially with the dimension
of the unknown parameter vector. In addition, switching results in discontinuous control signals, and
identification and control are coupled [21].

In the following, we study the impact of various design choices on the FTC schemes for two of the
most advanced approaches, switching MPCs and mixing MPCs.

4.1 State-Space Model
Consider a linear time-invariant (LTI) discrete-time system of the form:
z(k+1) = Ajx(k)+ Bju(k)+w
y(k) = Cz(k), (3)

where x, u, y are the state, control and observation vectors, respectively, and A;, B; are state matrices
for mode j. Finally, C' is the observation matrix. We assume that the system can operate in N possible
modes M = {M;, ..., My}, with individual dynamics for mode j (j = 1,---, N), captured by the
matrices A;, B;.
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Since the hybrid system dynamics use a model for each distinct mode, we must also have a unique
control law for each distinct mode. More precisely, if we have N modes, then we must have a set
A ={X\, -, An} of controllers, with a switching algebra to define when to switch from }; to A; for
i#j,4,5€{1l,...N}

We thus characterize the system’s N modes by (i) a set of N controllers A, and (ii) a set of
N parameter settings, i.e., we can partition the system’s parameter space {2 into a set of sub-spaces
{Q1,Q9,--- Qn}, such that sub-space €2, corresponds to controller C;, fori = 1, ..., N. In other words,
we assume that we can define the parameter setting sub-spaces such that there exists a controller A; that
can guarantee a desired performance level for 2;,i =1,..., N.

4.1.1 Observer-Based Control

We assume that we control the system (in mode ¢) using a state (Luenberger) observer based on a state-
space model with observer matrix L. Using the observed system with observed state and measurement,
(k) € R™ and (k) € RP, respectively:

z(k+1) A;x(k) + Biu(k) + w(k); 4)
y(k) = Ciz(k);
we obtain the observer equations:
z(k+1) = Ajz(k)+ Bu(k)+ Li(y(k) — Ciz(k));
r(k) = yk) - Cz(k);
where 7(k) € RP is the residual || y(k) — (k) || for some norm || - ||. We tune the control matrix

K; € RY¥P and observer matrix L; € R™*? so that the closed-loop system and error dynamics are
stable. We can rewrite these equations such that we obtain

#(k+1) = (A; — BiK;)2(k) + Li(y(k) — C;z(k)) Q)

by substituting — K;& (k) for u(k) into the state equation.

4.1.2 Observer-Based Diagnosis

We partition our modes into nominal and fault modes, M and M , respectively, such that | M| + | M| =
N. We model (actuator) faults using a multiplicative fault model with parameter 0 < vy < 1, where
~ = 0 corresponds to nominal function and v = 1 to total failure. For every failure mode M; € M
we have a corresponding fault parameter ;. Hence we obtain the state variable equation for failure
mode j:

z(k+1) = Ajx(k) + B;(1 — v)u(k) + w(k). ©6)

We use the residuals for mode identification. In this article we create a residual for every system
mode, i.e., our observer indicates that mode ¢ is active if the corresponding residual r; > € for some
tunable threshold € > 0. If we have perfect tuning and no noise, then we have a monotonic relationship
between ~; and r; > €: presence of fault ¢ always leads to a detectable residual r; corresponding to that
fault.
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4.2 Switching Model-Predictive Control

Given that our system operates in multiple possible modes, we use a controller that can switch between
these modes. Fig. 2 depicts a generic framework that enables control switching of various types. In this
article we examine two switching behaviours: (1) discrete switching (where one control regime is only
used at any time), and (2) mixed switching, where we use a proportional mixture of multiple controllers
at once. This section provides an overview of these two FTC controllers.

 Model Iy i +@_€”
—'|Nlod:el o —2 )2 | idenitcation
1 + - Errors
uy -{Mudel I ﬁi@)ﬂ
q- 2 : Rt J ! + /_2 Z:nlrcl

e, . Errors

Ty “| Controller C, )‘7 Desired J
Output ¥
L————— Controller C, }_7

1 Controller Cy ’R

Figure 2: Use of multiple controllers for FTC

By using candidate controllers designed off-line, the switching architecture can use multiple con-
trollers, either individually or in a mixed mode. The multi-controller is not only capable of generating
any of the candidate control laws but also, by controller interpolation, a stable mix of candidate con-
trol laws. We can design the mixing controller to converge exponentially quickly to meet the control
objective, provided certain conditions on the plant input are met [23].

The architecture, shown in Fig. 2, has two levels of control: (1) a low-level controller that generates
finely-tuned candidate controls for each mode and (2) a high-level controller, called the supervisor, that
influences the control by adjusting the low-level controller, typically by selecting or weighting candidate
controllers, based on processed plant input/output data.

‘We now briefly outline the design of the supervisory controller that governs the switching behaviour.

4.2.1 Discrete Switching Controller

This section summarizes the MPC approach that we adopt. A traditional MPC controller includes a
nominal operating point at which the plant model applies, such as the condition at which you linearize
a non-linear model to obtain the LTI approximation. We generalize that operating point in terms of a
parameter sub-space. When we consider a single fault, then we can define that sub-space in terms of the
multiplicative fault parameter ~y. Since the actuator effectiveness is in the range 0 < v < 1, we have a
priori knowledge on the bounds of 7:

e c(0,1]. @)

We can then partition € into a set of sub-spaces {€21, Qa, - - - Qx }, where Q; = [y, 4] and 5"
and 4;"** are the lower and upper bounds, respectively, of interval ;. For multiple faults, we must

consider the fault vector v = {71, ..., V. }. We now define a multi-dimensional partition 2 into a set of
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sub-spaces {21, Qa, - - - Qn }, where
Qi C X775,

and y;; denotes the it" sub-space of the set of multiplicative fault parameter set indexed j = 1, ..., m.
Given this partition, we design controller C; to guarantee optimality when operating in sub-space €2;.
We then design a switching supervisor that, given an estimate of sub-space €2;, switches to the i
controller.
We select the it" controller if residual 7; is greatest, measured over all residuals that exceed a given
threshold: ) ‘
P gmaxrieR{n} ifr; > ¢

4.2.2 Mixing Controller

We aim to design a mixing scheme for regulating the state vector « to a chosen set-point, assuming the
nominal system matrices A and B are known, but multiplicative actuation errors -y are unknown. Given
the system in equation 3, sudden changes in  will affect the system dynamics. In response, we tune
the mixing scheme to blend the controllers appropriately. Given a set of controllers A;, fori =1, ..., N,
each of which guarantees optimality when operating in sub-space €2;, we use a mixing supervisor for
sub-optimal conditions. In other words, when sub-optimality occurs, i.e., parameters do not lie within
some {2;, we must mix “appropriate” controllers.

In this article we use a linear combination of weighted controller inputs to restore stability given

a pre-specified set of faults. In other words, given a set of N controllers A = {Ay,--- ,Ax} and
corresponding probability distribution {1, - - - , @}, our applied control is given by
N
A" =" il )
i=1

We compute the distribution ¢ using the residuals for the N models, r;, i = 1, ..., N:
@i 1 —[0,1]. (10)
We perform this mapping using the following three steps.

1. Discretization of Residuals We discretize the residual space for fault ¢ into a set of intervals of the
form
[0, 6), [E, €+ (S), ceey [E —+ m(S’ rmaﬂ?)7 [> ,rmaz]

max

where € and ¢ are appropriate thresholds and r is a maximal residual value that indicates the

fault magnitude is significant.

2. Weight Assignment to Intervals Given these intervals, we compute a weight for the i‘" residual

interval as follows:
0 ifr; € [0,€)
a  ifr; €le,e+9)

wi(k+1) = (11)

ka ifr; € [e, e + ko)
1 if r; > rmaet

where « is a [0,1] weight chosen by appropriate controller tuning, and m € Z™.
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3. Weight Normalization Given the weights, we need to convert them into a probability distribution
so that our cumulative control signal (equation 9) remains stable. We assume that we start in a
nominal mode, and our objective is to define a new blended controller given a residual (k). We
denote the current (nominal) controller at time step £ as A (k); we assume that this controller has
probability ¢ = 1 assigned to a single mode. We denote alternative controllers as A* = {A;}, [ =
1,...,N, | # j. We denote our probability distribution for controllers A; (k), ..., Ay (k) using
o(k) = {p1(k),...,on(k)}. We compute a probability for time step k& + 1 from the weights
through normalization. If all w; are 0, then we maintain the current controller, A ; (k); otherwise,
if some w; > 0, we update our weights as given below to generate a new blended controller:

1-8 ifi=j
soi(k+1>={ w ipg A (12)

T

where 7 = ), w;and § = ), L.

Example:

Consider the running example of a two tank system described in Section 3. We have a single nominal
mode A; and two failure modes A2 and As, denoting pump and valve faults, respectively. Our weight
intervals are {[0,.01), [.01,.02),[.02,.03),,---,[> .1],}, i.e., e = § = 0.01 in equation 11. Assume
that we are currently in the nominal mode and detect anomalous residuals for the pump in the intervals
[.01,.02) and [.02,.03), corresponding to 1% error and 2% error, respectively. Taking a tuned value of
«a = 10, that leads to the weights we = 0.1, ws = 0.2. wy is calculated at 1 — S where S is ZZ w; and
i = [2, 3], which makes w; = 0.7. Then from Equation 9 we generate the new control signal to be:

A*(k+1) = 0.7A1 (k) + 0.1A5(k) + 0.2A5(k) (13)

4.3 Stability Properties

The weighting algorithm plays an important role in the control and stability properties of weighted
multiple model control (WMMC) frameworks. The closed-loop stability of a WMMC system depends
on three conditions [23]: (1) the model set includes the true model(s) of nominal operation of the
plant (or the closest such models); (2) the weighting algorithm converges correctly; and (3) each local
controller stabilizes its corresponding model. In addition, the convergence rate of a weighting algorithm
will have effect on the transient process of the WMMC system.

Providing stability and optimality guarantees for controllers that use multiple models is known to
be a difficult task, e.g., [17, 24]. The study of stability properties of switched and hybrid MPC systems
has focussed on models defined using piecewise affine systems [25]. Proof of stability assumes that
a supervisory controller would switch among low-level controllers with neighbouring, locally affine
regions, such that each low-level controller is accurate within its own affine region [26].

Proving stability for FTC is beyond the scope of this article. Nevertheless, we can make a number
of observations about this issue.

Incipient faults Incipient faults, which can be characterized in terms of gradual drift of a fault parame-
ter v, can be theoretically analysed using the piecewise affine system framework. In other words,
using results from [25] we can define a nominal region €,,,,, with an adjacent fault region {2
such that blending of the controllers for the two regions in guaranteed to maintain stability and
optimality of the control.

In this case, we can also show that mixing control will always outperform discrete switched
control in terms of response times for fault tolerance. The mixing approach enables smooth
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compensation of faults as the degree of the fault progresses (i.e., for any v > ¢), whereas the
discrete switched controller makes an abrupt switch from nominal to fault controllers once a fault
magnitude threshold v* >> e is exceeded, ensuring a period of sub-optimal control with a fault
whose magnitude is in the interval [e, v*].

Abrupt faults Abrupt faults, which can be characterized in terms of a significant difference in at least
one fault parameter vy, cannot be theoretically analysed using the piecewise affine system frame-
work unless we can guarantee contiguity of nominal region €2,,,,, and fault region €. Stability
depends on the eigenvalues of the matrix (A — BK) from a rewritten version of the observer
equations, namely equation 5. We leave stability analysis as future work.

We have adopted a probabilistic approach based on residuals. In future work, we plan to compare this
approach with those using Kalman filters for hypothesis testing, e.g., [17], which are computationally
more complex, but may have different stability properties.
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Figure 3: Comparison of controllers for FTC with Pump fault at £ = 50s

5.1 Software Configuration

We implemented the running example described in section 2 in MATLAB/Simulink and ran all exper-
iments in a simulation environment, where the real system and the model that the controller uses to
estimate the system state are identical. We injected faults into the simulated real system by modifying
the inputs and outputs of the model. We then computed residuals using the output ¢ of the model used
by the controllers and the real system model output y. This type of simulation environment allows for
complete control of the fault injection, detection and controller output analysis.
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5.2 System Fault Injection and Detection

We injected faults into the pump and valve using the multiplicative equation (6), with pump, valve and
tank parameters 1, y2, v3 € [0, 1], respectively. «; simulates the pump being blocked by only allowing
a fraction of the water flow to go through the pipe. v, simulates valve blockage (i.e., the valve not having
full range of motion); we use a Simulink saturation block for this fault. We implemented leaks in both
tanks by subtracting a constant value 3 of the real system model output for the two tank levels. We
generated 4 residuals, for: valve, pump, tank 1 level and tank 2 level.

5.3 Controller Design
We designed three separate MPC controllers to handle different scenarios.

Nominal The first MPC is the nominal plant controller that is designed to handle the no-error state of
the system. The plant model was linearised at initial model conditions with no errors present on
in the system. The valve and pump output of the controller are both between 0 and 1 representing
nominal working conditions.

Pump Fault The second controller is an MPC that has a plant model linearised when the pump was
experiencing a fault of 40% reduction in throughput. The valve output range for this controller
is also 1 but the pump output has an increased range of 0 to 1.5, since there is a blockage in
the pipe the pump should be able to increase water flow to compensate for this. The reference
signal coming into the second MPC is the original reference set point for the two tanks plus the
estimated error in the tank levels. The justification for this is that if the error in the tank level and
original reference is known then the required reference signal to stabilise the plant at the required
set point can be computed.

Valve Fault The third controller is designed for valve fault scenarios, by linearising the model at a point
where the valve setting is limited. The reference signal and controller output signal ranges are the
same as for the nominal controller, but this controller favours the use of the pump flow over the
valve setting to stabilise the plant output.

5.4 Discrete Switching and Merging implementation

We implemented discrete switching and merging approaches on identical systems using the three con-
trollers described in section 5.3, but with different supervisory controllers.

Discrete Switching In the discrete switching implementation, higher level control mechanism analyses
the current fault detection output and chooses which controller is the appropriate one for the
current fault state. The decision is made by the current maximum error signal. The pump fault
controller uses the two water levels in the tanks as the trigger signal. The valve controller uses
the valve residual error as the trigger signal. The higher of the two tank error signals is compared
to the valve error to decide which controller should get control. Error signals must be over 0.1
to make the system robust against false positive error signals and allow the nominal controller to
control the plant under normal conditions.

Merging-Based Switching For the merging mechanism we implemented a look up table of weights,
with error signals of the water tank error and valve error used as indexes into it. The weights
allow for linear interpolation of the output signal and are defined as follows: {0.0,0.1,0.2, ...
0.9, 1}. Every percent in the error signal will index into a higher weight, up to 10%. E.g. 0.01
valve error signal and 0.00 error signal in the tank levels will correspond to 10% of the output
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signal being generated from the valve error controller, 0% from the pump fault controller and
90% from the nominal controller. If the two weighted signals added together are greater than 1
they are both incrementally reduced until their sum is equal to 1. This allows for the proportion
of the signal to be preserved in extreme error cases. This interpolation mechanism is simple and
has a corresponding controller merging configuration for every value in the error space.

6 Experimental Analysis

We ran experiments to compare the impact of faults on FTC designs based on discrete switching and
merging approaches. We also examined the impact of time for fault isolation on FTC, since it is typically
assumed that faults can be isolated instantly, even though the switching times do not have to be known
a priori.

6.1 Switching vs. Merging

We ran experiments for single faults (pump/valve/leak) and double faults (pump and valve). Figure 3
shows the results for inducing a pump fault at ¢ = 50s: the merging approach starts modifying the
control signal immediately and restores set-point levels in tanks 1 and 2 by ¢ = 65s; the switching
approach does not perform a discrete switch until ¢ = 70s, when the impact of the fault on tank levels
exceeds the specified tolerance, and only restores set-point levels in tanks 1 and 2 by ¢ = 90s.

16— Switching

14—

Tank 1level
Tank 2 level
Valve

Error

Value

Ref Tank 1
- - - - Ref Tank 2

Time

Merging

Tank 1 level
Tank 2 level
Valve
-------- Pump

Ref Tank 1
- - - - Ref Tank 2

Value

120

Figure 4: Comparison of controllers for FTC with Pump and Valve fault

Figure 4 shows the results for inducing a valve fault at { = Os and a pump fault at ¢ = 50s. The
merging approach starts modifying the control signal immediately (given the valve fault) and restores
set-point levels in tanks 1 and 2 by ¢t = 30s; the impact of the pump fault is also quickly corrected.

In contrast, the switching approach does not perform a discrete switch to correct the valve fault until
t = 10s, when the impact of the fault on tank levels exceeds the specified tolerance. The pump fault
correction is also later than that for the mixing approach.
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6.2 Impact of Delays and Fault Isolation Errors
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Figure 5: Impact of delay in FDI on switching and merging controllers for FTC with Pump fault.

Figure 5 shows the results of a delay of 5s on computing FDI results. This basically delays the
possibility of switching and creates a greater impact on the system due to the fault.
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Figure 6: Impact of inaccuracy in FDI on switching and merging controllers for FTC with Pump fault.

Figure 6 shows the results of an inaccuracy in correctly isolating the fault on FDI results. Such
inaccuracy must be taken into account since FDI is never perfect. These results have a large impact on
the possibility of switching, which creates a significant impact on the system control due to the thrashing
of the control. In contrast, the impact on mixing control is much less.
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7 Discussion

Our results show a clear difference between discrete switching and mixing supervisory control in the
presence of faults. The mixing supervisory control is more robust to faults and to errors in the FDI
outputs. Further, the mixing supervisory control responds faster to faults than does the discrete switching
approach. This improvement results from the dynamic blending of all controllers, such that even small
errors are taken into account in the output signal. The supervisory controller is actively compensating
for faults with a blend that is proportional to the faults seen, hence a small fault will be compensated
immediately with a small portion of the output coming from the fault controller. Should the error
persist the portion of the fault controller will become increasingly larger until it composes the entire
output signal. However, in comparison to the switching approach, the change of controller is gradually
increasing which means by the time the fault threshold has been reached the system is already moving
towards a stable state and will reach this earlier than the switching approach. Even in the case where a
big fault occurs which is greater than the threshold, the merging approach will simply act the same as
the switching approach and let the dedicated fault controller take 100% of the output signal, so it will
always perform better or equal to the switching approach.

We plan to extend this work in several ways. First, we plan to compare the active FTC methods
presented with passive robust and adaptive MPC control. Second, we plan to use machine learning
to adaptively tune our system to unseen anomalies/faults. We are also investigating more complex
application domains, such as multi-copter drones.
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