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Abstract

Sequencing depth, which refers to the expected coverage of nucleotides by reads, is com-
puted based on the assumption that reads are synthesized uniformly across chromosomes.
In reality, read coverage across genomes is not uniform. Although a coverage of 10x, for
example, means a nucleotide is covered 10 times on average, in certain parts of a genome,
nucleotides are covered much more or much less. One factor that influences coverage is the
ability of a read aligner to align reads to genomes. If a part of a genome is complex, e.g.
having many repeats, aligners might have troubles aligning reads to that region, resulting
in low coverage.

We introduce a systematic approach to predict the effective coverage of genomes by
short-read aligners. The effective coverage of a chromosome is defined as the actual amount
of bases covered by reads. We show that the quantity is highly correlated with repeat
complexity of genomes. Specifically, we show that the more repeats a genome has, the less it
is covered by short reads. We demonstrated this strong correlation with five popular short-
read aligners in three species: Homo sapiens, Zea mays, and Glycine max. Additionally, we
show that compared to other measure of sequence complexity, repeat complexity is most
appropriate. This works makes it possible to predict effective coverage of genomes at a
given sequencing depth.

1 Introduction

Advances in next-generation sequencing (NGS) technologies have fostered an active develop-
ment of computational methods to align short reads to reference genomes [5, 2, 15, 7, 9, 12, 21,
18]. The alignment of short reads to reference genomes plays a critical role in many important
computational problems that utilize NGS data and reference genomes such as genome assem-
bly, genotyping, and measuring gene expression. In aligning short reads to genomes, in many
problems such as assembly, a primary goal is to cover as much of the genome of interest by
mapped reads as possible. Since the distribution of reads is not uniform [10, 14], many reads
are often required to cover most of the genome.

Sequencing depth is referred to in NGS as the expected number of times a base is covered
by mapped reads. A depth of 10x, for example, means that expectedly a base is covered
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by 10 mapped reads. But in reality, it is possible that certain regions of a genome are not
covered by mapped reads at all. As such, researchers often prefer to design experiments with
high sequencing depth, which increases experimental cost. It is, therefore, of interest to have
a systematic approach to understand and predict effective coverage of genomes for a given
sequencing depth. In this paper, we demonstrate that it is possible to reason able effective
coverage of genomes by mapped reads of a given sequencing depth by correlating aligners’
performance with genome complexity.

Complexity of genomes has been studied intensively since the difficulty of sequencing
genomes generally much depends on the complexity of the genomes. Lempel and Ziv [8, 25]
formulated the notion LZ-complexity and related it to how much sequences can be compressed.
Becher et al. [3] introduced the I-complexity, which is defined in terms of discrete logs of longest
common prefixes of consecutive sorted suffixes. The authors showed that the I-complexity was
close to the LZ-complexity.

In the effort of studying the relation between short-read performance and genome complex-
ity, Phan et al. [17, 22, 23] demonstrated how different notions of genome complexity correlated
with precision and recall of many short-read aligners. This work showed that the rate of dis-
tinct substrings correlated very significantly to aligners’ precision and recall. In this paper, we
will demonstrate that a notion of complexity, known as repeat complexity, correlates very well
with the effective coverage of genomes by mapped reads. The abundance of repeats in genomes
makes it difficult to identify exact positions of short reads in repetitive regions and hence map
them to correct places. Thus, conceptually, the more repeats a genome has, the harder aligners
can cover it with mapped reads. We used a simple definition of repeat complexity, Rk, defined
as the number of repeats of length k divided by the total number substrings of length k. Using
5 popular short-read aligners, we found that when k is similar to read length, Rk correlated
strongly with effective chromosomal coverage. This result makes it possible to predict the
genome effective coverage at a given sequencing depth.

2 Methods

2.1 LZ-complexity and I-complexity

The LZ-complexity [8, 25] measures the degree of randomness in sequences and as such it can be
used to compress sequences effectively. The LZ-complexity is defined as the number of different
patterns in a sequence when it is scanned from left to right; we used the version introduced
by Lempel and Ziv in 1978 [25]. For example, the sequence ACTACGTT has complexity 6
because there are 6 different patterns (A, C, T, AC, G, TT) when the sequence is scanned from
left to right. The manner of left-to-right scanning does not rewind, which means, for example,
ACT is a substring but it is not considered as one of the different patterns accounted by the
complexity measure. We normalized the LZ-complexity by dividing it by the maximum number
of patterns a sequence of given length could possibly get.

The I-complexity, introduced by Becher and Heiber [3], accounts for the number of different
(distinct) substrings of a sequence. For example, the different substrings of the sequence above
are: A, C, G, T, AC, CT, TA, CG, GT, TT, ACT, CTA, TAC, ACG, CGT, GTT, ACTA,
CTAC, TACG, ACGT, CGTT, ACTAC, CTACG, TACGT, ACGTT, ACTACG, CTACGT,
TACGTT, ACTACGT, CTACGTT, ACTACGTT. All repeats of a substring are counted only
once. The I-complexity is not exactly the number of different substrings, but it does account
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for it. It is defined as follows:

I(g) =

|g|∑
i=1

log4(LCP [i] + 1)− log4(LCP [i] + 2)

where LCP is the array storing the lengths of the longest common prefixes of consecutive sorted
suffixes of the sequence g. The LZ-complexity and I-complexity are close to each other. It was

shown [3] that for a DNA sequence s, LZ(s)
8 ≤ I(s) ≤ LZ(s)(log4 |s|+ 1).

Both LZ-complexity and I-complexity to some extent measure the abundance of repeats in
sequences because the number of different substrings of a sequence is inversely proportional to
the number of repeats of the sequence. We chose these measures as part of our investigation
since the abundance of repeats in DNA sequences is arguably directly proportional to their
biological complexity [13] and is known to affect the performance of short-read aligners. These
complexity measures are constant in the sense that the complexity of a sequence is always the
same. This works fine for text compression since the degree of compressibility does not rely on
external parameters.

2.2 Length-sensitive repeat Rk complexity

Given a number k, we define Rk as follows:

Rk(g) =

∑
f(x)>1,|x|=k f(x)

|g| − k + 1

where f(x) is the number of occurrences of x in g. Rk measures the rates of repeats, respectively,
of length k. Rk is related to the function C(k, r) proposed by Whiteford et al.[24]. C(k, r) is
the count of k-mers repeating exactly r times. Therefore, Rk =

∑
r>1 r · C(k, r).

Rk can be computed in linear time and space using suffix and LCP arrays, based on the
following lemma.

Lemma 1.
∑

f(x)>1,|x|=k f(x) =
∑

[i,j]∈Ik
(j − i + 2), where Ik is the set of intervals [i, j]’s,

where i ≤ j, such that

1. LCP [u] ≥ k for i ≤ u ≤ j

2. LCP [i− 1] < k unless i = 1

3. LCP [j + 1] < k unless j = |g|

Proof. A k-repeat is a substring x of length k, with f(x) > 1. Since the suffix array S is sorted
lexicographically, S forms consecutive runs of k-repeats, which are k-prefixes of the suffixes
stored implicitly by S. More specifically, each interval [i, j] ∈ Ik corresponds to all occurrences
of exactly one k-repeat. The number of occurrences for each k-repeat is exactly j − i + 2.

The set Ik can be computed in linear time by scanning through the LCP array once, from
beginning to end. Note that the index of LCP runs from 1 to |g|, and LCP [1] = 0.

2.3 Correlating LZ, I, Rk with effective coverage

Effective coverage is the portion of the genomic sequence covered by mapped reads. We want
to distinguish coverage from sequencing depth, which is the expected number of times mapped
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Species Run
Zea mays SRR801164
Glycine max SRR596509
Homo sapiens ERR251193

Table 1: Short read datasets (SRA)

reads would cover the genome under the assumption that reads are uniformly distributed. A
sequencing depth is typically much larger than 1 (e.g. 50x) , whereas effective coverage by
mapped reads is at most 1.

To investigate how sequence complexity affects performance of alignment, we correlate two
variables: (1) the I, LZ, and Rk measures and (2) the effective coverage on the genomic
sequences. The coverage is computed by using real reads to capture the true underlying distri-
bution of reads in chromosomes.

Linear correlation between two variables is quantified in the Pearson correlation coefficient
R, whose value is between -1 and 1. If R = 0, there is no correlation between the two variables.
If R is 1 (or -1), the two variables are maximally positively (or negatively) correlated. Generally,
R ≥ 0.75 is considered a high correlation. Although a high correlation does not necessarily imply
causation, it can be used to predict outcomes of one variable based on values of the other.

3 Experimental settings

3.1 Data

Obtained from public databases, this dataset consists of 54 genomic sequences, which are 24
chromosomes of homo sapiens (humans), 20 chromosomes of glycine max (soybean), and 10 chro-
mosomes of zea mays (corn). Three pair-end read datasets were selected from the DNAnexus
Sequence Read Archive (see Table 1).

3.2 Short-read aligners

We considered several algorithmic approaches with publicly available software packages [19, 5,
2, 15, 7, 9, 12, 21, 18, 11]. After a preliminary evaluation, we eliminated aligners that were
not designed to handle longer reads, had technical problems with large datasets or could not
finish within a reasonable amount of time. Therefore, we were left with five aligners: bowtie2
[7], bwasw [9], cushaw2 [12], seqalto [15], and smalt [18].

Software packages for the aligners were obtained from original sources. Experiments were
done with default parameters to get representative performance of each aligner. Although
tweaking parameters might result in slightly higher performance out of each aligner for a given
sequence, there was no universally optimal set of parameters for all sequences in the datasets.
Further, for a given set of parameters, we observed similar correlations between the aligner’s
performance and sequence complexity. For these reasons, the default parameters of each aligner
were adopted to produce a representative performance of the aligner.
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4 Results

4.1 High correlation Rk and effective coverage

We correlated aligners’ performance on genomic sequences and their complexity as measured
by Rk. We set k to 100 because investigated reads had length 100. This negative correlation
suggests that the more repeats of length 100 a genome has, the more difficult it is for an aligner
to align reads of length 100 to the genome.

Figure 1: Correlation between R100 and chromosomal effective coverage. Strong to
moderately strong negative correlations were observed for all five aligners.

More generally, Figure 1 shows the linear correlation between sequence complexity as mea-
sured by R100 and effective coverage of all aligners. R100 correlated strongly with the effective
coverage, the correlation was between about -0.76 and -0.96.

Table 2 summarizes the aligners’ coverage averaged across sequences with reads of length
100. The effective coverage performance is relatively high, over 0.8 with little change in variance.
In particular, Smalt and cushaw2 were the overall best performers.

bowtie2 bwasw cushaw2 seqalto smalt
Cov 0.909, 4e-3 0.867, 5e-3 0.913, 3e-3 0.898, 8e-3 0.923, 3e-3

Table 2: Average and variance of aligners’ coverage (Cov).

4.2 Rk correlates better than LZ and I

As we discovered that R100 correlated strongly to alignment performance when read length was
100, we investigated further to determine the best measure of complexity that would yield the
highest correlation to effective coverage at each read length. We hypothesized that the best
measure of complexity would have to account for repeats of length similar to read length. To
test this hypothesis, we computed correlation between effective coverage of all aligners and Rk

measured, respectively, by R25, R50, R75, R100, R125, R150. In addition to Rk, we also considered
the I-complexity and LZ-complexity to determine if conventional complexity measures would
correlate well with alignment performance.
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Figure 2: Correlation of performance of bowtie2 and different measures of complexity. The
best measure is R75 for read length equal to 100.

Compared to Rk, we found the I-complexity to be an inferior measure of complexity for the
purpose of studying short-read alignment performance. As shown in Figure 2, the I-complexity
yielded a very low correlation with coverage, r ≈ −0.21. For other aligners, we observed
similarly low-to-moderation correlation between the I-complexity and performance. Compared
to Rk, the correlation was much lower.

Furthermore, we found the LZ-complexity to have really low correlation with the effective
coverage. This low negative correlation was observed with all aligners.

4.3 Repeat complexity of chromosomes of Homo sapiens, Zea mays
and Glycine max

We investigated complexity profiles of different species, in particular the changes in complexity
as chromosomes get larger. The result is summarized in Figure 3. The figure shows complexity
values of chromosomes of the three species in dataset 2, for several Rk’s with k between 12 and
200. Several observations can be made.

First, repeat complexity of chromosomes of different species tend to have distinct signatures.
Among chromosomes with similar sizes, those belonging to the same species have much more
similar complexity, compared to those belonging to different species. A possible explanation is
that repetitive patterns across chromosomes of the same species are more biologically related,
compared to chromosomes of other species. For chromosomes of similar size, those of Homo
sapiens appear to have much lower complexity than those of Zea mays and Glycine max.

Second, by and large, as k increases, repeat complexity of chromosomes of the same species
become more similar. Technically, this happens because all chromosomes of the same species
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Figure 3: Repeat complexity of chromosomes of Homo sapiens, Zea mays and Glycine max.
Each point represents a complexity value (y-axis) of a chromosome with a specific length
(x-axis).

share essentially the same repeat patterns. We suspect there is a biological explanation for this
[16, 13, 1].

Although it appears that the larger chromosomes of the same species tend to have lower
complexity (e.g. R12, R25 and R50), there is an exception with Homo sapiens. In Homo sapiens,
chromosomes X and Y stood out having much higher complexity than the others. In particular,
chromosome Y is among smallest, but its complexity is significantly higher than the rest.
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5 Conclusions

We found a strong correlation between genome effective coverage and repeat complexity. This
strong correlation suggests that we can build regression models to predict accurately effective
coverage by mapped reads for each short-read aligner. The ability to predict effective coverage
of genomes given a sequencing depth might help researchers design their experiments in a cost-
effective manner. Although our results were done with short reads, the approach should be
extendeable to experiments that utilize long reads. Similarly, because repeat complexity can
be defined for specific parts of chromosomes, not just whole chromosomes, the approach should
also be applicable to experiments that utilize target sequencing.

In practice, the right choice of an alignment software depends not only on alignment per-
formance, but also running time, usage of memory, freeness of bugs, and ease of use. Even
considering performance, tweaking parameters can change performance characteristics very
much. In addition, an overview of various strategies for mapping reads to repeats as well as
considerations of sequencing bias were given in [4, 20]. Lam et al. [6] also reported the accuracy
and completeness of whole-genome sequencing platforms upon variant calling. The scope of this
work focuses on default performance of aligners, as we believe they are indicative of different
algorithmic approaches and how these different approaches are affected by the complexity of
genomes.
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