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Abstract

The greatest source of progress in automated theorem proving in the last 30 years has
been the development of better search heuristics, usually based on developer experience
and empirical evaluation, but increasingly also using automated optimization techniques.
Despite this progress, we still know very little about proof search. We have mostly failed
to identify good features for characterizing homogeneous problem classes, or for identifying
interesting and relevant clauses and formulas.

I propose the challenge of bringing together inductive techniques (generalization and
learning) and deductive techniques to attack this problem. Hardware and software have
finally evolved to a point that we can reasonably represent and analyze large proof searches
and search decisions, and where we can hope to achieve order-of-magnitude improvements
in the efficiency of the proof search.

1 Introduction

During the last 30 years, automated theorem provers for first-order logic have reached relative
maturity, with some progress in refining calculi, and significant progress towards more robust
and efficient implementations. However, the greatest source of progress in automated theorem
proving has been the development of better search heuristics. As an example, our recent
paper [18] shows a 60% improvement in the number of proofs found (over the TPTP library [19])
for current clause selection heuristics compared to the simple heuristics that were state-of-the-
art 30 years ago.

Most of the leading modern theorem provers are based on variants of the superposition
calculus with optional negative literal selection [2]. This includes e.g. SPASS [21], Vampire [11,
7], Prover9 [9] and E [14, 15]. These provers are based on saturation, using variants of the
given-clause algorithm. The proof state is represented as a set of first-order clauses, and a
proof by contradiction is attempted by systematically deriving and adding new clauses to this
state. Redundancy elimination (in particular rewriting and subsumption) is used to reduce the
search state and thus the search space. The main heuristic choice points are selection of a good
term ordering for a given proof task, selection of inference literals, or of a selection strategy,
and selection of the given clause, i.e. the clause that is one of the premises of all generating
inferences in a given iteration of the main loop.

Heuristics for these choice points have historically been developed based on developer expe-
rience and hunches, backed by, often extensive, experimental evaluation. However, increasingly

G. Reger and D. Traytel (eds.), ARCADE 2017 (EPiC Series in Computing, vol. 51), pp. 29–32



We know (nearly) nothing! Stephan Schulz

automated or semi-automated mechanisms come into play. Clause selection heuristics for E
have been created using hill-climbing methods [20] and genetic algorithms [12]. Vampire is
using look-ahead to find good literal selection schemes [6]. However, while there is significant
progress, results are still unsatisfactory. In typical cases, only a very small percentage of derived
clauses contribute to the actual proof.

2 Challenge: Using induction to guide deduction

We live in one of two possible realities. In one of these realities, proof search in first-order logic
is inherently unpredictable, even for classes of proof problems of particular interest to users. In
the alternative reality, it is possible, at least in theory, to find strategies that are more likely
than others to succeed on defined classes of problems.

There are several reasons to believe in the second case. The success of manual and semi-
automatic tuning hints that proof search is not entirely unpredictable. There is some existing
work to obtain search control knowledge automatically from examples of successful proofs, using
patterns [3, 16, 4, 13] or neural networks [17, 8], with moderate success.

However, I believe that we have now reached a level of robustness and efficiency of software
and capability of available hardware that such attempts should yield significantly greater re-
wards than in the past. On the deduction side, we can now efficiently extract proof objects and
even largely complete proof search graphs from automated theorem provers [15]. On the ma-
chine learning side, there are now powerful standard algorithms and libraries [10, 1, 5] that can
be used with relatively little effort. And on the hardware level, multi-gigabyte main memory
has become routine even on personal workstations and laptops, and multi-core processors and
modern graphics cards provide unprecedented amounts of computing power.

To make the most of these capabilities, we can be guided by a number of interesting research
questions, including the following:

• How do we represent search control experiences? What are relevant features of the proof
state, of formulas, clauses, terms, and inferences?

• What automated learning methods are likely to be useful? Deep Learning is attractive
because it has already tackled many problems that have been hard to formalize. However,
it requires significant hardware, and even then is quite slow. Also, it is non-trivial to
understand and communicate knowledge from such highly distributed representations.

• Can we represent clauses, formula, proof states, proof problems by relatively small sets of
simple features while maintaining the information necessary for proof guidance? If yes,
how?

• Can we automatically cluster proof problems in a way that problems in a given cluster
have similar search properties? If yes, can we characterize these clusters in a way that
allows us to assign problems to them a-priori?

• Can we dynamically detect if any given proof attempt is unlikely to succeed and switch to
a different strategy? Can we extract useful intermediate results from failed proof attempts
and reuse them, maybe in a way similar to the the mechanisms used by some propositional
CDCL solvers to keep learned lemmata during a restart?
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3 Conclusion

Anyone who has seriously studied mathematics will have made the experience that there are at
least two levels of learning to reason in a given domain. On the one hand, one can consciously
learn and understand the definitions, theorems, and proofs. But, as is obvious from observing
first-year students during open-book exams, this knowledge is not sufficient to effectively per-
form mathematics. There is a second, mostly subconscious level of learning to perform the right
steps at the right place during reasoning, of using the right piece of knowledge in a constructive
way.

I believe that to achieve human-level performance on hard problems, theorem provers like-
wise must be equipped with soft knowledge, in particular soft knowledge automatically gained
from previous proof experiences. I also suspect that this will be one of the most fruitful areas
of research in automated theorem proving. And one of the hardest.
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