
A Unified View of Induction Reasoning for
First-Order Logic

Sorin Stratulat

LITA, Department of Computer Science
Université de Lorraine

Ile du Saulcy, Metz, 57000, FRANCE
sorin.stratulat@univ-lorraine.fr

Abstract

Induction is a powerful proof technique adapted to reason on sets with an unbounded
number of elements. In a first-order setting, two different methods are distinguished: the
conventional induction, based on explicit induction schemas, and the implicit induction,
based on reductive procedures. We propose a new cycle-based induction method that keeps
their best features, i.e., performs local and non-reductive reasoning, and naturally fits for
mutual and lazy induction. The heart of the method is a proof strategy that identifies in
the proof script the subset of formulas contributing to validate the application of induction
hypotheses. The conventional and implicit induction are particular cases of our method.

1 Introduction

Induction is a most successful proof technique to reason on unbounded data structures like nat-
urals and lists. Already known by the ancient greeks and rediscovered by Pascal and Fermat at
the second half of the seventeenth century, it became a precious formal tool for mathematicians
to such an extent that Poincaré considered it at the beginning of the twentieth century as the
mathematical reasoning par excellence [41]. This is also the case for computer science. The
fundamental notion of computable function can be defined in many equivalent models of com-
putation, among which the Turing machines [54] and the (µ-)recursive functions [31]. There is a
strong link between recursion and induction; for example, the correctness of primitive recursive
functions is proved by structural induction on naturals.

After the inception of computers, McCarthy saw an interest for its mechanization and coded
the recursion induction method [37] into Lisp. Later on, Burstall [15] showed the importance of
structural schemata-based induction to verify properties about recursively defined data struc-
tures. Since then, a lot of ‘proof by induction’ methods have been proposed and contributed
to many successful stories about the validation and verification of (critical) user specifications.
Particular remark should be made on the Knuth-Bendix saturation-based completion proce-
dure [32] that opened the way to rewrite-based automated reasoning methods like the induc-
tionless induction [23,25,36,39] and other reductive induction methods as implicit [33,44] and
cyclic induction [46]. Today, it is hardly imaginable a modern theorem prover not integrating
‘proof by induction’ features.

The most general induction principles are the Noetherian induction and its contrapositive
version, the ‘Descente Infinie’ (or Infinite Descent) induction. They allow to prove the validity
of a property φ for any element from a potentially infinite poset (E , <), provided that < is a
well-founded ordering that excludes the occurrence of any infinite strictly decreasing sequence
of elements. The Noetherian induction principle can be formally stated as follows:

326 A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 326–352

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Noetherian induction. (∀m ∈ E , (∀k ∈ E , k < m⇒ φ(k))⇒ φ(m))⇒ ∀p ∈ E , φ(p).

Thanks to the well-founded property of the ordering, the assumptions φ(k), called induction
hypotheses (IHs), can be soundly applied in the proof of the induction conclusion φ(m).

‘Descente Infinie’ induction. (∀m ∈ E ,¬φ(m)⇒ (∃k ∈ E , k < m ∧ ¬φ(k)))⇒ ∀p ∈ E , φ(p).

The soundness proof of a ‘Descente Infinie’ induction principle is by contradiction. If there
exists an element m0 ∈ E such that ¬φ(m0), according to the induction principle, there is a
smaller element m1 such that ¬φ(m1), for which there is an even smaller element m2 such that
¬φ(m2), and so on. In this way, an infinite strictly descending sequence of elements of E is
built. This contradicts the well-foundedness property of the ordering.

In a first-order setting, two useful classes of Noetherian/‘Descente Infinie’ induction instances
are distinguished, for which the elements of E are i) (vectors of) terms, and ii) (first-order)
formulas. The first class includes the conventional induction methods, based on induction
schemas. They explicitly define the induction hypotheses which are linked to the induction
conclusions in order to be used in further derivations. The information justifying the soundness
property is locally embedded inside the induction schemas, hence their natural integration into
deductive, sequent-based inference systems in terms of induction rules. During a proof, it may
happen to define useless IHs or to ask for crucial IHs that are not yet defined. The case of
mutual induction, for which instances of a formula are used as IHs in the proof of other formulas,
and viceversa, is hardly manageable with non-mutual recursion and leads to more technical and
complex proofs.

Implicit induction methods are part of the second class. Formulated in a ‘Descente Infinie’
induction form, a set of formulas are true if for any false formula there is a smaller one. These
methods are lazy since the IHs are defined when needed. In fact, any formula can be applied
as IH to another formula as long as it is smaller, hence implicit induction fits well for mutual
induction. Since any formula from a proof script is susceptible to be an IH, a typical soundness
proof makes a global analysis of the formulas from the proof script. Moreover, their implemen-
tation is based on reductive procedures that transform formula instances into strictly smaller
or, sometimes, smaller or equal ones in every proof step.

Goals. Our main objectives are two-fold: i) to understand the relations between term-
and formula-based induction principles in order to bridge the gap between the underlying proof
methods, and ii) to free the inductive reasoning from computation and make it more effective.

Contributions. We analyse and shed a new light on the relations between the two classes
of induction principles that culminates with an instantiation result which shows that any term-
based induction principle can be represented as a formula-based induction principle. In addition,
we propose a new formula-based induction method that gathers the best features of the existing
methods. It is shown that the conventional and implicit induction are instances of it.

Importance. From a theoretical point of view, the new induction method uniquely synthe-
sizes the overall usage of induction reasoning in first-order logic. From a practical point of view,
it naturally performs lazy and mutual induction. The heart of the method is a proof strategy
that identifies subsets of formulas from the proof script, called cycles, able to discharge IHs.
Therefore, the soundness analysis is local, at cycle level, such that a different induction ordering
may be used for each cycle. Finally, the method is reductive-free, allowing for less restrictive
specifications, more efficient implementations and proof certification processes.

Related works. Musser [39] was the first to compare conventional with inductionless in-
duction methods. Since then, a lot of effort was put into clarifying the relations between explicit

327

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

and implicit induction principles, [16, 22, 27, 30, 40, 56] being among the most notable. Other
studies have been conducted to reduce the gap between them. Protzen [42] proposed a proof
strategy to perform lazy induction on particular explicit induction proofs. Kapur and Subrama-
niam [29] devised a method that extends schemata-based induction to deal with a special class
of mutually defined functions. Courant [18] identified a class of implicit induction inference sys-
tems for which the proofs can be reconstructed into conventional induction proofs. Reddy [44]
designed implicit induction inference rules that look similar to schemata-based induction rules.
This feature has been implemented by subsequent formula-based induction systems [3,6,12] to
generate more compact and readable proofs. Instantiation results similar to ours have been
achieved more recently for particular cases of cyclic proof systems. Sprenger and Dam [46]
have shown the equivalence of two Gentzen-style proof systems for first-order µ-calculus with
explicit approximations; one of them integrates local term-based induction rules, while the other
lacks such induction rules. In turn, the second can build finite ω-regular proof trees for which
the induction reasoning is argued by an external global induction discharge condition associ-
ated to the proof structure. In the same line, Brotherston and Simpson [14] compared two
classical first-order sequent calculus proof systems; the local induction is performed using con-
ventional induction together with a rule that deals with a class of mutual inductive definitions.
In this context, they showed that any proof using local induction arguments can be represented
as a proof using global induction arguments and conjectured that the other direction also holds.

Structure of the paper. The paper has five sections. After the introduction, Section 2 overviews
the term- and formula-based induction proof methods. The features of each presented method
are analysed by the means of different proofs of a very simple running example. Section 3
introduces the new reductive-free formula-based induction method and its properties. Section 4
gives an example that cannot be directly proved neither by explicit nor by implicit induction
techniques, but it can be successfully proved with the new method. It also gives some statistics
about the certification process of implicit induction proofs involved in the validation process of
a non-trivial application. The representation of proofs in the non-reductive form proposed by
the new method can dramatically diminish the number of reductive constraints to be checked.
Section 5 concludes and outlines perspectives.

2 First-order Induction Reasoning

Induction reasoning is helpful when establishing properties about programs and specifications
built from recursively defined domains and data structures. The properties of interest are
inductive, i.e., they are valid only in distinguished term-generated models. However, it is hardly
imaginable to perform inductive reasoning exclusively with reasoning techniques working only
for inductive models. Indeed, the current inductive theorem provers mix them with deductive
techniques that can validate properties in all models.

2.1 Basic notions

Let F (resp. P) be a ranked alphabet of function (resp. predicate) symbols and V a countable
set of variables. T (F ,V) denotes the set of terms over F and V, and T (F) its subset of ground
terms. The expression P (t1, . . . , tn) is an atom, where P ∈ P is an n-ary predicate and t1, . . . , tn
are terms. The set A(P,F ,V) (resp. A(P,F)) denotes the set of atoms over P, F and V (resp.
P and F). Let L represent a decidable set of first-order formulas over A. We denote by Ax
the axioms that build a specification, consisting of formulas from L. New terms and formulas

328

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

can be obtained by substitution operations, representing finite mappings between variables and
terms, of the form {x1 7→ t1, . . . , xn 7→ tn}. A substitution is a renaming substitution if all
substituting terms are variables. In addition, if any substituting variable is the same as the
substituted variable, the substitution is an identity substitution. Given a substitution σ and
a term t (resp. formula φ), tσ (resp. φσ), sometimes written (t, σ) (resp. (φ, σ)), denotes the
instance of t (resp. φ) by the substitution σ. Given two substitutions σ1 and σ2, by ψ(σ1σ2)
we denote (ψσ1)σ2, for any term or formula ψ; σ1σ2 means that σ1 is composed with σ2. We
are referring to ground substitutions if the mapping terms are ground.

Semantically, given a first-order structure S with domain D, we write fS to denote the
interpretation of the symbol f ∈ F in S. The variables are interpreted by a valuation (total)
function from variables of V to D. It can be extended to non-variable terms as follows: if
t(s1, . . . , sn) is a term such that tS : Dn → D is the interpretation of t, its interpretation is
obtained by replacing each of its i) function symbol f by fS , and ii) variable by its valuation.
Every n-ary predicate symbol from P is interpreted as an n-ary relation on D. We write S |=ζ φ
for a formula φ that is true in S using the valuation function ζ. Any interpretation < S, ζ >
satisfying Ax is a model of Ax. A formula φ is a deductive consequence of a set of formulas Φ,
denoted by Φ |= φ, if φ holds in all models of Ax whenever ψ holds in all models of Ax, for any
ψ ∈ Φ. A formula is deductively valid w.r.t. Ax iff it is a deductive consequence of Ax.

Deductive relation. Let P(L) denote recursive sets over L. The recursively enumerable
deductive relation `⊆ P(L)× L satisfies the properties:

• if φ ∈ Ax, then Ax ` φ,

• if Ax ` φ and Ax ⊆ Ax′, then Ax′ ` φ,

• if Ax ` φ and Ax ∪ {φ} ` φ′, then Ax ` φ′, and

• if Ax ` φ, then Ax ` φσ, for any substitution σ.

In practice, the first-order (deductive) systems that implement the deductive relation are
normally sound, i.e., Ax ` φ implies Ax |= φ, and complete, i.e., Ax |= φ implies Ax ` φ, for
any formula φ.

2.2 First-order induction principles

Inductive relations. We are interested in the case when Ax has term-based (Herbrand)
models, i.e., whose valuation functions transform variables into ground terms. A formula φ is
an inductive consequence of the axioms if φ holds in all Herbrand models of Ax. The inductive
theory of Ax consists of all inductive consequences of Ax. In general, it is neither decidable,
nor semi-decidable. For various reasons which depend not only on the nature and form of
the axioms but also on the user’s intuition, monotonicity behavior and operational feasibility
criteria [57], only a non-empty subset of the Herbrand models of Ax is considered. For example,
when Ax is a set of universally quantified Horn clauses with equality, it is convenient to reason
on the unique initial (minimal) model of Ax. The choice of the model subset influences the
way the variables are instantiated during the induction proofs.

In the paper, we consider that such subset, denoted by M, exists and it is already fixed
before performing any induction reasoning. To simplify the presentation, we assume that all
variables are universally quantified. A formula φ is a M - consequence (or just consequence)
of a set of formulas Φ, denoted by Φ |=M φ, if S |=ζ φ whenever S |=ζ ψ, for any ψ ∈ Φ and

329

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

model < S, ζ > fromM. A formula φ isM-valid (or just valid), denoted by |=M φ iff it is a
consequence of Ax. The two notions of consequence relation may coincide for particular cases;
for example, a positive clause φ is an inductive consequence of a set of universally quantified
Horn clauses with equality iff φ is valid in their initial model [24].

A formula φ is false, denoted by 6|=M φ, if it is not valid. Any false formula has (or contains)
at least one false ground instance, called counterexample. It can be easily shown that, for any
formula φ and set of formulas Ψ, if Ψ |=M φ and 6|=M φ then it exists a formula ψ ∈ Ψ such
that 6|=M ψ.

Sufficient completeness. The axioms define very often functions based on constructors
that are sufficiently complete. In this case, the set F is split into defined function (DF) and
constructor (C) symbols. In addition, the models from M are constructor models, i.e., whose
valuation functions transform variables into ground constructor terms from T (C).

A function symbol f ∈ DF is sufficiently complete if any ground term of the form f(t) is
deductively equivalent to a constructor ground term from T (C), where t is a term vector of the
form (t1, . . . , tn) with ti ∈ T (C),∀i ∈ [1..n].

Induction orderings. The induction orderings are assumed to satisfy essential properties re-
lated to well-foundedness and stability under substitutions, as defined below. Well-foundedness
implies the existence of minimal elements.

Lemma 1. Let (E , <) be a well-founded poset. For any non-empty subset of E, there is a
minimal element.

Proof. By contradiction, assume that E has a non-empty subset E ′ without minimal elements,
i.e., for each element of E ′ there is a smaller element in E ′. Let x1 be an arbitrary element of
E ′. Since it is not minimal, it exists an element x2 of E ′ smaller than x1. The same reasoning is
performed on x2, and so on, to finally build an infinite strictly decreasing sequence of elements
of E ′. Contradiction because the ordering is well-founded.

In a first-order setting, the set E may contain an infinite number of elements that can be
either ground terms or ground formulas. An effective reasoning can be pursued only on finite
descriptions of them by the means of terms and/or formulas with variables. Hopefully, this
reasoning can be projected and reused to the ground level when needed if the ordering also
satisfies the property of stability under substitutions, i.e., a smaller comparison result between
two terms (resp. two formulas) does not change after the instantiation of the two terms (resp.
two formulas) with the same substitution, for any substitution.

As a running example, let us prove the conjecture x + 0 = x, for all natural x, using the
axioms 0 + x = x, for any natural x, and S(x) + y = S(x + y), for any naturals x and y, that
define the addition symbol ‘+’ over the naturals based on the constructor symbols 0 and S. ‘=’
is the only predicate symbol and the deductive system is based on equational logic [4]. ‘+’ is
sufficiently complete and the unique model fromM is the initial model of the axioms since it
fits well to reason over naturals.

Let n be an arbitrary natural, hence it is either 0 or a successor of another natural n′. In
the first case, 0 + 0 = 0 is deductively valid as an instance of the first axiom. The second case,
S(n′) + 0 = S(n′), is deductively equivalent to S(n′ + 0) = S(n′) using the second axiom. The
IH n′ + 0 = n′ can help to replace S(n′ + 0) by S(n′) in order to obtain an identity and finish
the proof.

The sound use of n′ + 0 = n′ can be argued by two different instances of the Noetheri-
an/‘Descente Infinie’ induction principles, whether the set E consists of ground terms or ground

330

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

formulas. The underlying induction orderings over (vector of) terms and formulas are generi-
cally denoted by <t and <f , respectively.

Term-based induction. Let φ be a first-order formula defining a property to be checked for
a non-empty set of term vectors E . If

⋃
k∈E,k<tm{φ(k)} |=M φ(m), for any term vector m ∈ E ,

then ∀p ∈ E , |=M φ(p).

Soundness proof. By contradiction, if φ(m) is assumed to be false for some m ∈ E , we define
the non-empty subset E ′ ⊆ E representing all term vectors for which φ is false. By Lemma 1, E ′
has minimal term vectors, and let m′ be such a term vector. The term-based induction rule can
be applied to prove the existence of a term vector from E ′ smaller than m′, so contradiction.

A well-known term-based induction principle is the Peano induction principle: to prove a
formula P (x) for any natural x, it is enough to prove it for P (0) and P (S(x′)), where x′ is
a fresh natural variable. The IH P (x′) can be soundly used in the proof of P (S(x′)) because
x′ < S(x′), where < is the ‘smaller’ relation over the naturals. In our example, P (x) stands for
x+ 0 = x, so P (n′) is the IH for proving P (S(n′)).

On the other hand, the IH n′ + 0 = n′ can also be legitimated by formula-based induction
principles.

Formula-based induction. Let E be a non-empty set of first-order formulas. If for any
formula δ ∈ E ,

⋃
γ∈E,γ<f δ{γ} |=M δ then ∀ρ ∈ E , |=M ρ.

Soundness proof. The Noetherian induction principle presented in the introductory part is in-
stantiated such that E consists of first-order formulas and the predicate φ is the identity relation,
i.e., φ(x) = x, for any formula x ∈ E .

Formulated into a ‘Descente Infinie’ setting, this principle states that a potentially infinite
set of first-order formulas are true if for any false formula there is another formula which is
also false but smaller w.r.t. the well-founded ordering. The proof of this statement is by
contradiction: we assume a false formula in E . We consider the non-empty subset set E ′ of E
consisting of all the false formulas from E . By Lemma 1, there exists a minimal false formula
in E ′ for which there is no smaller false formula, so contradiction.

The formula-based induction principle can be applied if the proof of x + 0 = x has been
generated using some reductive system such that, for any natural x′, x′+ 0 = x′ is smaller than
S(x′ + 0) = S(x′) which is in turn smaller than S(x′) + 0 = S(x′).1 The set E consists of all
formulas encountered in the proof script of x + 0 = x, i.e., {x + 0 = x, 0 + 0 = 0, S(x′) + 0 =
S(x′), S(x′ + 0) = S(x′), S(x′) = S(x′)}. The soundness proof uses a reductio ad absurdum
reasoning at the ground level. By contradiction, we assume that E has a counterexample. Since
the ordering is well-founded, there is a minimal counterexample of it. It can only be an instance
of x + 0 = x because the deductively valid formulas and the formulas deductively equivalent
with but greater than x+ 0 = x cannot have minimal counterexamples. Let it be n′ + 0 = n′,
for some natural n′. n′ should be of the form S(n′′) since 0 + 0 = 0 is deductively true. In
the proof script, S(x) + 0 = S(x) is transformed into the smaller equality S(x+ 0) = S(x), for
any natural x, so S(n′′+ 0) = S(n′′) is a smaller counterexample thanks to the ‘stability under
substitutions’ property of the ordering. In the next step of the proof script, S(x+ 0) = S(x) is

1Such an ordering over equalities can be the multiset extension of the rpo ordering based on the increasing
precedence over the function symbols 0, S, and +.

331

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

transformed into an identity using x+ 0 = x, for any x. Instantiating x with n′′, we conclude
that n′′+ 0 = n′′ should be false. We get a contradiction since n′′+ 0 = n′′ is a counterexample
of x+ 0 = x, smaller than n′ + 0 = n′.

2.3 Term-based induction principles

Most of the term-based induction principles promote eager induction, an approach that defines
the IHs (sometimes long) before their use by means of (explicit) induction schemas [2] usually
resulted from the recursion analysis of recursively defined functions. Given a formula, an
induction schema firstly identifies a subset of its variables to be instantiated, called induction
variables, then defines the IHs as well as the induction conclusions as instances of the formula.
The IHs associated to an induction conclusion are explicitly added to its conditions and are
expected to participate in further developments of the proof. Some variables from the terms
instantiating the induction variables are shared between the induction conclusions and their
associated IHs.

A well-known example of ‘induction schema’-based induction principle that fits well for
constructor-based sorted specifications is the structural induction [38], which generalizes the
Peano and mathematical inductions.

Structural induction. Let φ be a formula to be checked for the elements of a sort S. If
∀f : S1, . . . , Sn → S ∈ C,∀x1, . . . , ∀xn, {φ(xi1) ∪ . . . ∪ φ(xik)} |=M φ(f(x1, . . . , xn)) then
∀p ∈ S, |=M φ(p), where the variables xi1 , . . . , xik are those variables among x1, . . . , xn that
have the sort S.

Soundness proof. The structural induction principle exploits the fact that x is structurally
smaller than f(. . . , x, . . .). The term-based induction principle is applied further.

In turn, it is generalized by the ‘cover set’ induction [58] which is inspired from the idea
of [10] according to which the induction schema is built from the recursive definition of the func-
tion appearing in the conjecture to be proved. The cover-set induction principle assumes that a
sort is characterized, or covered, by a finite set of terms called (term) cover-set. The cover-set
notion can be generalized to a set of term vectors that cover a product of sorts S1 × S2 ×
Formally, {t1, . . . , tn} is a cover set of the product of sorts E if, for any formula φ, whenever
6|=M φ(u), for some term vector u ∈ E , it exists j ∈ [1..m] and a substitution σ such that
tjσ ≡ u, where ≡ is the (syntactical) identity relation.

Cover-set induction. Let Ψ be a non-empty cover set {t1, . . . , tm} of the product of sorts E
and φ a formula to be checked for the elements of E . If

⋃
k∈E,k<tt{φ(k)} |=M φ(t), for any term

vector t ∈ Ψ, then ∀p ∈ E , |=M φ(p).

Soundness proof. By contradiction, assume that ∃p′ ∈ E such that |=M φ(p′) is false. We
consider E ′ ⊆ E defined as {p | p ∈ E , |=M φ(p) is false}. E ′ is not empty since p′ ∈ E ′. By
the well-foundedness property of <t and Lemma 1, there is a minimal term vector u ∈ E ′ such
that 6|=M φ(u). By the definition of the term cover set, it exists j ∈ [1..m] and a substitution
σ such that tjσ ≡ u. On the other hand,

⋃
k∈E,k<ttj{φ(k)} |=M φ(tj). By the ‘stability under

substitutions’ property of <t, we have
⋃
k∈E,kσ<ttjσ{φ(kσ)} |=M φ(tjσ). Since 6|=M φ(tjσ), it

exists k′ ∈ E such that k′ <t u and 6|=M φ(k′). Therefore, k′ ∈ E ′. Contradiction with the
minimality of u.

332

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

The main shortcomings of the schemata-based approaches are related to the management
of the IHs, when: i) the generated IHs do not contribute to the proof, and ii) the IHs that are
required at some point of the proof are not yet generated or impossible to be defined with the
‘recursion analysis’ method. Its main advantage is the local scope of the induction ordering,
at the level of the induction schema. This allows for flexibility in the ordering management
during a proof; the ordering constraints are checked only when defining the induction schemas
and, on the other hand, a different induction ordering may be used for each induction schema.
Moreover, the schemata-based induction can be easily integrated into sequent-based deductive
systems in terms of sound inference rules.

Another shortcoming is the treatment of mutual induction which cannot be directly per-
formed because the induction conclusion and its attached IHs are instances of the same formula.
However, several partial solutions have been proposed. Boyer and Moore [11] build the induc-
tion schema from a new function that calls the mutually defined functions according to the
value of an extra argument. Sometimes, the conjecture should be strengthened or auxiliary
lemmas about the mutually defined functions should be provided by the users. A more au-
tomatic solution has been provided by Kapur and Subramaniam [29] to deal with a class of
mutually recursive functions that can transform the mutual recursion into simple recursion by
unrolling the cover sets and expanding the function definitions. The multi-predicate induction
schemas proposed by Boulton and Slind [9] have one predicate for each of the mutually recursive
functions and avoid the need for expanding the functions into a single function. However, if
the conjecture embeds different recursive function symbols the induction schemas have to be
combined [10].

2.4 Formula-based induction principles

Inductionless induction, also known as proof by consistency, is the first proof method integrating
formula-based induction. Proposed by Musser in [39], it uses the saturation-based Knuth-
Bendix’s completion algorithm [32] to prove inductive properties. The method can prove a set
of equalities as consequences of a consistent set of equality axioms by i) adding them to the
axioms, ii) orienting the new set of equalities into rewrite rules, and ii) showing their consistency
if the completion algorithm saturates, i.e., until no new2 equality is generated. As time went
by, the method has been improved [5, 19, 21, 25, 26, 28, 35]. For an overview of inductionless
induction, the reader may consult [16,17].

By clearly separating the axioms from the formulas to be proved, the implicit induction in-
ference systems are reductive procedures, many of them being rewrite-based and saturation-free.
Initially, Reddy [44] proposed a proof method called term rewriting induction, implemented by
an inference system which computes formula cover-sets. They are issued from the instantiation
of some variables of a formula with a term cover-set associated to the product of their sorts de-
fined in terms of cover substitutions. Each formula instance is reduced afterwards with rewrite
rules from the axioms; in this way, whenever the formulas from the formula cover-set are valid,
the covered formula is also valid. Bachmair [5] showed that formula cover sets are fundamental
for the proofs by consistency. This is also true for the proofs by implicit induction. In the
following, we refine formula cover sets as (general) cover sets and strict cover sets. Formally,
Σ = {σ1, . . . , σn} is a set of cover substitutions of a formula φ(x) if the set of mapping term
vectors built for each substitution from Σ is a term cover set of the (product) sort of x. A set of
formulas {φ1, . . . , φn} is a formula cover set (resp. strict formula cover set) of a formula φ built
on the set of cover substitution {σ1, . . . , σn} if φi |=M φσi and φi ≤f φσi (resp. φi <f φσi),

2w.r.t. some redundancy criteria.

333

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

for any i ∈ [1..n].
The term rewriting method does not need to be refutationally complete, as required by [5],

and the specifications may not be ground confluent in order to prove inductive properties.3
Kounalis and Rusinowitch [34] went even further and proposed a completion-free induction
technique based on test-sets [28].

To simplify the rest of the presentation, we will denote the ordering over formulas <f by <
and refer to (strict) formula cover sets as (strict) cover sets, if otherwise stated.

Term-rewriting induction. Let {φσ1, . . . , φσn} be a set of instances of the formula ∀x ∈
E , φ(x) built from the cover-substitutions σ1, . . . , σn, respectively. If ∀i ∈ [1..n],

⋃
φθ<φσi

φθ |=M
φσi then ∀x ∈ E , |=M φ(x).

Soundness proof. By absurd, assume that ∀i ∈ [1..n],
⋃
φθ<φσi

φθ |=M φσi but it exists u ∈ E
such that 6|=M φ(u). We consider E ′ defined as {φθ | 6|=M φθ}. E ′ is not empty since
φ(u) ∈ E ′. Since < is well-founded, there is a minimal instance φτ in E ′, by Lemma 1. Also,
σ1, . . . , σn are cover-substitutions for φ, so there exist j ∈ [1..n] and a substitution ε such
that φτ ≡ φσjε and 6|=M φσjε. Since

⋃
φθ<φσi

φθ |=M φσi for all i ∈ [1..n], this is also
true for j, so

⋃
φθ<φσj

φθ |=M φσj . By the ‘stability under substitutions’ of <, we have⋃
φθε<φσjε

φθε |=M φσjε. On the other hand, 6|=M φσjε, so there is a substitution θ′ such that
6|=M φθ′ε and φθ′ε < φσjε(≡ φτ). Contradiction with the minimality of φτ .

The term-rewriting induction principle cannot directly perform mutual induction reasoning
because all the involved formulas are instances of only one formula. It has been superseded by
the implicit induction principle, as suggested in [34] and formally presented in [13].

Implicit induction. Let E be a set of formulas and assume that for any formula δ ∈ E ,⋃
γ∈E,γ<δ{γ} |=M δ. Also, let φ be a formula to be checked for a non-empty set S of term

vectors. If ∀p ∈ S, φ(p) ∈ E then ∀p ∈ S, |=M φ(p).

Soundness proof. By the formula-based induction principle, any formula δ from E holds. Since
∀p ∈ S, φ(p) ∈ E , then ∀p ∈ S, |=M φ(p).

In practice, the implicit induction technique is applied on the set E of all instances of the
formulas encountered in a proof derivation. The formula φ(p) is one of its initial conjectures
and the ordering constraints from the relation ∀δ ∈ E ,

⋃
γ∈E,γ<δ{γ} |=M δ are guaranteed by

reductive inference systems. They consist of inference rules representing transitions between
states consisting of pairs of sets of formulas of the form (E,H), where E are conjectures and H
are premises. By applying an inference rule, one of the conjectures, called current conjecture, is
firstly transformed into a (potentially empty) set of new conjectures, then it may be added to the
set of premises in order to participate to further transformations. A derivation is a successive
application of inference rules. A proof of a set of formulas E0 produced with the inference
system I is a finite n+ 1-state derivation of the form (E0, ∅) `I (E1, H1) `I . . . `I (∅, Hn).

An inference system is sound if the minimal counterexamples are persistent in any derivation,
i.e., whenever the current conjecture has a minimal counterexample, an equivalent one exists
in the set of conjectures from a future state.

Theorem 1. Let I be a sound inference system. For any proof (E0, ∅) `I . . . `I (∅, Hn), we
have |=M E0.

3However, these properties are required to refute conjectures.

334

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Proof. By contradiction, assume that E0 has a false formula, hence a counterexample. By
Lemma 1, in the set E there exists a minimal counterexample φ. Since I is sound, this coun-
terexample is persistent and should be among the ground instances of the conjectures from the
last state of the proof. Contradiction, since the proof finishes with an empty set of conjec-
tures.

A simple sound inference system is If :

Generate: (E ∪ {φ}, H) `If (E ∪Ψ, H ∪ {φ}),
where Ψ is a strict cover set of φ.

Simplify: (E ∪ {φ}, H) `If (E ∪ Φ, H),
if (E ∪ Φ ∪H)≤φ |=M φ.

By Ψ≤ψ (resp. Ψ<ψ) are denoted the instances of formulas from Ψ that are smaller than or
equal to (resp. strictly smaller than) ψ. The Generate rule replaces the current conjecture
with a strict cover set of it, then adds it to the set of premises. Simplify replaces φ from the
state (E ∪ {φ}, H) with Φ if φ is a consequence of the set of IHs (E ∪ Φ ∪H)≤φ.

Lemma 2. The premises from any If -derivation starting with an empty set of premises do not
have minimal counterexamples.

Proof. Let us notice that the premises from any derivation that starts with an empty set
of premises are added exclusively by Generate. By contradiction, assume that Generate
applies on a current conjecture φ that has a minimal counterexample φτ . By definition, the
strict cover set Ψ for φ has a formula γ that covers φτ , i.e., there is a cover substitution
σ and another substitution ε such that φσε ≡ φτ and

⋃
γ<φσ{γ} |=M φσ. Thanks to the

‘stability under substitutions’ property of <, we have
⋃
γε<φσε{γε} |=M φσε. On the other

hand, 6|=M φσε. Therefore, there is a ground instance from Ψ which is a counterexample
smaller than φτ . Contradiction.

Theorem 2 (Soundness of If). If is sound for any derivation starting with an empty set of
premises.

Proof. Assume that a conjecture φ has a minimal counterexample φτ . Generate cannot be
applied on φ, by Lemma 2. If Simplify is applied to φ in the state (E ∪ {φ}, H), we have
(E ∪ Φ ∪ H)≤φτ |=M φτ . Again by Lemma 2, H cannot have minimal counterexamples.
Therefore, a minimal counterexample equivalent to φτ should exist in the conjectures E ∪ Φ
from the next state.

If is an inference system that abstracts the computation, hence it cannot be used in prac-
tice. Its main role is to capture the induction reasoning by defining the formulas that can be
used as IHs during a proof. Its concrete implementations show how the current conjecture is
transformed, by the means of adequate reasoning techniques that may use the IHs defined by
the implemented (abstract) inference rules. In addition, any such concrete implementation of
If is sound since If has been shown sound by Theorem 2. The equality x + 0 = x from the
running example can be proved with the inference system Ifc that allows to reason on equalities
containing natural variables:

335

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

GenNat (G): (E ∪ {φ}, H) `Ifc (E ∪ {φ1, φ2}, H ∪ {φ}),
where φ has a natural variable that is instantiated by 0

and S(x′) and x′ is a fresh variable; φ1, φ2 are
the result of rewriting the instances of φ with axioms.

SimpEq (S): (E ∪ {φ}, H) `Ifc (E ∪ Φ, H),
if either i) φ is a tautology; in this case Φ is empty;
or, ii) φ is rewritten to ψ with rewrite rules from
Ax ∪ (E ∪ Φ ∪H)≤φ; in this case, Φ is {ψ}.

GenNat builds a strict cover set of an equality integrating a natural variable by firstly
replacing the variable by 0 and the successor of a fresh natural variable, then rewriting the two
instances by the rewrite rules resulted from orienting the axioms from left to right whenever
the lhs is greater than the rhs. The rewriting results are stored as new conjectures and the
equality as a new premise. Therefore, it implements Generate. On the other hand, SimpEq
implements Simplify. It either deletes the tautologies or performs rewrite operations based on
the same ordering over equalities mentioned in the footnote of Subsection 2.2, and on the IHs
defined by Simplify.

The equality x+0 = x can be proved with Ifc , as follows: ({x+ 0 = x}, ∅) `G
Ifc

({0 = 0, S(x′+

0) = S(x′)}, {x+0 = x}) `S
Ifc

({S(x′ + 0) = S(x′)}, {x+0 = x}) `S
Ifc

({S(x′) = S(x′)}, {x+0 =

x}) `S
Ifc

(∅, {x+ 0 = x}). In the derivation, the current conjectures from every state are under-
lined. The induction reasoning is performed during the second last SimpEq application: the
instance x′+0 = x′ of the premise x+0 = x is applied as IH in order to reduce S(x′+0) = S(x′)
to the identity S(x′) = S(x′). Since Ifc is an instance of If , it is sound, so x+ 0 = x is valid in
the initial model of Ax, by Theorem 1.

We present another inference system, denoted by Ifs , that instantiates If . It integrates the
saturation-based inference rule ConjSup:

ConjSup (Cs): (E ∪ {φ}, H) `Ifs (E ∪ ∪ni {φi}, H ∪ {φ}),
where φi = φ[ri]pσi for any rewrite rule li = ri from
Ax such that σi = mgu(φ|p, li) and φ|p, with i ∈ [1..n]

ConjSup is adapted from [17] to perform conjecture superposition on a set of axioms that
is saturated under superposition and equality reasoning. It firstly chooses from an equality φ
one of the non-variable subterms φ|p at a position p, then unifies it with the left hand sides of
all rewrite rules from the axioms. Any time the unification process is successful, the subterm is
replaced by the corresponding unification instance of the right-hand side of the rewrite rule and
the resulted equality becomes a new conjecture. If the set of new conjectures is not empty, the
current conjecture is saved as premise. φ[ri]p indicates that φ has the subterm ri at position p.
In [48,49], it has been shown that ∪ni {φi} from similar superposition-based inference rules is a
strict cover set of φ, as it is the case for ConjSup.

The Ifs -proof of x + 0 = x starts by applying the rule ConjSup on the subterm x + 0 of
x+ 0 = x. Since x+ 0 unifies with the left-hand sides of the two axioms defining ‘+’, the new
conjectures are 0 = 0 and S(x′ + 0) = S(x′), where x′ is a fresh variable. x+ 0 = x is added to
the premises, to finally obtain a result similar to that of GenNat in the precedent Ifc -proof.
The rest of the proof can be successfully done as for the Ifs -proof if Ifs integrates a rule like
SimpEq.

336

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Different sound abstract reductive systems exist in the literature. If is very similar to the
Implicit Induction procedure from [13], which is a generalization of the hierarchical induction
procedure from [44] and of the inductive procedures for conditional equalities from [7, 12, 34].
A very general inference system was proposed in [47], based on the notion of contextual cover
set, that generalizes those of cover set and strict cover set. It is conducted by a methodology
to build sound implicit induction procedures using the compositional properties of contextual
cover sets. The methodology also allowed to represent saturation-based inference systems as
instances of the general inference system [48, 49]. It witnesses that the implicit induction and
saturation-based procedures share the same logic. This is not surprising since Bachmair [5]
and Reddy [44] already shown that the set of critical pairs generated by completion can build
(strict) cover sets.

When dealing with equality reasoning, the reductive constraints between the current and
new conjectures can be implicitly satisfied by the reductive inference rules if the equational
specifications are represented in terms of rewrite systems and the IHs are orientable, as for the
inductionless induction methods. Various solutions have been proposed to partially weaken the
constraints related to IHs. In [50], the proposed method allows for relaxed rewriting [7] to deal
with unorientable IHs by integrating explicit induction schemas when building cover sets. It
covers the term [44], ordered [20], enhanced and incremental [1] rewriting induction procedures.

The formula-based induction reasoning can involve instances of different formulas, which
makes easy the management of mutual induction [51]. As shown below, any term-based induc-
tion principle can be represented as formula-based one but the instantiation constraints are so
strong that the ability to perform mutual induction is lost. This instantiation result argues
a certain resemblance between (parts of) implicit and conventional induction proofs, firstly
advocated in Musser’s paper [39]. For example, the If -proof of the running example is very
similar to the term-based induction version; as for an explicit induction schema, Generate
instantiates variables and adds the current conjecture in the set of premises, but the resem-
blance stops here. [46] and [14] include similar instantiation results. Also, the formula-based
induction procedures can perform lazy induction such that the IHs are provided by request.
For example, during any of the proofs of x+ 0 = x with formula-based induction methods, the
smaller instances of previous conjectures to be applied as IH are needed to be known only at
the moment of their application.

Theorem 3. Any term-based induction principle can be represented as a formula-based induc-
tion principle.

Proof. Let us consider a term-based induction principle that proves the validity of a for-
mula φ for all term vectors from a non-empty set E , i.e., if for any term vector m ∈ E ,⋃
k∈E,k<tm{φ(k)} |=M φ(m) then ∀p ∈ E , |=M φ(p). Let E ′ be the set {φ(p) | p ∈ E}. The

equivalent formula-based induction principle can be stated as: if for any formula φ(m) ∈ E ′,⋃
φ(k)∈E′,k<tm{φ(k)} |=M φ(m) then we have |=M φ(p), ∀φ(p) ∈ E ′, where the weight of the

formula φ(k) is that of k in the term ordering.

Corollary 1. Any term-based induction proof can be justified with formula-based induction
arguments.

In some cases, the implicit induction proofs are more automatic than those based on conven-
tional induction [8], in other cases the contrary happens [29]. Further analyses and comparisons
have been conducted in [16,22,27,30,40,56].

337

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

3 A New Formula-based Induction Method
The features of formula- and term-based induction proof techniques mutually complement each
other. In the following, we propose a new induction proof method which preserves the ad-
vantages of conventional and implicit induction techniques. The heart of the method is the
DRaCuLa strategy, designed for performing:

• ‘Descente Infinie’ / Noetherian formula-based induction,

• Rarefied ordering constraints by reductive-free induction,

• Customized term-based induction, and

• Lazy and mutual induction.

A DRaCuLa-based inference system consists of a set of inference rules representing tran-
sitions between sets of conjectures. We introduce the inference system D made of three non-
reductive abstract inference rules:

Deduction (D): E ∪ {φ} `D E ∪ Φ,
if Φ |= φ.

Split (S): E ∪ {φ} `D E ∪ Φ,
if Φ is a cover set of φ with at least two elements.

Induction (I): E ∪ {φ} `D E ∪ Φ,
if Φ ∪Ψ |=M φ and Ψ is a non-empty set of
checked IHs.

Deduction (resp. Split) replaces the current conjecture by new formulas for which it is
a deductive consequence (resp. by one of its cover sets). In addition, Split is intended to deal
with variable instantiations during a proof derivation, hence the requirement for the cover set
to have at least two elements. Induction treats the case when IHs are needed to build the new
conjectures, but it can be applied only when the IHs are checked according to the DRaCuLa
strategy.

It is assumed that each conjecture φ has attached a history consisting of a list of conjecture
instances represented as pairs (φi, σi) and involved in producing φ. Formally, it is denoted by
−−−−−−−−−−−−−−→
...(φi,σi)(φi+1,σi+1)...

φ, where the history is shown under the horizontal arrow pointing to φ.

The time flows from left to right, for example φi was created before φi+1. The conjectures from
the history of φ are its ancestors. Each instantiating substitution from the history is an identity
substitution, excepting when Split is applied. For this case, the cover substitution involved
in producing φ is considered instead. The offsprings of a formula φ are all formulas from a
derivation having φ in the history. In addition, φ has attached a set of IHs to be checked before
Induction can be applied.

The DRaCuLa proof strategy. When a proof starts, the history and the set of attached IHs
for each conjecture from the set of initial conjectures E0 are empty. The DRaCuLa strategy
mingles proof development, as implemented by the procedure ‘Develop’ (see Algorithm 1),
with IH checking performed by the function ‘Check’ (see Algorithm 2). Algorithm 1 applies D-
inference rules one by one starting from E0. The application of any Induction rule E∪{φ} `ID
E ∪ Φ attaches the set Ψ of IHs to φ and is delayed until all IHs from Ψ are checked. In this
case, φ is in stand-by and no other rule rule can be applied to it as long as the set of attached

338

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

. . .∪ {
θ1=σ

1
1 ...σ

m1
1−−−−−−−−−−−−−→

(φ1
1,σ

1
1)...(φ

m1
1 ,σ

m1
1)

φ1} `ID . . . ∪ Φ1 s.t. (φ12, δ2) ∈ Ψ1

δ2

ww. . .∪ {
θ2=σ

1
2 ...σ

m1
2−−−−−−−−−−−−−→

(φ1
2,σ

1
2)...(φ

m2
2 ,σ

m2
2)

φ2} `ID . . . ∪ Φ2 s.t. (φ13, δ3) ∈ Ψ1

δn ...

ww. . .∪ { θn=σ
1
n...σ

m1
n−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φ

m1
n ,σ

m1
n)

φn} `ID . . . ∪ Φn s.t. (φ11, δ1) ∈ Ψn

δ1

II

Figure 1: A cycle for checking n IHs.

IHs is not completely checked. Any IH is an instance (φ1, δ), where φ1 is a previous conjecture
encountered in the derivation. Two cases may arise for successfully checking (φ1, δ): i) if φ1 was
already proved, i.e., φ1 has no offsprings in E, and ii) if (φ1, δ) is part of a cycle built from φ and
other conjectures in stand-by. Otherwise, the proof keeps developing other conjectures, hoping
that the newly added conjectures build cycles that successfully check (φ1, δ). The proof process
successfully finishes when the set of conjectures becomes empty. Also, the proof development
may be blocked if all conjectures from the current state are in stand-by. In practice, the deadlock
can be avoided since other rules like Split and Deduction can be applied on the stand-by
conjectures if the set of attached IHs is reinitialized. Finally, a proof may run infinitely if a
crucial IH cannot be checked.

Definition 1 (n-cycle). Let us consider n conjectures φ1, . . . , φn such that, for each i ∈ [1..n],

φi is explicitly represented with its history chunk involved in the cycle as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i)...(φ

mi
i ,σ

mi
i)

φi

and has attached the IH (φ1
(i+1) mod n

, δ(i+1) mod n). The n conjectures form a n-cycle if

φ1
(i+1) mod n

δ(i+1) mod n is smaller than φ1i θi, for any i ∈ [1..n].

Figure 1 illustrates a n-cycle. The relation between the conjecture attaching an IH and
the IH is graphically represented with a non-horizontal arrow. The cumulative substitution
θi written above the horizontal arrow pointing to a conjecture φi allows to produce it from
φ1i θi using a Split-free derivation, for any i ∈ [1..n]. The main strength of the method is the
fact that the induction reasoning involves only ordering constraints between instances of the
conjectures starting the history chunks.

Building cycles. The cycle identification process may be costly if there are considered all
the permutations built from subsets of the stand-by conjectures from the current state. Since
each permutation represents a potential cycle, all the ancestors of the conjectures from the
permutation may be tested to satisfy the ordering constraints. A more efficient alternative that
avoids this combinatorial explosion problem is to build cycles incrementally and by need, as
follows. Anytime a new IH (φ, δ) attached to a conjecture φ0 is about to be checked and φ
is not yet proved, the strategy for choosing the current conjecture privileges the offsprings of
φ from the current state that already participate in the cycle. If the corresponding ordering

339

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Algorithm 1 Develop(E): applies successively D-inference rules to build a proof of the con-
jectures from E

while E is not empty do
IHS := {ψ | ∃φ ∈ E that attached the unchecked IH ψ}
choose φ ∈ E with no unchecked IHs
choose an inference rule to apply on φ
if the set of IHs attached to φ is not empty then
the chosen inference rule should be Induction

else
if Induction was chosen with the set Ψ of IHs then
assign as unchecked and attach all IHs from Ψ to φ
IHS := IHS ∪ Ψ

end if
end if
if the chosen inference rule is Induction then
ok_IHs := ∅
for all (φ1i , δi) ∈ IHS do
offsprings_φ1i := {φ′ | −−→

hist
φ′ ∈ E and φ1i ∈ hist}

if offsprings_φ1i is empty then
ok_IHs := ok_IHs ∪ {(φ1i , δi)} {φ1i was proved}

end if
end for
ok_IHs := Check(IHS \ ok_IHs, E) ∪ ok_IHs
mark all IHs from ok_IHs as checked

end if
if all attached IHs to φ are checked then
apply the chosen inference rule E ∪ {−−→

hist
φ} `D E ∪ Φ

attach to each conjecture from Φ an empty set of IHs
if inference rule is Split then
update any cover instance φ′ ≡ (φ, σ) to −−−−−−→

hist;(φ,σ)
φ′

else
update each φ′ ∈ Φ to −−−−−−−→

hist;(φ,σid)
φ′, where

σid is the identity substitution instantiating all variables of φ.
end if
E := (E\{φ}) ∪ Φ

end if
end while

340

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Algorithm 2 Check(IHS, E): identifies cycles based on IHs from IHS and conjectures from E

Ensure: return all IHs from the identified cycles
ok_IHs := ∅
repeat
find a non-empty list of n conjectures φ1, . . . , φn from E, −−−−−−−−−−−−−−→

...(φ1
i ,σ

1
i)...(φ

m1
i ,σ

m1
i)

φi, i ∈ [1..n]

if (φ11, δ1) ∈ IHS and is attached to φn and φ11δ1 is smaller than φ1nθn, where θn is the
cumulative substitution σ1

n . . . σ
mn
n then

if n == 1 then
{ 1-cycle is found !}
ok_IHs := ok_IHs ∪ {(φ11, δ1)}
IHS := IHS \ {(φ11, δ1)}

else
if for each i ∈ [1..n − 1]: (φ1i+1, δi+1) ∈ IHS and is attached to φi, and φ1i+1δi+1 is
smaller than φ1i θi, where θi is the cumulative substitution σ1

i . . . σ
mi
i then

{n-cycle (n > 1) is found !}
ok_IHs := ok_IHs ∪ ∪ni=1 {(φ1i , δi)}
IHS := IHS \ ∪ni=1 {(φ1i , δi)}

end if
end if

end if
until no cycle is found
return ok_IHs

constraints are satisfied, the cycle is built. Otherwise, the ordering constraint related to the
conjecture initiating the history chunk of φ0 will be verified. If it is satisfied, a new history
chunk starting with φ is added to the cycle. In this case, the proof of the offspring of φ continues
to be developed until either it is proved, or a new IH required during the proof development is
to be checked as previously. If the ordering constraint is not satisfied, Induction cannot be
applied on φ and the proof of φ continues to be developed either by checking other IHs or by
applying a rule other than Induction.

Definition 2 (D-proof). Any D-derivation built by Develop(E0) and finishing with an empty
set of conjectures is a D-proof of E0, for any set of conjectures E0.

Theorem 4 (soundness of D). For any set of conjectures E0, if there is a D-proof of E0 then
|=M E0.

Proof. By contradiction, assume that there is φ0 ∈ E0 such that 6|=M φ0. Since Develop(E0)
builds a derivation that finishes with an empty set of conjectures, there is a last step in the
derivation when a false conjecture, denoted by φ′, was processed. The applied rule is neither
Deduction, nor Split because another false conjecture would be in the next step. So In-
duction has to be applied on φ′. The derivation should include at least one cycle checking
IHs attached to false conjectures such that the new conjectures resulted from the application
of the Induction rules from the cycle are true. Otherwise, the derivation does not perform
inductive reasoning. More exactly, it can be transformed into a hierarchy of deductive proofs
of conjectures from the proof of E0, where the IHs are lemmas resulted from previously (de-
ductively) proved conjectures, as follows. All the proofs that did not use IHs are at the bottom
of the hierarchy, so they are true. The next upper level in the hierarchy consists of all proofs

341

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

using as lemmas the conjectures proved at the bottom level, so they are true, too. And so
on, by stepping up in the hierarchy level by level, the current level proofs use as lemmas only
conjectures proved at a lower level. The hierarchy is bounded since the proof of E0 has a finite
number of conjectures. It results that all conjectures from the proof of E0, including φ0, are
true. Contradiction, since φ0 is false.

A classical induction reasoning will be performed on the number of cycles checking IHs
attached to false conjectures in the proof of E0.

The base case: We assume that there is only one n-cycle checking IHs attached on
false conjectures such that for each i ∈ [1..n], φi is explicitly represented in the cycle

as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i)...(φ

mi
i ,σ

mi
i)

φi and has attached the IH (φ1
(i+1) mod n

, δ(i+1) mod n). Moreover,

φ1
(i+1) mod n

δ(i+1) mod n is smaller than φ1i θi, for any i ∈ [1..n].

Any false instance of φ0 should lead to one of the conjectures from the n-cycle, otherwise
an extra cycle including false conjectures should exist in the proof. More exactly, for any
counterexample φ0τ0, there is a conjecture φ from the n-cycle whose history is of the form
−−−−−−−−−−−−−−−−−→
(φ0,σ0)(φ1,σ1)......(φp,σp)

φ and φ0τ0 is an instance of φ0σ0. Moreover, any conjecture instance

φiθi is false, where θi is the cumulative substitution between φi and φ, for all i ∈ [1..p].
Otherwise, an extra cycle including false conjectures should exist in the proof, which leads to a
contradiction.

W.l.o.g, we assume that φ is represented in the n-cycle by φn and the Induction rule applied
on φn is En ∪ {φn} `ID En ∪Φn using the non-empty set Ψn of IHs such that Φn ∪Ψn |=M φn
and 6|=M φn. Φn is valid, otherwise there is an extra cycle including false conjectures which is
applied in the proof of Φn. Since Φn is valid and Φn ∪ Ψn |=M φn, there is a false IH in Ψn.
We can show that the IHs from Ψn, different from (φ11, δ1), are true. More exactly, if (ψ, δ)
is such an IH, it cannot be proved only with deductive reasoning, so there should exist a new
cycle checking ψ. This cycle cannot have false conjectures, so it includes neither φn nor any
false offsprings of ψ. Therefore, ψ is true, which also holds for ψδ. We conclude that (φ11, δ1) is
the only false IH attached to φn.

The history chunk of φn is represented in the n-cycle as
θn=σ

1
n...σ

mn
n−−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φ

mn
n ,σmnn)

φn. Since φ1nθn

is false, let φ1nθnτ be a minimal counterexample of it. Moreover, φnτ is a counterexample
because no cycle including false conjectures can be built on the path leading from φ1nσ

1
n to φn.

Thanks to the ‘stability under substitutions’ property of the induction ordering, we deduce that
φ11δ1τ is false and smaller than φ1nθnτ . For similar reasons, it cannot be proved outside the
n-cycle, so it is an instance of φ11θ1. Let this false instance be φ11θ1τ1 such that φ11θ1τ1 ≡ φ11δ1τ .
A similar reasoning is performed on φ11θ1τ1 as for φ1nθnτ to show that there is a false instance
φ12θ2τ2 ≡ φ12δ2τ1 which is smaller than φ11θ1τ1. And so on, there is a false instance φ1nθnτn ≡
φ1nδnτn−1 which is smaller than φ1n−1θn−1τn−1. By the transitivity of the ordering, we have
that φ1nθnτn is smaller than φ1nθnτ . Moreover, it is false, so contradiction with the minimality
assumption of φ1nθnτ .

The step case: We assume that Develop(E0) has produced a proof having m (> 1) cycles
including false conjectures. By induction hypothesis, any proof using a smaller number of cycles
with false conjectures is sound.

We follow a reasoning similar to that employed for the base case. We will focus on the last
generated cycle from the proof of E0 having false conjectures. Assuming that it is built from

n (> 1) conjectures, each φi with i ∈ [1..n] is explicitly represented as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i)...(φ

mi
i ,σ

mi
i)

φi

342

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

and has attached the IH (φ1
(i+1) mod n

, δ(i+1) mod n). Moreover, φ1
(i+1) mod n

δ(i+1) mod n is

smaller than φ1i θi, for any i ∈ [1..n].
It can be noticed that any false instance of φ0 should lead to one of the conjectures from the

n-cycle, otherwise the proof of such a false instance should have ‘less than m’ cycles having false
conjectures since the last cycle is not included in the proof. By the induction hypothesis, the
proof is sound, so contradiction with the assumption that the instance of φ0 is false. Therefore,
for any counterexample φ0τ0 that is instance of φ0σ0, there is a conjecture φ from the n-cycle
whose history is of the form −−−−−−−−−−−−−−−−−→

(φ0,σ0)(φ1,σ1)......(φp,σp)
φ. In addition, any conjecture instance φiθi

is false, where θi is the cumulative substitution between φi and φ, for all i ∈ [1..p]. Otherwise,
φ0τ0 can be proved with ‘less than m’ cycles having false conjectures, so contradiction.

Again, we assume that φ is represented in the n-cycle by φn and the Induction rule applied
on φn is En ∪ {φn} `ID En ∪Φn using the non-empty set Ψn of IHs such that Φn ∪Ψn |=M φn
and 6|=M φn. Φn is valid, otherwise there is an extra cycle including false conjectures which
is applied in the proof of Φn which contradicts the assumption that the n-cycle is the last
generated one in the proof of E0. Since Φn is valid and Φn ∪ Ψn |=M φn, there is a false IH
in Ψn. The IHs from Ψn, excepting (φ11, δ1), are true. More exactly, if (ψ, δ) is such an IH,
it has to be proved with ‘less than m’ cycles having false conjectures since the n-cycle cannot
be included in the proof, i.e., either (ψ, δ) is checked by a cycle including φn and generated
before the n-cycle, or ψ was proved before generating the n-cycle. For the last case, ψ is true
by induction hypothesis, which also holds for ψδ. We conclude that (φ11, δ1) is the only false IH
attached to φn.

As for the base case, we represent the history chunk of φn from the n-cycle as
θn=σ

1
n...σ

mn
n−−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φ

mn
n ,σmnn)

φn. Since φ1nθn is false, we consider φ1nθnτ as being a minimal counterex-

ample of it. In addition, φnτ should be a counterexample, otherwise φ1nθnτ can be proved
with ‘less than m’ cycles having false conjectures. Thanks to the ‘stability under substitutions’
property of the induction ordering, we deduce that φ11δ1τ is false and smaller than φ1nθnτ .
It should be an instance of φ11θ1, otherwise it can be proved outside the n-cycle using ‘less
than m’ cycles including false conjectures. We denote this false instance by φ11θ1τ1, hence
φ11θ1τ1 ≡ φ11δ1τ . A similar reasoning is performed on φ11θ1τ1 as for φ1nθnτ to show that there
is a false instance φ12θ2τ2 ≡ φ12δ2τ1 which is smaller than φ11θ1τ1. And so on, there is a false
instance φ1nθnτn ≡ φ1nδnτn−1 which is smaller than φ1n−1θn−1τn−1. By the transitivity of the
ordering, we have that φ1nθnτn is smaller than φ1nθnτ . Moreover, it is false, so contradiction
with the minimality assumption of φ1nθnτ .

The DRaCuLa-based n-cycles from the D-proofs, for short D-cycles when n is not relevant,
need less ordering constraints than the reductive cycles encountered in reductive induction
derivations, for example the implicit induction and ‘cyclic’ proofs. More exactly, a reductive
cycle requires that, for any history chunk −−−−−−−−−−−−−−−−→

(φ0,σ0)(φ1,σ1)...(φm,σm)
φ with m > 0, φiσi to be

greater than or (sometimes) equal to φi+1, for all i ∈ [0..m − 1]. Moreover, φmσm should be
greater than (or equal to) φ. As for the D-cycles, the IHs are instances of previous conjectures
starting a history chunk, but they are required to be smaller than or equal to the conjecture
they are applied to.

Lemma 3. Any reductive n-cycle with an average of m conjectures per history chunk should
satisfy (m+ 1)× n ordering constraints.

343

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Proof. There are n×m ordering constraints concerning the conjectures from the history chunks,
and n ordering constraints related to the IHs.

For example, there is only one reductive cycle in the Ifc -proof of x+ 0 = x:

θ={x 7→S(x′)}−−−−−−−−−−−−−→
(x+0=x,{x 7→S(x′)})

S(x′ + 0) = S(x′)

δ={x 7→x′}

dd

The two associated ordering constraints are: S(x′)+0 = S(x′) should be greater than S(x′+0) =
S(x′) which should be greater than x′ + 0 = x′.

Lemma 4. Any DRaCuLa-based n-cycle should satisfy n ordering constraints.

Proof. By the construction of D-cycles.

One possible D-proof of x+ 0 = x, similar to that produced with the reductive Ibc system,
can be built with the concrete inference system Dc:

DedNat (Dc): E ∪ {φ} `Dc E ∪ Φ,
if either i) φ is a tautology; in this case Φ is empty,
or ii) φ is rewritten by rewrite rules from Ax to ψ;
in this case Φ is {ψ}.

SplitNat (Sc): E ∪ {φ[x]} `Dc E ∪ {φ[0], φ[S(x′)]},
where x′ is a fresh natural variable.

IndNat (Ic): E ∪ {φ} `Dc E ∪ Φ,
if φ is rewritten with an IH that is checked by a D-cycle.

The generated proof is: {x+ 0 = x} `ScDc {0 + 0 = 0, S(x′) + 0 = S(x′)} `Dc(2)Dc

{S(x′) + 0 = S(x′)} `DcDc {S(x′ + 0) = S(x′)} `IcDc {S(x′) = S(x′)} `DcDc ∅. `
Dc(2)
Dc

means that
DedNat firstly rewrites with the axioms defining ‘+′, then deletes the resulted tautology. The
IH from the IndNat step is checked by the D-cycle:

θ={x 7→S(x′)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(x+0=x,{x 7→S(x′)});(S(x′)+0=S(x′),{x′ 7→x′})

S(x′ + 0) = S(x′)

δ={x 7→x′}

ii

Even if the history chunk has more conjectures, there is only one ordering constraint to be
satisfied, i.e., x′ + 0 = x′ should be smaller than S(x′) + 0 = S(x′). It can be easily noticed
that DedNat (resp. SplitNat, resp. IndNat) implements Deduction (resp. Split, resp.
Induction). Therefore Dc is sound since D is sound, by Theorem 4.

Lemma 5. Any reductive n-cycle is a DRaCuLa-based n-cycle.

Proof. Assume that a reductive n-cycle exists, represented as a non-empty list of n conjectures

φ1, . . . , φn of the form
θi=σ

1
i ...σ

m1
i−−−−−−−−−−−−−−→

...(φ1
i ,σ

1
i)...(φ

m1
i ,σ

m1
i)

φi, i ∈ [1..n]. By construction, for each i ∈ [1..n],

the reductive constraints require that φki σki be greater than (and sometimes equal to) φk+1
i

344

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

(k ∈ [1..m1 − 1]) and φm1
i σm1

i be greater than (or equal to) φi. By instantiating each φki σki by
σk+1
i . . . σm1

i and due to the ‘stability under substitution’ of the ordering, it results the decreas-
ing sequence φ1i θ1i , φ2i θ2i , . . . , φ

m1
i θm1

i , φi, where θ
j
i is the cumulative substitution σji . . . σ

m1
i .

By the transitivity of the ordering relation, φ1i θ1i is greater than φi. Moreover, by construction,
φi should be greater than or equal to the IH φ1

(i+1) mod n
δ(i+1) mod n. Applying again the

transitivity property of the ordering relation, φ1i θ1i is greater than φ1
(i+1) mod n

δ(i+1) mod n.

Therefore, the reductive n-cycle is a DRaCuLa-based n-cycle since φ1i θ1i is greater than
φ1
(i+1) mod n

δ(i+1) mod n, forall i ∈ [1..n].

Theorem 5 (generalisation of reductive induction). Any reductive proof is a D-proof.

Proof. Given a reductive proof, its reductive cycles can be represented asD-cycles, by Lemma 5.
Moreover, the DRaCuLa strategy requires no ordering constraints for the proof parts outside
the reductive cycles.

The DRaCuLa-based proofs are more flexible in terms of induction orderings because the
ordering constraints inside the D-cycles can be formulated with different induction orderings.
This is not the case for the reductive proofs which are governed by only one global induction
ordering that should satisfy all the reductive constraints. As a side-effect, the axioms and IHs
involved in a proof may satisfy additional constraints. For example, the term ordering used by
rewrite-based specifications to orient the axioms into rewrite rules and the induction ordering
should be compatible. The specifications fitting for DRaCuLa-based reasoning no longer need
them, those adapted for term-based induction reasoning [55] being good candidates.

Theorem 6 (generalisation of term-based induction). Any term-based induction proof can be
customized to a ‘1-cycle’-based D-proof.

Proof. According to the term-based induction principle, one can use φ1(k) as IH in the proof of
φ1(m), as long as k <t m. On the other hand, according to Theorem 3, the ordering constraint
can be reformulated using a formula-based principle as: φ1(k) should be smaller than φ1(m), by
considering the weight of v as being that for φ1(v), for any term vector v. Assuming that φ1(k)
is an IH attached to the offspring φf of φ1(m), the induction principle can be schematized by
the 1-cycle

θ=σ...σ′

−−−−−−−−−→
(φ1σ)...(φ′,σ′)

φf ,

δjj

where φ1(m) is (φ1, θ) and φ1(k) is (φ1, δ).

For example, the explicit induction proof of x+0 = x builds a 1-cycle similar to the D-cycle
issued from the reductive Ibc -proof, excepting that the induction ordering is defined over terms.
Its customisation to a D-cycle is done by defining the weight of the equality x+ 0 = x as being
the term x, for any natural x.

4 Other Examples

The following set of axioms mutually defines over the naturals the functions even, odd and their
conditional versions even1 and odd1, respectively:

345

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

even(0) = True (1)
even(S(0)) = False (2)

even(S(S(x))) = even1(S(S(x)) + 0) (3)

even1(0) = True (4)
even1(S(0)) = False (5)

odd(x) = False⇒ even1(S(S(x))) = even(x) (6)
odd(x) = True⇒ even1(S(S(x))) = False (7)

odd(0) = False (8)
odd(S(0)) = True (9)

odd(S(S(x))) = odd1(S(S(x)) + 0) (10)

odd1(0) = False (11)
odd1(S(0)) = True (12)

even(x) = True⇒ odd1(S(S(x))) = odd(x) (13)
even(x) = False⇒ odd1(S(S(x))) = True (14)

It can be noticed that all defined functions are terminating, sufficiently complete and con-
sistent.

The conjectures to be proved are: φ11 : even(x + x) = True and φ12 : odd(y + y) = False,
using induction reasoning to be performed w.r.t. the initial model of the axioms.
We assume that the previous proved conjecture x + 0 = x is available as lemma,
as well as the lemma x + S(y) = S(x + y) which can be similarly proved. The
ordering over conditional equalities is the multiset extension of the rpo ordering
based on the precedence <F and equivalence ∼F relations over the function symbols:
True <F False <F 0 <F S <F + <F (even ∼F odd ∼F even1 ∼F odd1). The cyclic proof can
be done using the inference system Dc if it is extended with the following rule:

DedCase (D′c): E ∪ {φ} `Dc E ∪ Φ,
if a case analysis is performed on φ with rewrite rules
from Ax; in this case, Φ is made of the rewriting results.

The rewrite rules used by DedCase are conditional, of the form d1 = True⇒ l1 = r1 and
d2 = False ⇒ l2 = r2 such that both d1 and d2, resp. l1 and l2, are equal modulo renaming
using the same renaming substitution. The case analysis is done as follows: if φ is an equality
of the form u = v such that u can be matched by l1 and l2 with the substitutions σ1 and σ2,
respectively, then Φ consists of the set {d1σ1 = True⇒ r1σ1 = v, d2σ2 = False⇒ r2σ2 = v}.
A tautology is an equality of the form t = t, or a conditional equality of the form . . . ⇒ t = t
or e⇒ e, for any term t and equality e.

The initial state of the Dc-proof is {φ11, φ12}. SplitNat is applied on φ11 to result φ′1 :
even(0 + 0) = True and φ21 : even(S(x′) + S(x′)) = True. φ′1 is rewritten by the axioms to
the tautology φ1 : True = True, then deleted by DedNat. φ21 is rewritten by the lemmas

346

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

φ1
1

�� ��

φ1
2

����
φ′
1

��

φ2
1

θ1

��

φ2
2

θ2

��

φ′
2

��
φ1 φ3

1

�� ��

φ3
2

�� ��

φ2

φ31
1

��

δ′′1

44

φ32
1

��

δ′2

??

φ31
2

��

δ′1

__

φ32
2

��

δ′′2

jj

φ311
1 φ321

1 φ311
2 φ321

2

Figure 2: The skeleton of the Dc-proof.

x + S(y) = S(x + y) and x + 0 = x to φ31 : even1(S(S(x′ + x′))) = True. By case analysis
with DedCase on φ31, it results φ311 : odd(x′ + x′) = False ⇒ even(x′ + x′) = True and
φ321 : odd(x′ + x′) = True ⇒ False = True. IndNat is applied on φ311 by rewriting with
the IH (φ11, δ′′1), where δ′′1 = {x 7→ x′}. The IH is checked by the 1-cycle represented by

θ1={x 7→S(x′)}−−−−−−−−−−−−−−−−−−−→
(φ1

1,{x 7→S(x′)})(φ2
1,id)(φ

3
1,id)

φ311 since φ11δ′′1 is smaller than φ11θ1. The rewriting operation produces

the tautology φ3111 : odd(x′ + x′) = True ⇒ True = True which is deleted by DedNat.
Then, IndNat is expected to be applied on φ321 by rewriting this time with the IH (φ12, δ′2),
where δ′2 = {y 7→ x′}. Hence, φ321 is put in stand-by and the proof of φ12 starts by following
similar steps as for φ11. Firstly, SplitNat is applied to result φ′2 : odd(0 + 0) = False and
φ22 : odd(S(y′) + S(y′)) = False. φ′2 is rewritten to the tautology φ2 : False = False, then
deleted by DedNat. φ22 is successively rewritten by the lemmas to φ32 : odd1(y′ + y′) = False
by DedNat, then by case analysis with DedCase to φ322 : even(y′ + y′) = True ⇒ odd(y′ +
y′) = False and φ312 : even(y′ + y′) = False ⇒ True = False. φ322 is further simplified
to the tautology φ3212 : even(y′ + y′) = True ⇒ False = False by IndNat with the IH
(φ12, δ′′2), where δ′′2 = {y 7→ y′}. The IH is checked by the 1-cycle with the history chunk

θ2={y 7→S(y′)}−−−−−−−−−−−−−−−−−−−→
(φ1

2,{y 7→S(y′)})(φ2
2,id)(φ

3
2,id)

φ322 since φ12δ′′2 is smaller than φ12θ2. IndNat can also be applied

on φ312 by rewriting with the IH (φ11, δ′1), where δ′1 = {x 7→ y′}. The 2-cycle consisting of

the history chunks
θ1={x 7→S(x′)}−−−−−−−−−−−−−−−−−−−→

(φ1
1,{x 7→S(x′)})(φ2

1,id)(φ
3
1,id)

φ321 and
θ2={y 7→S(y′)}−−−−−−−−−−−−−−−−−−−→

(φ1
2,{y 7→S(y′)})(φ2

2,id)(φ
3
2,id)

φ312 can check

the two IHs since φ12δ′2 is smaller than φ11θ1 and φ11δ′1 is smaller than φ12θ2. The two IndNat
operations are further applied to give the tautologies φ3211 : False = True ⇒ False = True
and φ3112 : True = False ⇒ True = False, which are finally deleted by DedNat. The cycles
from the Dc-proof are highlighted in Figure 2.

Let us notice that the conjectures φ11 and φ12 cannot be proved by reductive reasoning since
the axioms cannot be simultaneously oriented from left to right and transformed into rewrite
rules, in particular (3) and (6), as well as (10), (14) and the axioms defining ’+’. The D-proof
cannot either be redone by term-based induction reasoning because of its 2-cycle.

347

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

conjecture comparisons IHs cycles
1. firstat_timeat 23 2 2
2. firstat_progat 24 2 2
3. sorted_sorted 5 0 0
4. sorted_insat1 37 2 2
5. sorted_insin2 45 2 2
6. sorted_e_two 5 0 0
7. member_t_insin 72 8 4
8. member_t_insat 41 5 4
9. member_firstat 37 3 3
10. timel_insat_t 10 1 1
11. erl_insin 11 1 1
12. erl_insat 10 1 1
13. erl_prog 38 2 2
14. time_progat_er 20 1 1
15. timeat_tcrt 16 1 1
16. timel_timeat_max 43 1 1
17. null_listat 17 2 2
18. null_listat1 3 0 0
19. cons_insat 4 1 1
20. cons_listat 3 0 0
21. progat_timel_erl 48 1 1
22. progat_insat 156 4 2
23. progat_insat1 63 3 2
24. timel_listupto 7 0 0
25. sorted_listupto 49 3 3
26. time_listat 27 1 1
27. sorted_cons_listat 62 2 2
28. null_wind2 7 0 0
29. timel_insin1 17 1 1
30. null_listupto1 3 0 0
31. erl_cons 11 0 0
32. no_time 35 2 2
33. final 29 2 2

Total 978 54 46

Table 1: Statistics of the induction reasoning w.r.t. the ABR proofs.

In the following, we will show how the certification process of implicit induction proofs [53]
can be improved by representing them as D-proofs. Even if the implicit induction proofs are
generated automatically by inference systems that implicitly check the ordering constraints, the
certification process should explicitly validate every single proof step. The number of ordering
constraints, as indicated by Lemma 3, can be important. In [51], it has been shown that
the validation of the ordering constraints for some proofs can last four times more than for the
validation of the deductive reasoning. However, the validation time can be dramatically reduced
if the implicit induction proofs are interpreted as D-proofs, as shown by Lemma 4. Table 1 gives
some statistics about the proofs of a bunch of conjectures involved in the validation process [45]

348

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

of a conformance algorithm for the ABR protocol [43]. For example, the implicit induction
proof of the conjecture progat_insat requires 152 reductive constraints and 4 applications of
IHs. By inspecting the representation of the proof script as a D-proof, we have noticed that
only two IHs are checked by 1-cycles, while the other two IHs do not need induction reasoning
to be proved. Therefore, the validation process of the D-proof would require to check only 2
ordering constraints. The IHs not requiring induction reasoning can be proved in priority using
a different proof strategy, then considered as lemmas during the rest of the proof.4

5 Conclusions and Future Work
We gave an overview of the induction proof methods for first-order logic and compared differ-
ent induction principles and inference systems that abstract computation in order to distile the
induction reasoning from the implementation details. Some examples of concrete implementa-
tions instantiating the abstract inference systems are presented, but most of the problems and
challenges that face current implementations are not discussed here (see [24] for an overview).

We have proposed a new induction proof technique that captures the first-order induction
reasoning by the means of non-reductive cycles which can be governed by different formula-
based induction orderings. It has been shown enough powerful to subsume any term-based and
reductive formula-based inductive proof methods by combining the best features of conventional
and implicit induction proof techniques.

We have witnessed how the proposed technique can substantially diminish the number of
reductive constraints during the certification process of implicit induction proofs. The DRaC-
uLa strategy has been implemented into the Spike theorem prover but its potential for local
inductive reasoning was not yet exploited. We intend to automatize the certification process of
the D-proofs as it has been done for the implicit induction proofs issued by Spike. Recently,
we have provided in [52] a procedure to translate a class of D-proofs into term-based induction
proofs. This is the starting point for a longer-term project aiming to integrate our method into
sequent-based systems.

Acknowledgments
We would like to thank the anonymous referees for the helpful remarks on previous versions of
the paper.

References
[1] T. Aoto. Dealing with non-orientable equations in rewriting induction. In Frank Pfenning, editor,

RTA, volume 4098 of Lecture Notes in Computer Science, pages 242–256. Springer, 2006.
[2] R. Aubin. Mechanizing structural induction. Theor. Comput. Sci., 9:329–362, 1979.
[3] J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C.-P. Wirth. How to prove inductive theorems?

QuodLibet! In Franz Baader, editor, Proceedings of the 19th International Conference on Au-
tomated Deduction (CADE-19), number 2741 in Lecture Notes in Artificial Intelligence, pages
328–333. Springer, 2003.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[5] L. Bachmair. Proof by consistency in equational theories. Logic in Computer Science, 1988. LICS

’88., Proceedings of the Third Annual Symposium on, pages 228–233, Jul 1988.

4The proof scripts can be accessed from http://code.google.com/p/spike-prover/

349

http://code.google.com/p/spike-prover/

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

[6] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Spike, an automatic theorem prover. In Logic
Programming and Automated Reasoning (LPAR), pages 460–462, 1992.

[7] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction. Journal of
Logic and Computation, 5(5):631–668, 1995.

[8] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal of Automated
Reasoning, 14(2):189–235, 1995.

[9] R. Boulton and K. Slind. Automatic derivation and application of induction schemes for mutually
recursive functions. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,
L. Pereira, Y. Sagiv, and P. Stuckey, editors, Computational Logic — CL 2000, volume 1861 of
Lecture Notes in Computer Science, pages 629–643. Springer Berlin / Heidelberg, 2000.

[10] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY, 1979.
[11] R. S. Boyer and J S. Moore. A computational logic handbook. Academic Press Professional, 1988.
[12] F. Bronsard and U. S. Reddy. Conditional rewriting in Focus. In Conditional and Typed Rewriting

Systems, pages 1–13, 1991.
[13] F. Bronsard, U.S. Reddy, and R. Hasker. Induction using term orderings. In Automated Deduction

—CADE-12, volume 814 of Lecture Notes in Computer Science, pages 102–117. Springer, 1994.
[14] J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent. Journal of

Logic and Computation, 2010.
[15] R. M. Burstall. Proving properties of programs by structural induction. The Computer Journal,

12:41–48, 1969.
[16] H. Comon. Inductionless induction. In A. Robinson and A. Voronkov, editors, Handbook of

Automated Reasoning, pages 913–962. Elsevier and MIT Press, 2001.
[17] H. Comon and R. Nieuwenhuis. Induction= I-axiomatization+ first-order consistency. Information

and computation(Print), 159(1-2):151–186, 2000.
[18] J. Courant. Proof reconstruction. Research Report RR96-26, LIP, 1996. Preliminary version.
[19] N. Dershowitz. Applications of the Knuth-Bendix completion procedure. In Seminaire

d’Informatique Theorique, pages 95–111, 1982.
[20] N. Dershowitz and U. S. Reddy. Deductive and inductive synthesis of equational programs. Journal

of Symbolic Computation, 15(5/6):467–494, 1993.
[21] L. Fribourg. A strong restriction of the inductive completion procedure. In ICALP (International

Conference on Automata, Languages and Programming), volume 226 of Lecture Notes in Computer
Science, pages 105–115, 1986. (Extended version in Journal of Symbolic Computation, Volume 8,
Issue 3, September 1989, Pages 253-276).

[22] S. J. Garland and J. V. Guttag. Inductive methods for reasoning about abstract data types. Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 219–228, 1988.

[23] J. Goguen. How to prove algebraic inductive hypotheses without induction. In 5th Conference on
Automated Deduction (CADE05), volume 87 of Lecture Notes in Computer Science, pages 356–373.
Springer, 1980.

[24] B. Gramlich. Strategic issues, problems and challenges in inductive theorem proving. Electronic
Notes in Theoretical Computer Science, 125(2):5–43, March 2005.

[25] G. Huet and J.M. Hullot. Proofs by induction in equational theories with constructors. Technical
Report 0028, INRIA, 1980.

[26] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories without
constructors. In Albert Meyer, editor, Proceedings of the First Annual IEEE Symp. on Logic in
Computer Science, LICS 1986, pages 358–366. IEEE Computer Society Press, June 1986.

[27] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without constructors.
Information and Computation, 82(1):1 – 33, 1989. 4.1.5.

[28] D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets. In 8th International

350

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Conference on Automated Deduction, volume 230 of Lecture Notes Computer Science, pages 99–
117. Springer, 1986.

[29] D. Kapur and M. Subramaniam. Automating induction over mutually recursive functions. In Al-
gebraic Methodology and Software Technology, volume 1101 of Lecture Notes in Computer Science,
pages 117–131. Springer, 1996.

[30] D. Kapur and H. Zhang. Automating induction: Explicit vs. inductionless. Proc. Third Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, Jan,
pages 2–5, 1994.

[31] S. C. Kleene. General recursive functions of natural numbers. Mathematische Annalen, 112:727–
742, 1936.

[32] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In Computational
Problems in Abstract Algebra, pages 263–297, 1970.

[33] E. Kounalis and M. Rusinowitch. A mechanization of conditional reasoning. In First International
Symposium on Artificial Intelligence and Mathematics, 1990.

[34] E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In Proceedings of the eighth
National conference on Artificial intelligence - Volume 1, AAAI’90, pages 240–245. AAAI Press,
1990.

[35] W. Küchlin. Inductive completion by ground proof transformation. In H. Ait-Kaci and M. Nivat,
editors, Resolution of Equations in Algebraic Structures (Volume II): Rewriting Techniques, pages
211–244. Academic Press, London, 1989.

[36] D. Lankford. Some remarks on inductionless induction. Technical Report MTP-11, Math. Dept.,
Louisiana Tech. Univ., Ruston, 1980.

[37] J. McCarthy. A basis for a mathematical theory of computation. In Computer Programming and
Formal Systems, pages 33–70. North-Holland, 1963.

[38] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. In Mathematical
Aspects of Computer Science, pages 33–41. American Mathematical Society, 1967.

[39] D. R. Musser. On proving inductive properties of abstract data types. In POPL, pages 154–162,
1980.

[40] D. Naidich. On generic representation of implicit induction procedures. Technical Report CS-
R9620, CWI, 1996.

[41] H. Poincaré. Science et hypothèse. Flammarion, 1902.
[42] M. Protzen. Lazy generation of induction hypotheses. Automated Deduction —CADE-12, pages

42–56, 1994.
[43] C. Rabadan and F. Klay. Un nouvel algorithme de contrôle de conformité pour la capacité de

transfert ‘Available Bit Rate’. Technical Report NT/CNET/5476, CNET, 1997.
[44] U.S. Reddy. Term Rewriting Induction. Proceedings of the 10th International Conference on

Automated Deduction, pages 162–177, 1990.
[45] M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification of an ideal incremental ABR

conformance algorithm. J. Autom. Reasoning, 30(2):53–177, 2003.
[46] C. Sprenger and M. Dam. On the structure of inductive reasoning: Circular and tree-shaped

proofs in the µ calculus. In A. Gordon, editor, Foundations of Software Science and Computation
Structures, volume 2620 of Lecture Notes in Computer Science, pages 425–440. Springer Berlin /
Heidelberg, 2003.

[47] S. Stratulat. A general framework to build contextual cover set induction provers. J. Symb.
Comput., 32(4):403–445, 2001.

[48] S. Stratulat. Automatic ‘Descente Infinie’ induction reasoning. In B. Beckert, editor, TABLEAUX,
volume 3702 of Lecture Notes in Artificial Intelligence, pages 262–276. Springer, 2005.

[49] S. Stratulat. ‘Descente Infinie’ induction-based saturation procedures. In SYNASC ’07: Proceed-
ings of the Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific

351

A Unified View of Induction Reasoning for First-Order Logic S. Stratulat

Computing, pages 17–24, Washington, DC, USA, 2007. IEEE Computer Society.
[50] S. Stratulat. Combining rewriting with Noetherian induction to reason on non-orientable equalities.

In A. Voronkov, editor, Rewriting Techniques and Applications, volume 5117 of Lecture Notes in
Computer Science, pages 351–365. Springer Berlin, 2008.

[51] S. Stratulat. Integrating implicit induction proofs into certified proof environments. In Integrated
Formal Methods, volume 6396 of Lecture Notes in Computer Science, pages 320–335, 2010.

[52] S. Stratulat. Making explicit the implicit induction. submitted. Accessible at http://lita.
sciences.univ-metz.fr/~stratula/implicit2explicit.pdf, 2012.

[53] S. Stratulat and V. Demange. Automated certification of implicit induction proofs. In CPP’2011
(First International Conference on Certified Programs and Proofs), volume 7086 of Lecture Notes
Computer Science, pages 37–53. Springer-Verlag, 2011.

[54] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 42:230–265, 1936.

[55] C. Walther. Mathematical induction. In Dov M. Gabbay, Christopher J. Hogger, J. A. Robinson,
and Jörg H. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic Programming
(2), pages 127–228. Oxford University Press, 1994.

[56] C.-P. Wirth. History and future of implicit and inductionless induction: Beware the old jade and
the zombie ! In Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H. Siekmann on
the Occasion of His 60th Birthday, number 2605 in Lecture Notes in Artificial Intelligence, pages
192–203. Springer, 2005.

[57] C.-P. Wirth and B. Gramlich. On notions of inductive validity for first-order equational clauses.
Automated Deduction —CADE-12, pages 162–176, 1994.

[58] H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction principle for equational
specifications. In Proceedings of the 9th International Conference on Automated Deduction, pages
162–181, London, UK, 1988. Springer-Verlag.

352

http://lita.sciences.univ-metz.fr/~stratula/implicit2explicit.pdf
http://lita.sciences.univ-metz.fr/~stratula/implicit2explicit.pdf

	Introduction
	First-order Induction Reasoning
	Basic notions
	First-order induction principles
	Term-based induction principles
	Formula-based induction principles

	A New Formula-based Induction Method
	Other Examples
	Conclusions and Future Work

