
EPiC Series in Computing

Volume 39, 2016, Pages 107–116

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

Verification of a brick Wang tiling algorithm

Toshiaki Matsushima1∗, Yoshihiro Mizoguchi2, and Alexandre Derouet-Jourdan3

1 Graduate School of Mathematics, Kyushu University
2 Institute of Mathematics for Industry, Kyushu University

3 OLM Digital Inc.

Abstract

We have implemented a certified Wang tiling program for tiling a rectangular region using a brick

Wang tile set. A brick Wang tile set is a special Wang tile set introduced in 2015 by A. Derouet-

Jourdan et al. in computer graphics to model the texture of wall patterns. We have implemented a

tiling algorithm using the Coq proof assistant and have presented its proof, which assures the existence

of a tiling of any brick Wang tile set for a rectangle of any size. The essential points of the proof are

the existence of a tiling for a 2× 2 rectangle and a simple induction process. Since the brick Wang tile

set is a set of tiles of infinite types, the proof is not straightforward and there are many conditional

branches in the proof of the algorithm. The certification with Coq assures that there are no lack of

conditions.

1 Introduction

Wang tiles are a class of formal systems introduced by Hao Wang in 1961 [10]. A model of a
Wang tile is a square tile with a color on each side (cf. Figure 1). We arrange Wang tiles side
by side, while matching the edge colors. Given a finite set of Wang tiles, we consider tilings of
the (infinite) Euclidean plane using arbitrarily many copies of the tiles without rotations in the
given tile set. An example of a tiling of the plane is shown in Figure 2.

Whether a given finite set of Wang tiles can tile the plane is a decidability problem called
the domino problem, and this problem was proved to be undecidable by R. Berger in 1966 [2].
However, the problem is decidable for a bounded region, and if a tile set can tile a given
rectangular region for any boundary colors, it can tile the entire plane.

Wang [10] also conjectured that, if a finite set of Wang tiles can tile the plane, then the
tiling is periodic. The conjecture was disproved in 1966 by Berger [2], who gave a concrete
tile set of 20,426 tiles that always tiles the plane aperiodically. In 1996, J. Kari presented an
example of a tile set with only 14 tiles from the viewpoint of cellular automata [7]. Following
J. Kari, K. Culik introduced a tile set with 13 tiles in 1996 [4]. Finally, E. Jeandel proved that
a tile set with 11 tiles satisfies this condition in 2015 [6], and this is the smallest tile set that
can make an aperiodic tiling.

∗t.matsushima@kyudai.jp

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 107–116

Figure 1: Wang Tiles.

Figure 2: Tiling.

Since a Wang tile set is a simple system that produces aperiodic patterns, there are several
applications in computer graphics [3, 8, 9]. In 2015, A. Derouet-Jourdan et al. introduced a
class of Wang tiles in computer graphics to model wall pattern textures [5], which is referred
to as a brick Wang tile set. Each tile represents a possible way to connect four bricks, where a
brick is an element of the wall. It is assumed that the edges of the bricks are axis aligned and
that each tile is traversed by a straight line, either vertically or horizontally. In other words,
two bricks are always aligned on each tile. For aesthetic reasons, crosses are forbidden, where
all four bricks are aligned and the corresponding tile is traversed by two straight lines. In this
model, the color in the Wang tiling model is the position of the edge of the brick on the edge of
the tile. An example of such a tile is given in Figure 3. In Figure 4, we show a tiling (left) and
the corresponding texture as a wall (right), where the colors of the bricks are chosen randomly.
In the tiling, the tiles are delimited by the dashed lines, and the bricks are delimited by the red
lines. In the texture, the tiles are no longer represented, and the bricks are colored randomly
and independently of their size and position.

Figure 3: Example of a brick Wang
tile represented with the brick edges
(red). The colors are represented by
numbers and correspond to the posi-
tions of the brick edges on the edges
of the tile.

Figure 4: Example of a tiling (left). The tiles
and the bricks are delimited by respectively the
dashed lines and the red lines. On the right, we
transformed the tiling into a brick structure by
removing the tiles edges, adding random colors
to the bricks, and rounding the corners of the
bricks.

108

If we use a brick Wang tile set for tiling, we can tile any rectangular region larger than 2
squares by 2 squares with any boundary color conditions. An inductive proof has been presented
in a previous paper [5].

Since the brick Wang tile set is a set of tiles of infinite types, the proof is not straightforward
and there are many conditional branches in the proof. Thus, we have tried to provide a machine-
verifiable proof using the Coq proof assistant system [1]. We formalized the notion of Wang tiles
in Coq and implemented an algorithm to construct a valid tiling for a given rectangular region
and boundary condition as a function in Coq. Furthermore, we proved the correctness of the
function using Coq. The correctness and totality of the tiling function provides a constructive
proof of the existence of a tiling.

2 Brick Wang tiling

Let C = {i | 0 ≤ i ≤ k} (k > 0) be a finite set of colors.

Definition 1 (Wang Tile). A Wang tile is a function w : {t, l, b, r} → C.

Definition 2 (Brick Wang Tile). A Wang tile w is said to be a brick Wang tile if w(t) 6=
w(b)∧w(l) = w(r) or w(t) = w(b)∧w(l) 6= w(r). We define the set WC of all brick Wang tiles
for a given color set C.

Values w(t), w(l), w(b), and w(r) denote the colors of the top, left, bottom, and right edges,
respectively, of a tile w. The following are examples of correct and incorrect brick Wang tiles:

Correct: Incorrect:

where C = {�,�,�,�,�,�}.

Definition 3. A rectangular region {(i, j) ∈ N × N | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is denoted by
Pnm. A tiling is a function T : Pnm →WC , and we denote T (i, j) by Ti,j.

Definition 4. Let Pnm be a rectangular region. A boundary (coloring) over Pnm is a
function bnm : {0, n + 1} × {j | 1 ≤ j ≤ m} ∪ {i | 1 ≤ i ≤ n} × {0,m + 1} → C.

Definition 5. Let Pnm be a rectangular region, and let bnm be a boundary coloring over Pnm.
A tiling T is valid for bnm if

Ti,j(t) =

{
bnm(0, j) (i = 1, 1 ≤ j ≤ m)

Ti−1,j(b) (2 ≤ i ≤ n, 1 ≤ j ≤ m),

Tn,j(b) = bnm(n + 1, j) (1 ≤ j ≤ m),

Ti,j(l) =

{
bnm(i, 0) (1 ≤ i ≤ n, j = 1)

Ti,j−1(r) (1 ≤ i ≤ n, 2 ≤ j ≤ m), and

Ti,m(r) = bnm(i,m + 1) (1 ≤ i ≤ n).

Definition 6. For a valid tiling T for bnm over Pnm, we define horizontal edge function
eT : N→ N→ C and vertical edge function e′T : N→ N→ C as follows:

eT (i, j) =


Ti+1,j(t) (0 ≤ i ≤ n− 1, 1 ≤ j ≤ m)

Tn,j(b) (i = n, 1 ≤ j ≤ m)

0 (otherwise)

109

e′T (i, j) =


Ti,j+1(l) (1 ≤ i ≤ n, 0 ≤ j ≤ m− 1)

Ti,m(r) (1 ≤ i ≤ n, j = m)

0 (otherwise)

Lemma 1. Let T be a valid tiling for a boundary coloring bnm over a rectangular region Pnm.

1. eT (0, j) = b(0, j) (1 ≤ j ≤ m).

2. eT (n, j) = b(n + 1, j) (1 ≤ j ≤ m).

3. e′T (i, 0) = b(i, 0) (1 ≤ i ≤ n).

4. e′T (i,m) = b(i,m + 1) (1 ≤ i ≤ n).

Note that there is a technical adjustment of indices. For example, in Figure 6, if we consider
e(i, j) = b23(i, j) and e′(i, j) = b23(i, j), then b23(2, 3) can be assigned for both e(2, 3) and
e′(2, 3). Therefore, the domain of a boundary coloring bnm is not {1, n} × {j | 1 ≤ j ≤ m} ∪
{i | 1 ≤ i ≤ n} × {1,m} but {0, n + 1} × {j | 1 ≤ j ≤ m} ∪ {i | 1 ≤ i ≤ n} × {0,m + 1}.

Figure 5: We can consider Wang tiling
as edge coloring.

Figure 6: Edge functions and boundaries.

Definition 7. Let Pnm be a rectangular region, e : N → N → C and e′ : N → N → C.
A pair (e, e′) is a brick pair over Pnm, if (e(i − 1, j) = e(i, j) ∧ e′(i, j − 1) 6= e′(i, j)), or
(e(i− 1, j) 6= e(i, j) ∧ e′(i, j − 1) = e′(i, j)) for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proposition 8. Let Pnm be a rectangular region, and let (e, e′) be a brick pair over Pnm. Then,
there exists a boundary coloring bnm over Pnm and a valid tiling T over Pnm for bnm such that
(eT , e

′
T) = (e, e′).

We denote a boundary coloring bnm and a tiling T in Proposition 8 by bnm(e, e′) and T (e, e′),
respectively.

Definition 9 (Tileable). Let n and m be natural numbers. Then, Pnm is tileable if there
exists a valid tiling for any boundary coloring bnm over Pnm.

Proposition 10 ([5]).

1. P12 is not tileable (i.e., there exists a boundary coloring that cannot be satisfied).

2. P22 is not tileable if |C| = 2.

110

The property in the next Lemma 2 is referred to as the three-boundary condition. That
is, for any given three colors and edges, there exists a tile in WC which satisfies those three
conditions.

Lemma 2. Let WC be the set of all brick Wang tiles for a given color set C. Then we have
{(w(l), w(t), w(r)) |w ∈ WC} = {(w(t), w(r), w(b)) |w ∈ WC} = {(w(r), w(b), w(l)) |w ∈ WC}
= {(w(b), w(l), w(t)) |w ∈WC} = C3.

Lemma 3. Let WC be the set of all brick Wang tiles for a given color set C. Let n ≥ 2, and
let m ≥ 2. Let Pnm be a rectangular region, and let bnm be a boundary coloring over Pnm.

1. There exist wj ∈ WC (1 ≤ j ≤ m), such that wj(t) = bnm(0, j), w1(l) = bnm(1, 0), and
wm(r) = bnm(1,m + 1).

2. There exist wi ∈ WC (1 ≤ i ≤ n), such that wi(l) = bnm(i, 0), w1(t) = bnm(0, 1), and
wn(b) = bnm(n + 1, 1).

3. P22 is tileable.

Theorem 1 ([5]). If |C| ≥ 3, then a rectangular region Pnm is tileable for any n ≥ 2 and
m ≥ 2.

Example 1. Let the color set C = {0.2, 0.4, 0.6, 0.8}. Consider a brick Wang tile in Figure 3,
where w(l) = w(r) = 0.6, w(t) = 0.8, and w(b) = 0.4. We draw three lines on a square tile,
the vertices of which are {(0, 0), (0, 1), (1, 1), (1, 0)} according to the values of w(l), w(r), w(t),
and w(b). Since w(l) = w(r), we draw a line from left to right. For this case, we draw a line
from (0, 0.6) to (1, 0.6). Since w(t) 6= w(b), we draw two perpendicular lines from (0.8, 1) and
(0.4, 0) to the horizontal line. By tiling these brick Wang tiles, a brick wall pattern texture
having different size of bricks can be created (cf. Figure 4).

3 Tiling algorithm

In this section, we introduce a tiling algorithm of brick Wang tiles for a given boundary coloring.
We define those functions and proofs in Coq[1].

To simplify the arguments in the following, we consider a color set C as a set of natural
numbers, such as {i | 0 ≤ i ≤ k}, where k is the number of elements in C. In this section,
we assume |C| ≥ 3. We use a notation ¬c to indicate a color different from c ∈ C. That is,
we define ¬c = min{c′ | c′ 6= c} and ¬c1 ∧ ¬c2 = min{c′ | c′ 6= c1 ∧ c′ 6= c2}. Furthermore, we
consider the domain of an every function as nat a type of natural numbers N = {0, 1, 2, ...}. It
is easy to use and check the extracted functions in several programming languages. In other
words, we consider that a boundary coloring b, a horizontal edge function e, and a vertical edge
function e′ all have a type nat -> nat -> nat. To describe properties over a finite set C and
a finite region Pnm, we use some bounding conditions for a variable in nat. We do not care
about a values of functions b, e and e′ outside of the region Pnm.

Our algorithm solve a problem over a region Pnm for a given boundary condition bnm. That
is it finds a brick pair (e, e′) from a given boundary coloring bnm over a region Pnm such that
T (e, e′) is valid. Our algorithm consists of three parts to reduce a tiling problem over Pnm

to P2m (Step 1), to reduce a tiling problem over P2m to P22 (Step 2), and to solve a tiling
problem over P22 (Step 3) (cf. Figure 7).

111

(Step 1) Let n,m > 2. Consider a tiling problem over Pnm for a given boundary bnm. We
divide it into two tiling problems over P1m for b1m and P(n−1)m for b(n−1)m, where

b1m(i, j) =


bnm(i, j) (i = 0, 1),

bnm(0, j) (i = 2, j = 1, 2),

¬ bnm(0, j) (i = 2, 3 ≤ j ≤ m),

b(n−1)m(i, j) =

{
b1m(2, j) (i = 0),

bnm(i + 1, j) (i > 0).

For a tiling over P1m, we solve it by

e(i, j) =

{
b1m(0, j) (i = 0),

b1m(2, j) (i = 1),

e′(1, j) =


bnm(1, 0) (j = 0),

¬ bnm(1, 0) ∧ ¬ bnm(1,m + 1) (j = 1),

bnm(1,m + 1) (2 ≤ j ≤ m + 1).

By inductions, we have a tiling problem over P2m.

(Step 2) Let m > 2. Consider a tiling over P2m for a given boundary b2m. We divide it into
two tiling problem over P21 for b21 and P2(m−1) for b2(m−1), where

b21(i, j) =

{
b2m(i, j) (j = 0, 1),

b2m(i, 0) (j = 2),

b2(m−1)(i, j) =

{
b21(i, 2) (j = 0),

b2m(i, j + 1) (j > 0),

For a tiling over P21, we solve it by

e(i, 1) =


b2m(0, 1) (i = 0),

¬ b2m(0, 1) ∧ ¬ b2m(3, 1) (i = 1),

b2m(3, 1) (i = 2),

e′(i, j) =

{
b21(i, 0) (j = 0),

b21(i, 2) (j = 1).

By inductions, we have a tiling problem over P22.

(Step 3) Consider a tiling over P22 for a given boundary b. We abbreviate bij = b(i, j),
eij = e(i, j) and e′ij = e(i, j). Since it satisfies boundary conditions, we have e0j = b0j ,
e2j = b3j , e

′
i0 = bi0 and e′i2 = bi3 (i = 0, 1, j = 0, 1). So all we need is defining colors e11,

e12, e′11 and e′21. According to the equality conditions of b10 = b13, b20 = b23, b01 = b31
and b02 = b32, we define those values for e and e′. We summarize them in Table 1.

A Coq implementation of (e, e′) is a pair of functions e_nm and e’_nm, as shown in Figure 8.
e_nm returns a horizontal edge function e for bnm, and e’_nm returns a vertical edge function e′.
A function tiling_nm solves a tiling problem using e_nm and e’_nm, and makes an array from
the pair of edge functions. After extracting functions e_nm and e’_nm to an OCaml source, we
can draw and check solutions for examples of tiling problems using extra rendering functions
in OCaml (cf. Appendix).

112

b10 = b13 b20 = b23 b01 = b31 b02 = b32 e11 e12 e′11 e′21
yes yes - - ¬b01 ∧ ¬b31 ¬b02 ∧ ¬b32 b10 b20
yes no yes yes b01 b02 ¬b10 ¬b20 ∧ ¬b23
yes no yes no b01 b02 ¬b10 b23
yes no no yes b31 ¬b02 b10 b23
yes no no no b31 b32 b10 ¬b20 ∧ ¬b23
no yes yes yes b31 b32 ¬b10 ∧ ¬b13 ¬b20
no yes yes no b31 b32 b13 ¬b20
no yes no yes b01 ¬b02 ∧ ¬b32 b13 b20
no yes no no b01 b02 ¬b10 ∧ ¬b13 b20
no no yes yes b01 b32 ¬b10 ∧ ¬b13 ¬b20 ∧ ¬b23
no no yes no b01 b32 b13 ¬b20 ∧ ¬b23
no no no yes b01 b32 ¬b10 ∧ ¬b13 b20
no no no no b01 b32 b13 b20

Table 1: A tiling over P22 for a boundary b.

Figure 7: Outline of our algorithm.

4 Verification using Coq

Using Coq, we can verify the properties of the functions we implemented. The property of a
valid tiling is divided into three conditions, as follows: a condition for vertical boundary edges
(Boundary_i), a condition for horizontal boundary edges (Boundary_j), and a condition for a
brick Wang tile set (Brick). The formalized definitions in Coq are shown in Figure 9.

Fixpoint e_nm (n m : nat) : boundary -> edge :=

fun b : boundary =>

match n with

| 0 | 1 => e_1m b

| 2 => enm_to_emn (fun b’ => e’_n2 m b’) b

| S n’ => fun (i j : nat) =>

match i with

| 0 => (bSnm_to_b1m m b) 0 j

| S i’ => e_nm n’ m (bSnm_to_bnm m b) i’ j

end

end.

Fixpoint e’_nm (n m : nat) : boundary -> edge

.... Similar to e_nm

end.

Definition tiling_nm (n m : nat)(b : boundary) :=

tiling n m b (e_nm n m) (e’_nm n m).

Figure 8: Main functions e, e′, and tiling

113

Definition Boundary_i (n m : nat)(b : boundary)(e’ : edge) :=

forall i : nat , e’ i 0 == b i 0 /\ e’ i m == b i (S m) \/ i = 0 \/ n < i.

Definition Boundary_j (n m : nat)(b : boundary)(e : edge) :=

forall j : nat , e 0 j == b 0 j /\ e n j == b (S n) j \/ j = 0 \/ m < j.

Definition Brick (n m : nat)(e e’ : edge) :=

forall i j : nat ,

(e i (S j) == e (S i) (S j) /\ e’ (S i) j != e’ (S i) (S j)) \/

(e i (S j) != e (S i) (S j) /\ e’ (S i) j == e’ (S i) (S j)) \/

n <= i \/ m <= j.

Definition Valid (n m : nat)(b : boundary)(e e’ : edge) :=

Boundary_i n m b e’ /\ Boundary_j n m b e /\ Brick n m e e’.

Definition Valid_nm (n m : nat)(b : boundary) :=

Boundary_i n m b (e’_nm n m b) /\ Boundary_j n m b (e_nm n m b) /\

Brick n m (e_nm n m b) (e’_nm n m b).

Figure 9: Definitions of validities

Lemma P22_Valid_nm : forall b : boundary , Valid_nm 2 2 b.

Lemma Valid_nm_ind_2m : forall (b : boundary)(m : nat),

2 <= m -> (forall b’ : boundary , Valid_nm 2 m b’) -> Valid_nm 2 (S m) b.

Lemma P2m_Valid_nm : forall (b : boundary)(m : nat), 2 <= m -> Valid_nm 2 m b.

Lemma Valid_nm_ind_nm : forall (b : boundary)(n m : nat),

2 <= n -> 2 <= m -> (forall b’ : boundary , Valid_nm n m b’) ->

Valid_nm (S n) m b.

Theorem e_nm_Valid : forall (b : boundary)(n m : nat),

2 <= n -> 2 <= m -> Valid_nm n m b.

Theorem Pnm_Tileable : forall (b : boundary)(n m : nat),

2 <= n -> 2 <= m -> exists (e e’ : edge), Valid n m b e e’.

Proof.

move => b n m H0 H1.

exists (e_nm n m b).

exists (e’_nm n m b).

apply (e_nm_Valid b n m H0 H1).

Qed.

Figure 10: Main theorems in Coq

We first prove that the result is valid for all 2× 2 boundaries. In a 2× 2 problem, there are
|C|8 patterns of boundary colorings. Since |C| is not bounded, there are infinitely many cases.
Focusing on an equality of colors between facing edges, we can divide those patterns to 16 cases.
We do not distinguish between 16 cases, we reduce the problem to 13 cases because there are
4 cases that can be proved in the same way. The validity of our algorithm (Step 3) is showed
in P22_Valid_nm. Second, we show that the result is valid for all 2 ×m boundaries using an
induction on m. The validity of our algorithm (Step 2) is showed in P2m_Valid_nm. Finally,
we show that the result is valid for all n×m boundaries using an induction on n. The validity
of our algorithm (Step 1) is showed in e_nm_Valid. The associated lemmas and theorem are
listed in Figure 10.

The validity is proved in Coq as e_nm_Valid. Since we have implemented functions e_nm and
e’_nm, only we need to show is to check a condition Valid for any input b boundary coloring.
Theorem 1 about the tileablity is translated into a theorem Pnm_Tileable in Figure 10. We
note that Theorem 1 is a theorem for an existence, but we always show a concrete valid tiling

114

for proving the existence. All source codes and proofs are in the github repository showed in
Appendix.

5 Conclusion

We formalized the notion of Wang tiles in Coq and proved a type of domino problem for a
rectangular region with a boundary condition and a given brick Wang tile set. We extracted
from this proof a Coq program to construct a valid tiling for a given rectangular region and a
boundary condition.The generalization of the proof and its formalization to arbitrary bounded
regions of the plane constitutes an interesting development of the present study. In particular,
an interesting point is the relaxation of the inclusion of a 2 × 2 square and the possibility of
tiling a non-rectangular region of the plane that does not contain one.

Acknowledgement

This work was partially supported by the Core Research for Evolutional Science and Technology
(CREST) Program titled “Mathematics for Expressive Image Synthesis” of the Japan Science
and Technology Agency (JST).

References

[1] The Coq Proof Assistant, https://coq.inria.fr/.

[2] R. Berger. The undecidability of the domino problem. Memoirs of the American Mathematical
Society, 66:72, 1966.

[3] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang Tiles for Image and Texture Generation.
ACM Transaction on Graphics, 22(3):287–294, 2003.

[4] K. Culik. An aperiodic set of 13 Wang tiles. Discrete Mathematics, 160(1-3):245–251, 1996.

[5] A. Derouet-Jourdan, Y. Mizoguchi, and M. Salvati. Wang Tiles Modeling of Wall Patterns. In
Symposium on Mathematical Progress in Expressive Image Synthesis (MEIS2015), volume 64 of
MI Lecture Note Series, pages 61–70. Kyushu University, 2015.

[6] E. Jeandel and M. Rao. An aperiodic set of 11 Wang tiles. http://arxiv.org/abs/1506.06492, 2015.

[7] J. Kari. A small aperiodic set of Wang tiles. Discrete Mathematics, 160(1-3):259–264, 1996.

[8] J. Kopf, D. Cohen, O. Deussen, and D. Lischinski. Recursive Wang Tiles for Real-Time Blue
Noise. ACM Transaction on Graphics, 25(3):509–518, 2006.

[9] J. Stam. Aperiodic texture mapping. Technical Report R046, European Research Consortium for
Informatics and Mathematics (ERCIM), 1997.

[10] H. Wang. Proving theorems by pattern recognition−II. Bell System Technical Journal, 40(1):1–41,
1961.

115

https://coq.inria.fr/

Appendix

All source codes and proofs are in the github repository

https://github.com/KyushuUniversityMathematics/BrickCornerWangTiling.

To check examples following instructions.

1. To extract functions e_nm and e’_nm.
coqc TilingProgram.v

There exists an OCaml file TilingProgam.ml that contains examples of boundary color-
ings, such as boundary44a and boundary44c.

2. To execute rendering example file.
ocamlc TilingProgram.ml Tilingrender.ml -o TilingRender

There exist rendered images such as b44a.svg and b44c.svg.

3. Some external program such as rsvg-convert may be used to convert the image format
from svg to png.
eg. svg-convert b44a.svg > b44a.png

Figure 11: Example of an execution result (n = m = 4).

116

https://github.com/KyushuUniversityMathematics/BrickCornerWangTiling

	Introduction
	Brick Wang tiling
	Tiling algorithm
	Verification using Coq
	Conclusion

