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Abstract

In this work, we aim to define a resolution method for the modal logic S5. We first propose a
conjunctive normal form (S5-CNF) which is mainly based on using labels referring to semantic worlds.
In a sense, S5-CNF can be seen as a generalization of the conjunctive normal form in propositional logic
by including the modal connective of necessity and labels in the clause structure. We show that every
S5 formula can be transformed into an S5-CNF formula using a linear encoding. Then, in order to
show the suitability of our normal form, we describe a modeling of the graph coloring problem. Finally,
we introduce a simple resolution method for S5, composed of three deductive rules, and we show that
it is sound and complete. Our deductive rules can be seen as adaptations of Robinson’s resolution rule
to the possible-worlds semantics.

1 Introduction

Robinson’s resolution method forms the keystone of logic programming and several automated
theorem-provers. It corresponds to a proof rule leading to a decision procedure for deciding
whether a formula is unsatisfiable in propositional logic. In this work, we are interested in
defining a resolution method for modal logic S5.

The normal modal logic S5 is among the most studied modal logics. It is well-known that
it can be considered as an epistemic logic in the sense that it is suitable for representing and
reasoning about the knowledge of an agent [8]. In [12], Ladner proved that the complexity of
the satisfiability problem in S5 is NP-complete.

In the literature, the majority of decision algorithms for modal logics are based on either
the use of the formalism style in structural proof theory called sequent calculus and its variant
called tableau method [9, 6], or encodings in first order logic [13]. There are also several works
proposing resolution methods for modal logics which are mainly defined using two approaches,
described as follows. The first approach is based on performing resolution inside modal connec-
tives without integrating semantic information (see for instance [1, 7, 4]). As pointed out in [2],
this leads to complex systems with a proliferation of deductive rules. The second approach is
based on using semantic pieces of information, such as labels referring to semantic worlds, for
direct resolution methods avoiding proliferation of deductive rules [2]. In this work, we adopt
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the second approach by using the notions of nominals and satisfaction connectives stemming
from hybrid logics to define a simple and elegant system for S5. Hybrid logics were mainly
introduced to explicitly express the relativity of truth in modal logics [5, 3]. This relativity is
obtained by adding a new kind of propositional symbols, called nominals, which are used to re-
fer to specific worlds in a model. In this context, new connectives having nice logical properties,
called satisfaction operators, are added to allow one to jump to worlds named by nominals.

Our resolution system differs from the existing ones for S5 mainly in the following two
positive aspects. Firstly, we use without loss of generality a normal form very close to the
conjunctive normal form in propositional logic. Indeed, a formula in our normal form corre-
sponds to a conjunction of clauses where each clause does not contain the connectives A and <,
and the negation connective is only applied to propositional variables. By comparison, in the
existing clausal normal form for S5, a clause can contain all the connectives of S5 [7]. Secondly,
our system contains only three deductive rules which can be seen as adaptations of Robinson’s
resolution rule to the possible-worlds semantics. Intuitively, the two first rules can be seen as
Robinson’s resolution rule restricted to a single world, while the third rule concerns all the
worlds. As a summary, the contribution of this paper is at least twofold: (i) we introduce an
intermediate language between the language of S5 and that of its hybrid version, a conjunc-
tive normal form in S5 similar to that in propositional logic, in particular, a conjunction of
conjunction-free clauses, (ii) we provide a fairly simple and natural resolution method based
on a small set of rules similar to Robinson’s rule.

The rest of this paper is organized as follows. We provide an overview of the syntax and the
semantics of modal logic S5 in Section 2. In Section 3, we define our conjunctive normal form
for S5 and we describe a linear method for translating the S5 formulee to this normal form. In
order to show the suitability of our normal form, we describe in Section 4 a modeling of the
graph coloring problem. In Section 5, we introduce a resolution method and show its soundness
and completeness. Section 6 concludes with some directions for future work.

2 Modal Logic S5

In this section, we first describe the syntax and the semantics of modal logic S5. The set of
formulae of S5 is defined by a denumerable set of propositional variables, denoted by P (we use
D, q,T,... torange over P), by extending the propositional language with the modal connectives
¢ and O. In particular, the language is defined by the following grammar:

Au=p|-A|ANA|AVA|A— A|DA|GA

Given an S5 formula A, we use Var(A) to denote the set of propositional variables occurring
in A.
A Hilbert axiomatic system for S5 is given by the following axioms and rules:

0. Any substitution instance of a propositional tautology.

K.O(A— B) - (0A — 0OB)

T.04—- A

B. A—OQA

4. 0A - 0ODA

A— B A

A
and
5 [myp] - [nec]

It is well-known that S5 can be considered as an epistemic logic in the sense that it is suit-
able for representing and reasoning about the knowledge of a single agent [8]. A formula of the
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form OA can be read as “the agent knows A”. For instance, axiom 4 expresses the fact that if
an agent knows A then she knows that she knows A (the positive introspection axiom).

Given an S5 formula A, the set of subformulae of A is defined inductively as follows:
e A is a subformula of A;

e if B® C is a subformula of A, then so are B and C, for ©® = A, V, —;

e if OB is a subformula of A, then so is B, for ) = —, 0, .

An S5 formula is in S5 Negation Normal Form (S5-NNF formula) if the negation operator
is only applied to propositional variables and the allowed connectives are —, A, V, < and O.
Using De Morgan’s laws, which are valid in S5, and the equivalence -0A = $—A, we know
that every S5 formula can be written as an S5-NNF formula. We use Fg5 to denote the set of
S5 formulae in S5 negation normal form.

There are two versions of possible-worlds semantics for S5, one in which accessibility is
an equivalence relation, and one in which there is no accessibility relation (see, e.g., [10]).
Intuitively, the latter semantics is obtained from the former by restricting our attention to one
equivalence class in a model. In this paper, we consider the semantics in which there is no
accessibility relation.

Definition 1 (S5-Interpretation). Given an S5 formula A, an Sh-interpretation of A is a pair
M = (W, V) where W is a non-empty set (of worlds) and V is a function from Var(A) to 2"V,
where 2V is the powerset of W, i.e., its set of subsets.

Definition 2 (Satisfaction Relation). The satisfaction relation = between an S5-interpretation
M= (W, V), a world w € W, and an S5 formula A, written M,w |= A, is defined inductively
as follows:

M,w = p iffw e V(p);

M, w ’: —p iff w §é V(p),'

M,wEAAB iff MjwE A and M,w = B;

MwlEAVBiff MjwlE A or M,w = B;

MowE QA iff T e W, M,w' = A;

M,w = OA iff vw' e W, M,w' E A.

Definition 3 (S5 Satisfiability Problem). Given an S5 formula A, determine whether there
exists an S5-interpretation M = (W, V) of A with a world w € W s.t. M,w = A. If A is
satisfied in M, we say that M is an Sh-model of A.

The S5 satisfiability problem is NP-complete [12].

Consider the two S5 formulee {—p and O(p V q). Clearly, these formula infer that there
exists a world where p is false and ¢ is true. This fact can be expressed by formula $(—p A g).
However, since our aim is to use a conjunctive normal form close to that of propositional for-
mulae with conjunction-free clauses, the subformulee in the scope of the occurrences of > have
to be literals, i.e., propositional variables or negated propositional variables. Furthermore, the
S5 formula ($—p) A ($g) does not express that p is false and ¢ is true in the same world.
Indeed, this formula may be satisfied by a model where —p A ¢ is not true in any world. As a
consequence, to define the conjunctive normal form for our resolution method we need to refer
to possible worlds in S5 formulse. To this end, we consider a syntactical fragment of a hybrid
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version of S5 which includes S5.

The hybrid version of S5, denoted by HybS5, is obtained by adding a new kind of symbols
to the syntax of S5, called nominals, which are used to refer to specific worlds in a model [5, 3].
New connectives related to the nominals, called satisfaction connectives, are also added. They
allow one to jump to the worlds named by nominals. In our work, we consider a syntactical
fragment of HybS5 where nominals appear only with satisfaction connectives. We use N to
denote the denumerable set of nominals (we use a,b,c, ... to range over A/). The syntax of
the fragment of HybS5 that we consider, denoted by FHybS5, is defined using the following
grammar:

Au=p|-p|ANA|AVA|OA|QAla: A

Clearly, every formula in Fgs is an FHybS5 formula. Given an Sh-interpretation M = (W, V)
and a HybS5 formula A, an M-assignment of A is a function that assigns to each nominal in A a
world in W. A HybS5-interpretation of A is a pair (M, f) where M is an S5-interpretation and f
an M-assignment of A. The satisfaction relation for the considered fragment, (M, f),w = A, is
defined in the same manner as for S5 in the case of the common connectives, and in the following
manner in the case of the satisfaction connectives: (M, f),w = a: A iff (M, f), f(a) E A.

3 S5-CNF Formulae

In this section, we first define a Congunctive Normal Form for the S5 formulee (S5-CNF in short).
This normal form is obtained by generalizing the conjunctive normal form in propositional
logic through the introduction of nominals and the modal connective of necessity in the clause
structure. Then, we show that every formula in Fg5 admits an equi-satisfiable S5-CNF formula
using a linear encoding.

3.1 S5 Conjunctive Normal Form

In order to define our conjunctive normal form, we start by defining the notions of literal, basic
clause, and hyb-literal. A literal is defined as a propositional variable or a negated propositional
variable. We denote by [ the complementary literal of I. More precisely, if I = p then [ is —p
and if [ = —p then [ is p. A basic clause is defined as a disjunction of literals. Using the two
aforementioned notions, a hyb-literal is defined as an FHybS5 formula of one of the forms a : [
or Oc¢, where [ is a literal, a is a nominal, and c is a basic clause.

Definition 4. A hyb-clause is a disjunction of hyb-literals and an S5-CNF formula is a con-
junction of hyb-clauses.

An S5-CNF formula can also be seen as a set of hyb-clauses, and a hyb-clause as a set of
hyb-literals; we refer to this representation when set operators are used, such as U and N.

Example 1. The following formula is in S5 conjunctive normal form:
(a:pVb:—gVa:r)ANb:=rVIO(-pV-r)Va:q)

Definition 5 (S5-SAT). The S5-SAT problem consists of checking whether an S5-CNF formula
is satisfiable or not.

As a notational convention, we use the following symbols with subscripts and superscripts
in what follows: [ to denote literals, ¢ to denote basic clauses, h to denote hyb-literals, o and
B to denote hyb-clauses, and A to denote S5-CNF formulae.
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Proposition 1. Let A be an S5-CNF formula. If A is satisfiable, then there exists a HyS5-
model (M, f) of A such that M has maz(1,|Nom(A)|) worlds.

Proof. Let ((W,V), f) be a HyS5-model of A. We define the S5-interpretation M = (W' V")
as follows:
o W — {f(a) | a € Nom(A)} if|[Nom(A)| >0
{w} forweWw otherwise

e V"’ is the restriction of V to W'.

We now show that (M, f) is a HyS5-model of A. Let us assume that there exists a hyb-clause
a1:11V- Vay:l,VOe V... VO, which is not satisfied by (M, f). Then, since W C W,
for alli € {1,...,m}, (W,V), f(a;) & l; holds. Moreover, for all j € {1,...,n}, there exists a
world w € W such that (W, V), w = ¢; holds. Thus, we get a contradiction since (W, V), f) is
a HyS5-model of A. O

Theorem 1. S5-SAT is NP-complete.

Proof. Using Proposition 1, we know that S5-SAT is in NP. The NP-hardness stems from the
fact that we can encode the propositional satisfiability problem (SAT) in S5-SAT. Indeed, we
have A= (I3 V- VI YA+ A(¥ V- VIE ) is satisfiable iff (a: {1 V- Va:ll A Ala:
I¥V--- Va:lF ) is satisfiable, where a is a nominal. O

Given a hyb-clause «, we use NH L(«) to denote the number of hyb-literals occurring in «.
NHL(-) is extended to the S5-CNF formulae as follows: NHL(ay A--- Aay) = NHL(oq) +
-+ +NHL(a,). Consider for instance the S5-CNF formula A described in Example 1, we have
NHL(A) = 6. This measure is used to inductively prove the completeness of our resolution
method.

3.2 A Transformation into S5-CNF

We will now describe a transformation which takes as input an arbitrary S5 formula and pro-
duces an equi-satisfiable S5-CNF formula. Similarly to Tseitin’s well-known encoding [14], the
key idea consists of substituting subformulae with new propositional variables.

Given two S5 formulee A and C, and a subformula B of A, we use A[B/C] to denote the
result of substituting B with C.

Proposition 2. Let A € Fg5 and B a subformula of A. Then, A is satisfiable in S5 iff
A[B/q) A O(q <> B) is satisfiable in S5, where q is a fresh variable, i.e., g ¢ Var(A).

Proof. The “if” part is an obvious consequence of the fact that B is equivalent to the fresh
variable ¢ in any world of any model of A[B/q] A O(q <> B). Let us now consider the “only
if” part. Let M = (W, V) be an S5-model of A. Then, we define the S5-interpretation M’ of
A[B/q] ANO(q <+ B) as the ordered pair (W, V') where V' is defined as follows:

iy 4 V(D) if  p#q
V(p)—{ {weW | M,wlE B} otherwise

Clearly, M’ satisfies formula O(q <> B) since V(q) = {w € W | M,w = B}. Furthermore, we

know that there exists w € W such that M, w |= A. As a consequence, we have M’ , w = A[B/q]
since ¢ is equivalent to B in every world in M’. Thus, M’ w = A[B/q] AO(q +» B) holds. O
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Figure 1: The DAG corresponding to formula A = $(0(py V p2) A O(p1 A —p2))

It is interesting to note that each S5 formula can be represented by a binary rooted directed
acyclic graph (DAG), where each leaf node is labelled with a literal and each internal node is
labelled with a logical connective (A and V (resp. O and <)) have two children (resp. a single
child)). An example of such a representation is depicted in Figure 1.

Our approach for transforming an S5 formula into an equi-satisfiable S5-CNF formula con-
sists of the following two successive steps:
1. applying a Tseitin-like transformation;

2. removing the occurrences of {» and introducing nominals.

First step. Let A € Fg5 (we consider the DAG representation). In the first step, we start
by associating with each internal node v of A a fresh propositional variable, denoted by ¢,. We
use R(A) to denote the DAG obtained from A by replacing the label of each internal node with
its corresponding fresh variable. We start with an empty set denoted by S4. For all internal
nodes v of A, if v is labelled with a binary logical connective ® (i.e., A or V), we add formula
O(gy &> * ®y) to Sa where x and y are the labels of the children of v in R(A), and if v is
labelled with a unary connective O (O or {), we add formula O(g, <> Ox) to Sa where z is the
label of the child of v in R(A). Using Proposition 2, we know that g, A Apcg, B is equivalent
to A w.r.t. S5 satisfiability where ¢, is the label of the root node in R(A). After building Sa,
we replace each formula in this set using the following equivalences:

e O(gy & xVy)=0(-q, Ve Vy) AB(ZV q) AB([TV qu)
e U(g, <z ANy)=0(q VEVY) ADO(z V —g,) AD(y V —gy)
e O(gy ¢ O(2)) = (A(=g) V O(2)) A (G(T) V O(g0))

o O(gu + ¢(2) = (O(gw) V O(2)) A (O(Z) V O(gv))

These equivalences are obtained from valid equivalences in propositional logic (and also in S5)
and the following valid equivalences in S5:

(1) O(AA B)=0(A) AO(B)

(i) O(AVO(B)) =0(A) VO(B)
(1) O(AVO(B))=0(A) vO(B)
(iv) &(A4) =-0(-4)
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Let us consider, for instance, formula O(g, <> {(z)). Using equivalences in propositional logic,
we have O(q, <> O(2)) = O((—gw V O(2)) A (=0(x) V qy)). Using equivalence (i), O(g, <>
O(x)) = 0(—gy V O(x)) AO(=O(x) V gy) holds. Then, using equivalence (iv), O(g, +> $(x)) =
O(—qy V O(2)) A D(O(T) V ¢p) holds. Finally, using equivalences (i¢) and (ii¢), we obtain
O(gu ¢ O () = (B(ogo) V O (2) A (B(T) V Blgw))-

Second step. We define an i-literal as an S5 formula having one of the forms [, I, Oc¢, where
[ is a literal and c is a basic clause. An i-clause is defined as a disjunction of i-literals.

It is worth noting that, using the first step in our transformation, each A € Fg5 can be
transformed into an equi-satisfiable formula I(A) consisting of a conjunction of i-clauses. Our
aim in the second step is to transform each i-clause I(A) into a hyb-clause. To this end, we use a
function g associating with each subformula of the form ! a nominal such that g({l) = g(OU)
iff | =1’. We use T'(A) to denote the formula obtained from I(A) by (i) replacing each occurrence
of an i-literal of the form I with g(<!) : I, and (i) replacing each literal [ which is not in the
scope of a modal connective with a : [ where a is a fresh nominal, i.e., there is no )/ such that
g(Ol) = a. Clearly, T'(A) is an S5-CNF formula.

Example 2. Let us consider formula A described in Figure 1. We first have Sy = {O(q¢, <

Qany), Ban, < (g0, AN 40,)), Blgo, < Ogv,), 0(qo, <> $an,), Dlav, € (p1V p2)), D(gn,
(p1 A —p2))}. After the first step, I(A) corresponds to the following formula:

4o A (OG0, V Oqn,) A (Oge, V O=ga,) A (O(=ga, V go,)) A (B(=ga, V go,))A
(A(gn; V g0, V 740,)) A (O-ga, V Oqy,) A (Oga, V $gy,) A (O7ge, V $ga,)A
(Bq¢, V O7qn,) A (B(=gy, Vp1 Vp2)) A (B(gy, V =p1)) A (O(gqy, V —p2))A
(B(=gv, Vp1)) A (O(=gqv, V =p2)) A (O(gv, V —p1Vp2))

Then, using the second step in our transformation, T(A) corresponds to the following formula:

a:qo, A(O7ge, Vb ga,) A (Oge, VO=ga, ) A (B(=ga, Vo)) A (B(5ga, V 4o,))N
(B(gn, V —qo, V 240,)) A (B=go, V Ogy,) A (Oga, Vb : =gy, ) A (O7ge, V b3 : ga,)A
(0g¢, V O=gn,) A (O(=gy, Vp1Vp2)) A(O(gy, V=p1)) A(B(qv, V —p2))A
(B(=qv, V1)) A(B(=gy, V =p2)) A(B(qy, V =p1 V p2))

The underlined items are simply meant to emphasize hyb-literals governed by a nominal.
Proposition 3. An S5 formula A is satisfiable iff T(A) is satisfiable.

Proof. Using Proposition 2, we know that A is satisfiable iff I(A) is satisfiable. Thus, it suffices
to show that I(A) is satisfiable iff T'(A) is satisfiable. Let us first consider the “if” part.
Let (M, f) be a HybS5-interpretation satisfying T'(A). Without loss of generality, let o =
LV VI VO V- VI, vOe V--- VOe, be a conjunct in I(A), i.e., it is an i-clause.
Then o =a: V-~ Va:lgVa : {1V - Vay 1, VOc V--- V0Oe, is a hyb-clause in
T(A). From the definition of the satisfaction relation in HybS5, (M, f), f(a) E « holds. As
a consequence, M is a HybS5-model of I(A). We prove the “only if” part in the same way.
Let M = (W, V) be an S5-model of I(A). Then, there exists w € W s.t. M,w E I(A). We
define an M-assignment f of T'(A) as follows. If a is the nominal associated with the literals
which are not in the scope of a modal connective using g (see second step), then f(a) = w.
Further, for every nominal b associated with an i-literal {l using g, if there exists M,w’ =1
then f(b) = w’, and f(b) = w” for a world w” € W otherwise. From the definition of f, one
can easily see that (M, f) is a HybS5-model of T(A) since M, w = I(A). O

258



A Resolution Method for Modal Logic S5 Y. Salhi and M. Sioutis

4 An Example of Modeling in S5-SAT

In this section, we use an example in order to show that S5-SAT is suitable for modeling NP-
complete decision problems. In particular, compared to SAT, we show that it allows one to
use fewer propositional variables and clauses for modelling such a problem. The considered
problem in our example is the graph coloring problem which is well-known to be NP-hard [11].

Let k be a strictly positive integer and G = (V, E) an undirected graph such that V is the
set of vertices and F is the set of edges. A k-coloring of G corresponds to a partition of V' into
k sets P = {Vi,...,Vi} such that no two vertices in the same subset are adjacent, i.e., for all
1 <4<k and for all v,v" € V; with v # v' we have (v,v') ¢ E. Each subset in P corresponds
to a different color. The chromatic number of a graph G, denoted by x(G), is defined as the
smallest number of colors needed to color G. Given a graph G, the minimum graph coloring
problem for G consists of finding a k-coloring such that k = x(G).

Given a strictly positive integer k and an undirected graph G = (V, E), we associate with
each vertex v in V a distinct propositional variable, denoted by p,, and with each integer
i €{1,...,k} a distinct nominal, denoted by a;. The following S5-CNF formula expresses that
all the vertices of V' have to be colored:

k
/\ \/ai:pv (1)

veV i=1

Further, the following S5-CNF formula expresses that no two adjacent vertices have the same
color:
/\ O(=pv V 7pw) (2)

(v,v")EE

In other words, the first S5-CNF formula expresses that, for all v € V', the propositional vari-
able p, has to be true in at least one world from the worlds named by the nominals (colors)
ai,...,an, and the second S5-CNF formula expresses that there is no world (color) where two
propositional variables associated with two adjacent vertices are both true. Clearly, the con-
junction of these two S5-CNF formulee is satisfiable if and only if G admits a k-coloring.

The graph coloring problem can be encoded in SAT in the same way as in S5-SAT. However,
we have to associate with each vertex v € V and each color i € {1,..., k} a propositional variable
to express that node v has color 7. This leads to the use of |[V|x k propositional variables in SAT.
On the other hand, we only need to use |V| propositional variables in our S5-SAT encoding.
Moreover, we have to use |E| x k clauses to express that there are no two adjacent vertices
having the same color in SAT. Again, we only need to use |E| clauses in our S5-SAT encoding.
This example illustrates the interest in using S5-SAT for modeling NP-complete problems.

5 Resolution Rules

In propositional logic, the resolution method is a decision procedure for deciding whether a
formula in conjunctive normal form is unsatisfiable. It is based on the following inference rule:

aVl o' Vi

/

[Res]
aVo
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The clause oV o is called the resolvent of a V1 and o V1. The resolution inference rule states
that the resolvent oV o’ is a logical consequence of the set of clauses {a V1, o’ VI}. A resolution
derivation of a conclusion C' (a clause) from a set of premises A (a set of clauses) is a tree'
such that the root node is labelled with C, the labels at the immediate successors of a node n
are the premises of an instance of the resolution rule having the label at n as a resolvent, and
the leaf nodes are labelled with clauses in A. The resolution method is mainly used to show
unsatisfiability of CNF formulze. Indeed, a set of clauses A is unsatisfiable if and only if there
is a resolution derivation of the empty clause from A.

In the same vein, we define here a resolution method for modal logic S5 using the S5
conjunctive normal form defined earlier. Our method is based on the rules described in Figure 2.
The premises and the conclusion of each rule are hyb-clauses. The empty hyb-clause is denoted
by {}. It is worth noting that if a hyb-clause contains a hyb-literal with an empty set of literals
in the scope of O, then this hyb-literal is removed.

. / .7 aVa:l VOl V- Vi, VI
aVa:l o' Va:l [Res] (lh ) [Res?]
aVo' avVoa'Va:l4V---Va:l,

avOpvl) o vOop vi)
avavapyvpe)

[Res3]

Figure 2: Resolution rules for S5

Example 3. We provide here a resolution derivation of the formula (O(—pV q)) A (B(—pV 7)) A
(Op) A (a:—gVb:—r):

Op S(-pVa)

T (Resy)

Ogq a:-qVb:-r Op O(-pVr)
[Res2] —— [Res3]
Or

b:-r

Res2
0 [Res2]

Theorem 2 (Soundness). The rules Resl, Res2, and Res3 are sound.

Proof. The soundness of the rules Resl, Res2, and Res3 means that, for each rule, the resolvent
is a logical consequence of the premises. In the three rules, the soundness stems from the fact
that we can not satisfy a literal and its complementary literal in any world. A more formal
proof can be obtained by assuming that the premises are satisfied by a model M and showing
that M satisfies also the resolvent. O

Using the soundness of Resl, Res2, and Res3, we know that if there is a resolution derivation
of the empty hyb-clause from a set of hyb-clauses, then the set of hyb-clauses is unsatisfiable.

Given a resolution derivation D and a node v in D, we use leng(v, D) to denote the number
of nodes between the root and v.

The following proposition is used to show completeness. Intuitively, it states that if there
is a resolution proof showing that an S5-CNF formula is unsatisfiable, then, for every S5-CNF
formula obtained by using the modal connective O instead of nominals, there is also a resolution

1n the literature, a resolution derivation is also defined as a DAG in which each clause appears once.
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proof showing that this formula is unsatisfiable. In what follows, symbol & denotes the disjoint
union operator.

Proposition 4. If there is a resolution derivation of the empty hyb-clause from AW{aVa: c},
then there is a resolution derivation of the empty hyb-clause from AW {a V Oc}, where for
c=0V---Vig,a:cdenotesa:l1V---Va:lg.

Proof. Let D be a resolution derivation of the empty hyb-clause from AW {aV a : ¢}. Our
proof is obtained by showing the following property: (Prop) for each node v in D labelled with
y=pBVa:liV---Va:lg where a does not appear in 3, there exists S" C S = {l,...,lx}
such that there is a resolution derivation of 8V (Vcg g a 1) VO(V,cg 1) from AW {aV Oc}.
We show this property by induction on leng(v, D). If leng(v,D) = 1 then v is a leaf node
labelled with either a hyb-clause in A or @V a : c. In the case where v is labelled with eV a : ¢,
Prop is obtained using the hyb-clause a vV Oc. Regarding the case where leng(v,D) > 1 (v
is an internal node), since the label of v is a resolvent in an instance IRes of a resolution
rule, we need to distinguish the three cases of the resolution rules. We first have to apply the
induction hypothesis on the premises of IRes. Then, we apply a resolution rule according to
the complementary literals used to perform resolution in I Res. O

Proposition 5. Let A be a set of hyb-literals. A is unsatisfiable iff there is a resolution
derivation of the empty hyb-clause from A.

Proof. The “if” part is obtained from Theorem 2. To show the “only if” part we use the com-
pleteness of the resolution rule in propositional logic. Without loss of generality, we consider
A to be equal to {a; : I},...,a; : l}ﬁ,...,an A, an lgn7Dcl,...7Dcm}, where for all
1 <i#j<n,a # a;. Clearly, A is unsatisfiable iff one of the following sets of clauses
is unsatisfiable: {I1,...,0; 1. . em}, -y {07, 0% e1,. .., cm}. Indeed, every set of in-
terpretations satisfying all the previous sets of clauses can be used to build an interpretation
satisfying A. Let us assume that the set of clauses P; = {I},..., l};i ,Cl, ..., Cm} 1S unsatisfiable
for i € {1,...,n}. Thus, using the completeness of the resolution method in propositional
logic, there is a resolution derivation D of the empty clause from P;. Using the resolution rule
Resl, we know that D can be directly transformed into a resolution derivation D of the empty
hyb-clause from {a; : I{,...,a; : I} ,a; : c1,...,a; : ¢y }. Thus, using Proposition 4, there is a
resolution derivation of the empty hyb-clause from A;. O

Theorem 3 (Completeness). Let A be a set of hyb-clauses. If A is unsatisfiable then there is
a resolution derivation of the empty hyb-clause from A.

Proof. Our proof of completeness is obtained by induction on the value NHL(A). The proof
regarding the base case where NHL(A) = 0 is a direct consequence of Proposition 5. Let
us consider the case where NHL(A) > 0. Then, there exists a clause a in A such that
NHL(a) > 2. Let h be a hyb-literal in o (o« = hV ). Since A is unsatisfiable, we know
that the two S5-CNF formulee A; = (A\ o) U {h} and Ay = (A \ a) U {8} are unsatisfiable.
Moreover, we have NHL(A;) < NHL(A) and NHL(As) < NHL(A). By applying the
induction hypothesis, there are resolution derivations D; and Dy of the empty hyb-clause from
A; and Ag, respectively. We use V(Ds) to denote the set of the nodes of Dy belonging to a
path from the root node to a node labelled with 8. Let D} be the tree obtained from D by
adding the hyb-literal h to the hyb-clauses of the nodes in V(D3). From the structure of the
resolution rules, we have that D) is a resolution derivation of either the empty hyb-clause or h
from A. In the case where the root node is labelled with the empty hyb-clause, D} allows us
to show our property. Otherwise, Let D] be the resolution tree obtained from D; by replacing
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the leaf nodes labelled with h with D). As a consequence, D] is a resolution derivation of the
empty hyb-clause from A. O

6 Conclusion and Perspectives

The contribution of this work consists of defining a conjunctive normal form for S5, analogous
to that for propositional logic, and providing a fairly simple resolution method. A formula in
our normal form consists of a conjunction of conjunction-free and <>-free clauses. Further, our
conjunctive normal form for S5 allows for a more compact encoding of propositional variables
and clauses for modelling NP-complete problems than the one obtained in SAT. Our resolution
method comprises three resolution rules which are defined in the same way as Robinson’s
resolution rule.

For future work, we intend to implement an automated theorem-prover for S5 based on
our resolution method. To this end, we plan to propose different strategies for rule instances
selection. We also plan to extend our approach for defining resolution methods for other normal
modal logics as well.
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